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Abstract

This work describes the computation of meson correlation functions via distillation for Wilson
twisted mass fermions and its implementation. Correlation functions for charmonium states are
calculated on 11 gauge configuration on a 243× 48 sized lattice using 1, 2, 5 and 10 eigenvectors
of the lattice Laplacian.
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1 Introduction

Computing masses of the particles in the Standard Model and investigating the force between
them is subject of many thesis and papers and will be the topic of many to come. This work
focuses on particles interacting via the strong force and hence utilizes the theory of QCD. The
elementary particles of QCD are called quarks which come in six flavors. Gluons on the other
hand are the exchange particles of the strong force. Gluons are massless bosons and carry a color
charge similar to the quarks.
Hadrons are particles consisting of quarks and one distinguishes between mesons, hadrons com-

posed of a quark-antiquark pair, and baryons which are bound states of three quarks. Physical
properties of hadrons arise from the dynamics of the theory. These properties such as mass and
electrical charge can be experimentally tested. It is therefore crucial for an elementary theory
like QCD to reproduce these measurements to certain precision.
Computing observables of QCD can usually only be achieved by a numerical treatment. One

theory to treat QCD on computers is called lattice QCD. In lattice QCD one defines a finite
space-time lattice composed of a series of discrete points. On such lattices the masses of mesonic
states can be obtained from so called correlators which are vacuum expectation values of hadron
creation operators. These correlators can be numerically computed and the mass is extracted by
an exponential fit.
When finding suitable creation operators in such a way that they generate the quantum num-

bers of interest one has some degrees of freedom constructing them. This freedom is used by
a method called distillation which describes a way to construct hadron creation numbers using
eigenvectors of the lattice laplacian.
This thesis describes a first test implementing the computation of meson correlation functions

using distillation in our work group and the results this implementation yielded.
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2 Theoretical basics

Throughout this work natural units will be used, so that ~ = c = a = 1, where a is the
distance between two lattice points. In any instance where one index appears twice the Einstein
summation notation was used, an implicit summation is assumed. When working with path
integrals the euclidean formulation of QCD is used where the real time x0 is replaced with the
imaginary time x0 = −ix4. Therefore the Minkowsky tensor gµν is replaced by δµν .

2.1 QCD

Quantum chromodynamics is a SU(3) gauge quantum field theory and describes quarks and
gluons. The QCD Lagrangian is defined as [10]

LQCD[ψ, ψ̄, A] =
∑
f

ψ̄f (x)(γµDµ +mf )ψf (x) +
1

4
F aµνF

a
µν . (1)

ψ(x) represents the quark field, Dµ = ∂µ − igAµ(x) = ∂µ − igT aAaµ(x) is the gauge covariant
derivative and Fµν = T aF aµν is the field strength tensor of the theory. The latter is defined as

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

= T a(∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν).

(2)

The T a’s are called SU(3) generators and are part of the SU(3) Lie algebra with the commutator
relationship [T a, T b] = ifabcT c. The action is given by

SQCD[ψ, ψ̄, A] =

∫
d4xLQCD[ψ, ψ̄, A] (3)

and is invariant under local SU(3) transformations. It is also invariant under U(1) transfor-
mations. The first term of the lagrangian and hence the action displays information about the
dynamic of the theory, the second term about the self interaction of the gluons.
The internal degrees of freedom of the quark fields ψ and ψ̄ = ψ†γ4 separate into three parts:

Spin (A), color (c) and flavor (f) with 4, 3, and Nf components respectively. The gluon fields
have eight color degrees of freedom and transform under the adjoint representation of SU(3).

2.2 Lattice QCD

In lattice QCD one defines a hypercubic, discrete spacetime lattice

Λ = {x| |x
µ|
a
∈ {0, Lµ}}, µ = 1, 2, 3, 4 (4)

where a is the lattice spacing and xµ is a vector along the µ-axis of the lattice. The Lµ’s
define the size of the lattice. Usually the spacial dimensions are chosen to be equal, so that
L1 = L2 = L3 = L. A finite lattice breaks the translational invariance of the theory which would
violate momentum conservation. To eliminate this issue periodic boundary conditions are used

x + Lµµ̂ = x (5)

where µ̂ defines the unit vector along the µ-axis.

In lattice QCD the action has to be redefined replacing Aµ by so called link variables Uµ which
preserve all symmetries of the action.

