
Bachelor Thesis

Computation of the static force in 1+1
dimensional SU(2) Yang-Mills theory

Michael Eichberg

September 2019

Institut für theoretische Physik
Goethe Universität
Franfurt am Main

1. Supervisor: 2. Supervisor:
Prof. Dr. Marc Wagner Prof. Dr. Owe Philipsen
Insitut für theoretische Physik Insitut für theoretische Physik
Goethe Universität Goethe Universität
Frankfurt a. M. Frankfurt a. M.





Erklärung nach § 30 (12) Ordnung für den
Bachelor- und dem Masterstudiengang
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Abstract

The straight-forward way to compute a force is to take the derivative of the
corresponding potential. This thesis explores an alternative way to compute the
static force in 1+1 dimensional SU(2) Yang-Mills theory. The force is computed
using a chromo-electric field correlator. Renormalization of colour fields, which
is necessary in 3 + 1 dimensions, is discussed and explored numerically. The
static force computed from the slope of the static potential does not need
renormalization and can be compared with the bare and renormalized force
computed from the chromo-electric field. A known renormalization for 3 + 1
dimensions is the Huntley-Michael method. For 1 + 1 dimensions it will be
interesting to see, if renormalization is necessary and if one can apply the
Huntley-Michael method.
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1 Introduction

Particles in quantum field theory are represented by fields which show certain
transformation behaviour. Gauge transformations can be represented by group
elements of U(1) or SU(N). The Lagrange density describes the dynamics of
a theory. Conserved quantities in nature are contained in the Lagrangian as
symmetries. Quantum chromodynamics is an example for a gauge theory with
SU(3)-colour symmetry, which describes the dynamics of strongly interacting
fermions and gauge bosons. Yang-Mills theory is a SU(N) gauge theory and
expresses gauge field dynamics of non-abelian fields with static quarks. These
gauge fields are able to interact among themselves [1, 2].

In lattice gauge theory, discretization of Yang-Mills theory introduces gauge
fields as link variables, elements of the gauge group. These link variables can
be used to construct gauge invariant observables. Physical quantities can be
extracted from correlators of observables. The Wilson loop is an observable
which correlates a quark-antiquark-state with spatial size r with itself over
temporal extension t. Writing the Wilson loop correlator in an expansion of
eigenstates, the lowest state dominates in the limit t→∞ and describes the
static quark-antiquark pair. The energy of the lowest state is therefore defined
as the static quark potential (see section 3.3 in reference [3]).

By definition, the static force can be extracted from the results for the potential
as the spatial derivative. An alternative way proposed very recently to extract
the force directly from the lattice is to compute the ratio of a chromo-electric
field correlator and a Wilson loop [4]. The chromo-electric field is inserted at
the quark line of a Wilson loop. On the lattice, this field is constructed from
plaquettes, which contain the lattice field strength tensor.

Colour field correlators are important tools to explore certain quantities in lattice
QCD, examples can be found in references [5, 6]. In 3 + 1 dimensions, colour
fields are affected by self-energy contributions, which leads to renormalization
becoming necessary [7]. One way to renormalize is the Huntley-Michael method.
It is expected to remove self-energy contributions up to order O(ĝ2a4) in
perturbation theory. For computations using colour fields, reference values
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1 Introduction

which do not need renormalization are often unknown. For the force computed
using a chromo-electric field, the slope of the potential is a known reference. The
necessity of renormalization in 1 + 1 dimensions can be explored by comparing
the results of the force from the bare and renormalized fields with the force
given by the slope of the potential [8].