SQCD[ψ, ψ̄, A]→ SLattice−QCD[ψ, ψ̄, U ] (6)
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These link variables are elements of SU(3) algebra and are defined as

Uµ(x) = e−igAµ(x) (7)

A closed loop of link variables is gauge invariant and the simplest one is called plaquette Uµν
[12]. A plaquette in the µ− ν plane is defined by

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x) (8)

where the link variables are path ordered. The simplest formulation of the lattice action can be
derived from this plaquette [3]

Sg[U ] =
6

g2

∑
x

∑
µ<ν

ReTr
1

3
(1− Uµν) (9)

For fermions we find as the simplest (called naive) action

S[ψ, ψ̄, U ] = mq

∑
x

ψ̄(x)ψ(x)

+
1

2a

∑
x

ψ̄(x)γµ[Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)]

≡
∑
x

ψ̄(x)Mxy[U ]ψ(x)

(10)

Here Mxy[U ] is the lattice Dirac operator.

Mij [U ] = mqδij +
1

2a

∑
µ

γµ(Ui,µδi,j−µ − Ui−µ,µδi,j+µ) (11)

For mq = 0 the naive action (10) has both vector and axial symmetry, preserves chiral symmetry
but introduces so called fermion doubling [3]. To prevent fermion doubling which is a pure lattice
artifact one approach introduces additional mass terms, so called Wilson fermions.

2.3 Wison twisted mass QCD

In twisted mass QCD a mass term is added to the action (10). For a field χ this term reads [13]

iµqχ̄γ5τ3χ (12)

τ3 is the Pauli matrix in flavor space and µq is the twisted mass. In a twisted basis {χ, χ̄} the
tmQCD action is

SF [χ, χ̄, A] =

∫
d4xχ̄(γµDµ +mq + iµqγ5τ3)χ (13)

The mass term can be written as mq + iµqγ5τ3 = Meiαγ5τ3 . The twisted basis is a mere coordi-
nation transformation of the physical basis {ψ, ψ̄}

ψ = eiωγ5τ3/2χ, ψ̄ = χ̄eiωγ5τ3/2 (14)

where ω is called the twisted angle. For α = ω we obtain the standard QCD action. Using tmQCD
fixes the extra degrees of freedom introduced by the naive action. It has its own problems,
though: The τ3 matrix switches the signes for up- and down-type quarks which breaks isospin
conservation. The γ5 matrix on the other hand implies that parity is no longer a symmetry.
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2.4 Meson correlation functions

Mesons are quark-antiquark states which can be characterized by the following QCD quantum
numbers [14]:

• Spin and total angular momentum J = 0, 1, 2, ... (all mesons are bosons)

• Parity P = ±1

• Charge conjugation C = ±1

• Flavor quantum numbers:

– u and d: Isospin I; Iz = ±1
2

– s and s̄: Strangeness S; S = ±1

– c and c̄: Charmness C; C = ±1

– b and b̄: Bottomness B′; B′ = ±1

– t and t̄: Topness T ; T = ±1

• Electric charge will be neglected.

2.4.1 Creation operators

To examine a meson with a particular set of quantum numbers I(JP ) on needs to define a
corresponding creation operator O(x). When acting on the vacuum O(x) creates a so called trial
state |φ, x〉 with the quantum numbers I(JP ) [14]:

O(x)|Ω〉 = |φ, x〉 (15)

Meson creation operators can be assembled in different ways, the easiest is

O(x) =
∑
x

ψ̄(f1)(x)Γψ(f2)(x)

O†(x) = ±
∑
x

ψ̄(f2)(x)Γψ(f1)(x)
(16)

Γ is a matrix in Dirac space which carries total momentum J and parity P . The sign in (16)
depends on the choice of Γ because γ4Γ†γ4 = ±Γ. The following table lists the possible configu-
rations for Γ:

Γ J P Transformation
1,γ4 0 +1 scalar

γ5, γ4γ5 0 -1 pseudoscalar
γi, γ4γi 1 -1 vector
γ4γi 1 +1 axial vector

Table 1: Possible configurations for Γ and corresponding quantum numbers

2.4.2 Meson correlation functions

To determine the energy of an eigenstate of the Hamiltonian of a quantum field theory one can
calculate the vacuum expectation value (VEV) of the respective creation operator. Also called
the correlator, the VEV can be computed by the Feynman path integral:

C(t2 − t1) ≡ 〈Ω|O†(t2)O(t1)|Ω〉

=
1

Z

∫
D[ψ]D[ψ̄]D[A] O†(t2)O(t1)e−S[ψ,ψ̄,A]