Chapter 2 in this thesis introduces a lattice formulation for SU(2) Yang-Mills
theory. Steps to extract the static potential will be discussed, followed by the
static force. The main part of this discussion will be the replacement of the
spatial derivative in the definition of the force with a chromo-electric field,
as existing references do not provide a detailed derivation. Afterwards, the
Huntley-Michael method will be introduced. Results for the potential and the
force are given in chapter 3, which also presents the lattice setup and discusses
numerical methods. Chapter 4 gives a summary of the findings of this thesis
with an outlook for possible next steps.
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2 Theoretical basics

2.1 Lattice formulation for Yang-Mills theory

Constructing a formulation of Yang-Mills theory in 1 + 1 dimensions is equiva-
lent to 3 + 1 dimensions. In 3 + 1 dimensions, the coupling is dimensionless.
This is not the case in 1 + 1 dimensions. The lattice counterpart of the coupling
g in 1 + 1 dimensions will be ĝ = g · a with lattice spacing a.

The gauge fields are represented by group elements of SU(2) and for U,Ω ∈
SU(2) at lattice point n ∈ Λ the gauge transformation is given by [3]:

Uµ(n)→ U ′µ(n) = Ω(n)UµΩ†(n+ µ̂) (2.1)

and one defines

Uµ(n) = exp(iĝaAµ(n)) (2.2)

The transformation behaviour in equation (2.1) suggests to construct a gauge
invariant object from the trace of a closed loop of these link variables, as
transformation matrices Ω,Ω† of neighbouring links result in unit matrices.
The smallest non-trivial closed loop is the plaquette Uµν , the indices indicate
the direction of the plaquette.

Using the plaquette and cyclicity of the trace, the gauge invariant Wilson action
is [3]:

SG[U ] =
β̂

N

∑
n∈Λ

∑
µ<ν

ReTr (1− Uµν(n))

=
ad

2g2

∑
n∈Λ

Tr
(
Fµν(n)2

)
+O(a2) (2.3)
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2 Theoretical basics

with N = 2, d = 2 and inverse lattice-coupling β̂ = 2N
ĝ2 . In equation (2.3) one

can see, that in 1 + 1 dimensions the coupling g has mass dimension 1, whereas
β̂ is kept dimensionless.

For the relation between the plaquette and the field strength tensor in equation
(2.3) one finds

Uµν(n) = exp
(
iĝa2Fµν(n) +O(a3)

)
= 1 + iĝa2Fµν(n)− ĝ2a4Fµν(n)2 +O(a6) (2.4)

The field strength tensor Fµν has real entries only. Therefore, terms of order
O(a2) in the action vanish after taking the real part of the trace.

Using equation (2.3) for the gauge field action on the lattice, the expectation
value of an observable 〈O〉 is defined using the euclidean path integral over
group elements U :

〈O〉 :=
1

Z

∫
DU O[U ] e−SG[U ], Z =

∫
DU e−SG[U ] (2.5)

The Haar measure DU and the observable O have to be invariant, as it is shown
in section 3.2 reference [3].

2.2 Wilson loops and the static quark potential

In the following, the notation and argumentation in section 3.3 of reference
[3] are used to discuss the Wilson loop. One starts with taking the trace of a
closed loop W of link variables, which according to equation (2.1) leads to a
gauge invariant observable. Separating the path into a so-called Wilson line
S(m,n, Nt) in spatial direction, a temporal line T (n, Nt)

† and closing the loop
with S(m,n, 0)† and T (m, Nt), one has constructed a Wilson loop [3].

TrW =
1

N
P

∏
(µ,n)∈W

Uµ(n)

=
1

N
S(m,n, Nt)T (n, Nt)

†S(n,m, 0)†T (m, Nt) (2.6)
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2.2 Wilson loops and the static quark potential

With path ordering operator P. To see, how the Wilson loop behaves as
a function of temporal and spatial extensions (T/a = Nt, r/a = Nr), it is
convenient to consider temporal gauge. Section 3.3 in reference [3] argues fixing
the gauge will not change the outcome of the results, as the Wilson loop is a
gauge-invariant observable. In temporal gauge, time-components of the 4-vector
potential Aµ in a Wilson loop are set to 0, leading to

U0(n) = exp (iĝaA0(n)) = 1, n ∈ Λ (2.7)

Using this the Wilson loop expectation value can be rewritten as

〈TrW 〉 = 〈TrW 〉temp

=
1

N
〈Tr

(
S(m,n, Nt)S(m,n, 0)†

)
〉temp

=
1

N
〈Sab(m,n, nt)Sba(m,n, 0)†〉temp (2.8)

In equation (2.8) one will recognize the Wilson loop as the correlator between
two Wilson lines. In the limit of infinitely large temporal lattice size, one can
expand (2.8) in terms of eigenstates of the system:

〈Sab(m,n, nt)Sba(m,n, 0)†〉temp =
∑
k

〈0|Ŝab(m,n)|k〉

×〈k|Ŝba(m,n)†|0〉 e−TEk

=
∑
k

|ak|2 e−TEk (2.9)

with sum over all states |k〉 which have a non-vanishing overlap with Ŝab(m,n)|0〉
and corresponding energy Ek. Reference [3] argues in section 3.3 and discusses
in chapter 5 in detail, that the Wilson lines express a quark-antiquark pair in
the static limit. The spatial positions of the quark and antiquark are at m,n
and one defines the static quark potential as the energy of the lowest state,
E1.

With energy gap ∆E between E1 and the next state, 〈TrW 〉 can be expressed
in the limit T →∞

lim
T→∞
〈TrW 〉 ∝ e−TE1

(
1 +O

(
e−T∆E

))
(2.10)
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2 Theoretical basics

Higher states are exponentially suppressed and E1 is identified as the static
quark potential [3]. The potential can be written as

V (r) = − lim
T→∞

1

T
ln〈TrW 〉

= − lim
T→∞

∂T ln〈TrW 〉

= − lim
T→∞

lim
a→0

1

a
ln

(
〈TrW (r, T )〉
〈TrW (r, T + a)〉

)
(2.11)

The equivalence between the expressions in equation (2.11) can be seen when
considering the linear behaviour of ln〈W 〉 for T →∞.

The static potential in 1 + 1 dimensions is discussed in reference [9] and found
to be linear. It was argued, that in axial gauge A1(x) = 0, the field strength
tensor in the Yang-Mills Lagrangian reduces to F01(x) = −F10(x) = −∂1A0(x),
which does no longer contain time derivatives. As a result, the only gluons
contributing to the Wilson loop are so-called ladder, or potential gluons and do
neither interact among themselves, nor propagate in time. The result, similarly
to the abelian case, is found to be linear:

V (r) ∝ r (2.12)

2.3 Extracting the static force

The force can be computed from the spatial derivative of the potential.

F (r) = ∂rV (r)

= − lim
T→∞

1

T

∂r〈TrW 〉
〈TrW 〉

(2.13)

In 1 + 1 dimensions, the force is constant.

In reference [4] an alternative formula to compute the force in Minkowski space
is given. The corresponding formula in euclidean space is:

F (r) = − lim
T→∞

i
〈E〉W
〈TrW 〉

(2.14)
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2.3 Extracting the static force

where 〈E〉W is a Wilson loop in which a chromo-electric field was inserted:

〈E(t)〉W = 〈TrP ĝE(R, t)
∏

(µ,n)∈W
Uµ(n)〉 (2.15)

The clover definition of the chromo-electric field on the lattice is:

ĝa2Ei =
1

2i

(
Πi0 − Π†i0

)
(2.16)

with

Πµν =
1

4
(Uµν + Uν−µ + U−µ−ν + U−νµ) (2.17)

where Uµν depicts the plaquette. This is called the clover definition of E, as the
plaquettes look like four-leaf clover. The equivalence between equation (2.16)
and Ei = Fi0 = −F0i can be shown by expanding the plaquette (equation (2.4)),
taking the imaginary part and averaging over all equivalent expressions.