(17)
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where Z defines the partition function:

Z =

∫
D[ψ]D[ψ̄]D[A] e−S[ψ,ψ̄,A] (18)

S[ψ, ψ̄, A] is the lattice action. Introducing a finite lattice spacing some difficulties calculating the
path integral are solved. The integral becomes regularized and the infinite dimensional integral
can be replaced by a finite product of finite dimensional integrals:∫

D[ψ]D[ψ̄]D[A] ≈
∏
x∈Λ

∫
dψ(x)dψ̄(x)dA(x) (19)

To calculate the mesonic energy spectrum one introduces a complete set of energy eigenstates∑
k |k〉〈k| = 1 into equation (17):

C(t2 − t1) =
∑
k

〈Ω|O†(t2)|k〉〈k|O(t1)|Ω〉 (20)

One can now exploit that O†(t2) is a Heisenberg operator and its temporal evolution can be
described by

O†(t2) = eH(t2−t1)O†(t1)e−H(t2−t1) (21)

So we can write (20) as

C(t2 − t1) =
∑
k

〈Ω|eH(t2−t1)O†(t1)e−H(t2−t1)|k〉〈k|O(t1)|Ω〉

=
∑
k

〈Ω|eEΩ(t2−t1)O†(t1)e−Ek(t2−t1)|k〉〈k|O(t1)|Ω〉

=
∑
k

(〈k|O(t1)|Ω〉)†〈k|O(t1)|Ω〉e(EΩ−Ek)(t2−t1)

=
∑
k

|〈k|O(t1)|Ω〉)|2e−E(t2−t1)

(22)

where E = Ek − EΩ is the energy of the energystate |k〉 relative to the vacuum energy.

One can, after calculating the path integral numerically, extract the meson mass by fitting
an exponential curve to the correlation function. To compute the correlator numerically we use
definition (16) where the integration over the fermion fields in lattice QCD can be done manually:

C(t2 − t1) = 〈Ω|O†(t2)O(t1)|Ω〉

= ±
∑

x,y∈Λ

〈Ω|ψ̄(f1)(x, t2)Γψ(f2)(x, t2)ψ̄(f2)(y, t1)Γψ(f1)(y, t1)|Ω〉

= ±
∑

x,y∈Λ

〈Ω|ψ̄(f1),a
A (x, t2)ΓABψ

(f2),a
B (x, t2)ψ̄

(f2),b
C (y, t1)ΓCDψ

(f1),b
D (y, t1)|Ω〉

= ∓
∑

x,y∈Λ

ΓABΓCD〈Ω|ψ(f1),b
D (y, t1)ψ̄

(f1),a
A (x, t2)ψ

(f2),a
B (x, t2)ψ̄

(f2),b
C (y, t1)|Ω〉

(23)

The ± sign is introduced from the hermition adjoint (16) of the meson creation operator. In
the last line we have an additional minus sign because we interchanged Grassmann valued fields
three times.
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Integration of the fermion fields can be done independently for each flavor and defines the Prop-
agator (D(f))−1(x, t2;y, t1) [7]:

〈ψ(f),a
A (x, t2)ψ̄

(f),b
B (y, t1)〉F = (D−1(f))abAB(x, t2;y, t1) (24)

where 〈...〉F describes the fermionic expectation value. Therefore only the path integral over the
gauge fields 〈...〉A weighted by e−Seff [A] remains and equation (23) becomes:

C(t2 − t1) = ∓
∑

x,y∈Λ

ΓABΓCD〈(D−1(f1))baDA(y, t1,x, t2)(D−1(f2))abBC(x, t2,y, t1)〉A

= ∓
∑

x,y∈Λ

〈(D−1(f1))baDA(y, t1,x, t2)ΓAB(D−1(f2))abBC(x, t2,y, t1)ΓCD〉A

= ∓
∑

x,y∈Λ

〈Tr[(D−1(f1))(y, t1,x, t2)Γ(D−1(f2))(x, t2,y, t1)Γ]〉A

(25)

The trace Tr[...] acts in Dirac and in color space.