The following provides a detailed derivation of equation (2.14). To understand
the equivalence between equations (2.13) and (2.14), one has to make a few
considerations. The derivative of W with respect to r takes the form

Tr ∂rW (r, T ) = Tr ∂r P exp
(
iĝ
∮
W
dzµAµ(z)

)
= Tr lim

a→0

1

a

(
P eiĝ

∮
W′ dzµAµ(z) − P eiĝ

∮
W dzµaµ(z)

)
= Tr lim

a→0
P W (r, T )

a

(
eiĝ
∮

∆W dzµAµ(z) − 1
)

(2.18)

where the integrals going along the loop W , W ′ representing the path ordered
product of links. The contour W ′ is W with a change r → r + a of the spatial
extension. ∆W is a contour with spatial extension a, which, if inserted into
W equals W ′. Equation (2.18) inserts temporal lines T (r, T )†T (r, T ) = 1 and
makes use of the cyclicity of the trace in order to factor out a Wilson loop (see
figure 2.1).
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2 Theoretical basics

r + a r a

T (r,t)

Figure 2.1: The Wilson loop of size (r + a, T ) can be written as a Wilson loop with spatial
size r, where one inserts a loop at a point (r, t) on the quark line (hollow and
filled circle). Using the cyclicity of the trace, this part can be factored out.

At the top of the contour ∆W , a U †xUx = 1 can be inserted in order to create
a plaquette. Inserting unit matrices along the loop will not directly result in
a chain of single plaquettes, as the links are path ordered. Nevertheless, the
limit a → 0 is implied in the following and the Baker-Campbell-Hausdorff
formula can be applied. The goal is to merge all links along the contour in
a single exponential, such that path ordering can be neglected. The Baker-
Campbell-Hausdorff formula for exponential matrices with small parameter a
is

exp(aX)exp(aY ) = exp

(
aX + aY +

a2

2
[X, Y ] +O(a3)

)
(2.19)

Applying this on the gauge links along ∆W leads to:

P eiĝ
∮

∆W dzµAµ(z) = ...Ux(n)Ut(n+ x̂)Ux(n+ t̂)†Uxt(n+ t̂)Ut(n)†...

= ... · eiĝaAx(n)eiĝa
2Fxt(n+t̂) · ...

= ... · exp(iĝaAx(n) + iĝa2Fxt(n+ t̂) + iĝaAt(n+ x̂)

−iĝAx(n+ t̂)− iĝaAt(n)

− ĝ
2a2

2
[Ax(n), At(n+ x̂)] +

ĝ2a2

2

[
Ax(n), Ax(n+ t̂)

]
+
ĝ2a2

2
[Ax(n), At(n)] +

ĝ2a2

2

[
At(n+ x̂), Ax(n+ t̂)

]
+
ĝ2a2

2
[At(n+ x̂), At(n)]− ĝ2a2

2

[
Ax(n+ t̂), At(n)

]
+O(a3)) · ... (2.20)
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2.3 Extracting the static force

tU (n) tU (n+x)^

Ux(n+t)
^†

Ux(n)

†

xtU (n+t)^

Figure 2.2: On the left side: ∆W with inserted U†
xUx. Right side: Close up look at the top

part of ∆W. The plaquette Uxt(n+ t̂) is located at the upper end of the loop,
n+ t̂ =̂ (r, T − a). The black dot is located at (r, t), where ∆W is placed in W.

In the next step, Aµ(n+ ν̂) will be expressed using the derivative

Aµ(n+ ν̂) = Aµ(n) + a∂νAµ(x)|n +O(a2) (2.21)

The commutators [Aµ(n+ ρ̂), Aν(n+ σ̂)] are already O(a2) and simply become
[Aµ(n), Aν(n)] +O(a3). This leads to

Peiĝ
∮

∆W dzµAµ(z) = ...exp(iĝa2Fxt(n+ t̂)

+iĝa2∂xAt(x)|x=n − iĝa2∂tAx(x)|x=n

− ĝ
2a2

2
[Ax(n), At(n)] +

ĝ2a2

2
[Ax(n), Ax(n)]

+
ĝ2a2

2
[Ax(n), At(n)] +

ĝ2a2

2
[At(n), Ax(n)]

+
ĝ2a2

2
[At(n), At(n)]− ĝ2a2

2
[Ax(n), At(n)]

+O(a3)) · ...
= exp

(
iĝa2

(
Fxt(n+ t̂) + Fxt(n) +O(a)

))
· ... (2.22)

Repeating this for all T/a = Nt parts of ∆W leads to

eiĝ
∮

∆W dzµAµ(z) = exp

iĝa2
Nt−1∑
j=0

(Fxt(n, j) +O(a))

 (2.23)
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2 Theoretical basics

Now, all Aµ(n) are contained as the sum of the field strength tensors in one
exponential.

The xt-element of the field strength tensor corresponds to the chromo-electric
field Ex. Using Nt = T/a in the lmit a → 0, the sum can be rewritten as an
integral. Plugging this into equation (2.18) yields:

Peiĝ
∮

∆W dzµAµ(z) − 1 = Peiĝa
∫ T

0
dt(E(t)+O(a)) − 1

= iĝa
∫ T

0
dt (E(t) +O(a)) (2.24)

⇒ lim
a→0

W (r, T )

a

(
eiĝ
∮

∆W dzµAµ(z) − 1
)

= W (r, T )

(
iĝ
∫ T

0
dtE(t)

)
(2.25)

Expanding the exponential in equation (2.24) is only valid if the condition
aT � 1 is fulfilled.

Using this result, the force in equation (2.13) can be rewritten as

F (r) = − lim
T→∞

1

T

∂r〈TrW 〉
〈TrW 〉

= − lim
T→∞

i

T

〈TrP
∫ T

0 dtĝE(t)W 〉
〈TrW 〉

= − lim
T→∞

i
〈TrP ĝE(t)W 〉
〈TrW 〉

(2.26)

where it was used that one can replace the integral
∫ T

0 dtĝE(t) with E(t), t far
from 0 and ∞.

The correlator in the numerator in equation (2.26) is the definition of 〈E〉W
in equation (2.14). Even though the correlators take traces over closed loops,
which should be real, a factor of i is left. This can be explained with the lattice
definition of the chromo-electric field. Equation (2.16) defines the chromo-
electric field as the imaginary part of the first-order expansion of Uµν(n) in a2

(equation (2.4)). When looking at equation (2.14), inserting the definition of E
from equation (2.16), the factor i cancels out and what is left are closed loops
only.

ia2 〈E〉W
〈TrW 〉

=
〈1

2

(
Πxt − Π†xt

)
〉W

〈TrW 〉
(2.27)

with Πxt as in equation (2.17).
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2.4 Huntley-Michael procedure

2.4 Huntley-Michael procedure

In 3+1 dimensions, colour fields have to be renormalized. In the absence of exact
renormalization procedures, one method is to apply a procedure formulated by
A. Huntley and C. Michael [7]. It is a perturbative method and aims to eliminate
self energies up to order O(g2a4). For colour fields, the force in equation (2.14)
is multiplied with ZE, defined as

ZE
−1 =

〈Ē〉W
〈W 〉

, (2.28)

Ēi =
1

2

(
Πi0 + Π†i0

)
(2.29)

Colour field correlators are important tools in lattice gauge theories, a renor-
malization procedure is therefore of great interest. Examples for correlators
using colour fields renormalized using this method in 3 + 1 dimensions can be
found in references [5, 6].

A detailed discussion about the need for renormalization in 1 + 1 dimensional
Yang-Mills theory and applicability of HM-renormalization is beyond the scope
of this thesis and is therefore planned as a next step. If renormalization is not
necessary, it will be seen in the continuum limit. Bare and renormalized results
will not necessarily be identical, but can have different corrections in O(a2) due
to discretization. These corrections vanish in the continuum limit and the bare
and renormalized results have to agree.

In the case of the static force, computing the slope of the static potential is a
straight forward and physically well understood method. It is also a method for
which renormalization is not necessary. This makes ∂rV (r) a possible candidate
for a reference value and one can evaluate the force computed from the chromo-
electric field by comparing it with ∂rV (r) [8].
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3 Results

Random gauge field configurations are generated using a Monte-Carlo heatbath
algorithm with Wilson action from equation (2.3). The program codes in C++
to generate random gauge field configurations and compute the correlators
were existing in 3 + 1 dimensions and had to be extended to also work in 1 + 1
dimensions. A relation between β̂ and the lattice spacing a is given as

β̂ =
β

a2
⇔ a =

√√√√β

β̂
(3.1)

for a given β. The continuum limit is approached by increasing β̂. Table (3.1)
shows the setup. For β̂ = 160 the number of configurations is very low and
should be considered in the evaluation.

In the absence of experimental data to find values for the lattice spacing a, the
numerical results are given in terms of

√
β as a reference scale or dimensionless

ratios. For example, from Wilson loops, one gets aVeff(r) and aV (r). In case of

the force, the derivative of the potential and the lattice definition of Ex give
a2F (r). Therefore, the ratio between results for equation (2.14) and the slope
of the potential are a-independent and are used to compare the results.

Statistical errors are computed using the Jackknife method.

β̂ a (L/a)2 # of configs

10
√
β/10 1002 104

40
√
β/40 2002 96

160
√
β/160 4002 11

Table 3.1: With the inverse lattice coupling β̂ the lattice spacing is set. The lattice is quadratic
and the length is chosen such that the physical size is the same for all β̂. As the
reference value β is unknown, a cannot be given in physical units.
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3 Results

3.1 Signal enhancement techniques

Commonly used steps to improve numerical data are smearing methods used
to increase the overlap of a state with the vacuum. Spatial smearing, such as
APE [10], is not applicable in 1 + 1 dimensions.

As quantities like the static potential are defined as the logarithm of an
expectation value, statistical errors in the limit T →∞ inflate quickly. In the
case of Wilson loops, one can improve the results by applying HYP smearing
methods [11]. The procedure affects the static potential by lowering the value
of Veff and therefore improving the signal-to-noise ratio. HYP smearing is

applicable in 1 + 1 dimension and will indeed lead to smaller errors.

3.2 Static potential

The first interesting results are the effective potentials Veff(r, T ), using equation

(2.11). One expects the effective potential to converge in time to a constant
value, when higher states are suppressed exponentially. A suitable plateau is
chosen, where Veff has converged and errors are still small. The results for

β̂ = 40 for various distances r/a is given in figure (3.1).

As the data appears to be constant in time, the plateaus for V (r) start at the
lowest T . This also implies that APE smearing is not needed.

After finding suitable plateaus in the effective potentials for each distance r,
one can use the results to draw the static potential. As mentioned before, the
potential is expected to be linearly rising. The static potentials for the different
β̂ of the set listed in table (3.1) are shown in figure (3.2).

For r/a ≥ 2, the potential is linear, as expected. At r/a < 2, lattice discretiza-
tion leads to a deviation from a linear behaviour.

The data shown in figure (3.2) depends on lattice spacing a, where a is different
for each potential. To compare the potentials, one can draw the data in terms
of
√
β. One can see, the potentials have similar traits, except a light shift from

each other.
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3.2 Static potential
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Figure 3.1: Effective potential for β̂ = 40 and r/a = 1, 5, 12 in terms of lattice spacing a. The
chosen plateaus are shown as horizontal lines.
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Figure 3.2: Static potential for β̂ = 10, 40, 160 in terms of a.

15



3 Results
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Figure 3.3: Static potential for β̂ = 10, 40, 160 in terms of
√
β.
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3.3 Static force

3.3 Static force

Computing the force on the lattice will give a∂rV (r) = a2F (r). For the alter-
native way, the definition of ĝa2E will also lead to a2F (r). The ratio of F (r)
using equation (2.14) and the slope of the potential will not depend on a. It
also gives the opportunity to evaluate the introduced formula in equation (2.14)
by comparing it to ∂rV (r) from Wilson loops.

The results for the non-renormalized chromo-electric field will be compared
with results renormalized using the Huntley-Michael procedure. Sizeable dis-
cretization errors errors are expected for r/a ≤ 2.

Figure (3.4) shows the ratio between the force computed from the electric field
correlator and the slope of the static potential for β̂ = 10, which corresponds
to the largest lattice spacing a in the set. It shows small, but clear deviations
between the force from the chromo-electric field and the reference ∂rV (r). The
bare electric field has for all data points a smaller deviation than the electric
field with Huntley-Michael renormalization.

In figure (3.5) and (3.6), β̂ was raised by a factor of 4, which corresponds to
the lattice spacing lowered by half. The points in figure (3.5) moved closer to
the line at 1 and in figure (3.6), the errorbars are covering it. The deviation
got visibly smaller for a smaller lattice spacing, with both, the bare and
renormalized results, approaching the reference value ∂rV (r). This indicates
that the alternative way to compute the force converges to the continuum result
in the continuum limit.

A straight-forward assumption is, that the electric field in equation (2.16)
has corrections in O(a2). Figure (3.7) compares the bare and renormalized
results for the force at different lattice spacings squared. In the scope of the
statistical errors, a linear behaviour of the correction terms seems to be a good
approximation. The linear fits for both data plots are consistent with the 1
in the continuum limit. The results renormalized with the Huntley-Michael
renormalization factor have slightly larger corrections than the bare results.
For the bare results this means, renormalization of the chromo-electric field
seems not to be necessary.
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3 Results
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Figure 3.4: F (r)/∂rV (r) with F (r) computed from 〈E〉W /〈TrW 〉 in purple and 〈E〉W /〈Ē〉W
in green for β̂ = 10.
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Figure 3.5: F (r)/∂rV (r) as in figure (3.4) with β̂ = 40.
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3.3 Static force
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Figure 3.6: Results for the force at β̂ = 160.
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Figure 3.7: F (r)/∂rV (r) at r/a = 5 for β̂ = 10, 40, 160.
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4 Conclusions

4.1 Summary

This thesis explored an alternative way to compute the static force in 1 + 1
dimensional SU(2) Yang-Mills theory. The force is computed directly from
the lattice using a chromo-electric field in a Wilson loop, which is shown to
replace the spatial derivative of a Wilson loop correlator in the limit T →∞.
As known from 3+1 dimensions, discretization errors are large for r/a ≤ 2. The
continuum limit can be approached by increasing the inverse lattice-coupling
β̂.

As argued in reference [9], the 1 + 1 dimensional static potential is linear and
has a similar form as the abelian counterpart. The computations were able to
reproduce the linear behaviour and the constant slope was determined. This
slope was used as a reference for the static force, as this method does not need
renormalization. Additionally, the technical procedure is straight-forward and
theoretically well understood.

Colour fields in 3 + 1 dimensions are affected by self-energy contributions
and have to be renormalized. In this case, precise renormalization parameters
are unknown. A perturbative procedure is the Huntley Michael method. This
method was applied in 1+1 dimensional Yang-Mills theory. With the slope of the
static potential as a reference, the results renormalized using the HM-method
are compared to the bare results with eyes on the continuum limit.

The setup consists of three ensembles with different lattice spacings. For the
largest lattice spacing, both bare and renormalized results deviate from the
reference, whereas the deviation appears to be larger for the results on which
the HM-method was applied. With smaller lattice spacings, deviations become
smaller in both cases. Both ways converge to the reference in the continuum
limit, with bare results from below and renormalized ones from above. This
indicates renormalization in 1+1 dimensional Yang-Mills theory is not needed.
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4 Conclusions

4.2 Outlook

In 1 + 1 dimensional Yang-Mills theory, the only remaining colour field is the
chromo-electric field. The results indicate, that the correlator of this field does
not need a renormalization treatment, but has considerably large corrections
at large lattice spacing. Applying the Huntley-Michael method leads to similar
results, but the corrections have different signs. In both cases, the results
converge to the reference result and are therefore a valid option.

Next steps include more statistics and a more detailed theoretical understanding
of renormalization in 1+1 dimensions. Furthermore, the case of 2+1 dimensions
can be explored. Additionally, a rigorous improvement of the correction terms
will be useful.
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