On a finite lattice the path integral in equation (25) is of finite dimension and can be done
numerically. It is usually calculated by averaging over gauge field configurations which can be
obtained using Monte Carlo methods.
Inverting the Dirac operator directly is close to impossible, it is represented by a very large

quadratic matrix which has L1 × L2 × L3 × T × 3× 4 complex entries. One method is the com-
putation of so called point-to-all propagators [1] which describe the quark propagators from one
point on the lattice to all others. This approach comes at a cost: A loss of physical information
and large statistical errors.
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3 Distillation

The term distillation describes a quark-field smearing algorithm to compute hadron correlation
functions. It was first described in 2009 by Michael Peardon [9]. Distillation allows the compu-
tations of all-to-all quark propagators at reasonable cost.

3.1 Distillation operator

Smearing is a method to apply a smoothing function to the quark field before applying the
creation operators. Smearing should remove short-range modes while respecting all symmetries.
Distillation makes use of a gauge-covariant quark smearing based on the lattice laplacian which
is defined as follows

−∇2
xy = 6δxy −

3∑
j=1

(Ũj(x, t)δx+j,y + Ũ †j (x− y, t)δx−j,y) (26)

Starting from the lattice Laplacian one can define a typical, conventional smearing by the fol-
lowing smearing operator

Jω,n(t) = (1 +
ω∇2(t)

n
)n (27)

where ω and n are tunable parameters. For large n, J defines the exponential of ω∇2 which
suppresses higher eigenmodes of the laplacian, hence only a few of the lowest modes contribute
to J .

lim
n→∞

Jω,n(t) = exp(ω∇2) ≡ Jω (28)

The lattice laplacian is a gauge-covariant, linear, negative-definite and hermitian operator acting
on a M dimensional Hilbert space. On each timeslice its eigenvectors are orthogonal and one
can find an orthonormal basis of CM [6]

M∑
k=1

|vk〉〈vk| = 1 (29)

where vk defines the kth eigenvector on the corresponding timeslice.

∇2|vk〉 = λk|vk〉 (30)

The eigenvalues of the lattice laplacian are semi-negative λk ∈ (−∞, 0] and we label them ac-
cording to λk+1 < λk.

Using the above we can now expand Jω in the limit n→∞ using (29):

Jω =
M∑
k=1

|vk〉〈vk|Jω

=

M∑
k=1

|vk〉〈vk| exp(ω∇2)

=

M∑
k=1

|vk〉〈vk| exp(ωλk)

(31)

One can see that higher eigenmodes are suppressed exponentially. Therefore there is some number
N << M such that the remaining terms vanish, exp(ωλk) << 1 for k > N holds. So we can
write

Jω ≈
N∑
k=1

|vk〉〈vk| exp(ωλk) (32)
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This motivates the definition of the distillation operator which is constructed by [9]:

�t ≡ VtV †t (33)

Vt is a M ×N matrix which kth column contains the kth eigenvector of ∇2 evaluated on the tth

timeslice, sorted by eigenvalue. �t can also be written in terms of the eigenvectors

�t(x,y) =

N∑
k=1

vk,t(x)v†k,t(y) (34)

� projects into VN , the subspace spanned by the N lowest eigenmodes, hence �2 = �. Quark
fields can be smeared by applying the distillation operator onto them. They inherit all symmetry
properties of the unsmeared fields.

χ(f)(x, t) ≡
∑
y

�t(x,y)ψ(f)(y, t) (35)

In essence the advantage of using smearing instead of the conventional smearing operator from
which we started is the replacement of the gaussian shaped curve by a heaviside function. This
enables one to calculate all-to-all propagators by inverting only a small number of modes.

3.2 Smearing behaviour of distillation

Expanding a local meson state |ψ〉 in a basis of eigenvectors of the lattice laplacian the state can
be written as

|ψ〉 =
M∑
k

|vk〉〈vk|ψ〉

ψ(x) =
M∑
k

〈x|vk〉〈vk|ψ〉

(36)

If we restrict the eigenmodes to some number N , this equation becomes the distillation operator
(34). Hence the more eigenmodes we remove, the larger the width of the wave ψ(x) becomes.
The same is true for distillation. To compute physical properties of mesonic states they have

to be implemented on a lattice which lattice spacing corresponds to the size of a meson. Using
local meson creation operators like (16) are not adequate because they only create a meson on
a fixed lattice points. Hence it is crucial to apply smearing to the states. Similar to Gaussian
smearing, the distilled quark is of Gaussian shape. If too many eigenmodes are removed the
error of the results grow.

3.3 Distilled meson two-point correlation functions

Meson two-point correlation functions of distilled fields can be constructed starting from the
definition (17) of the correlation function:

C(t2 − t1) = 〈Ω|O†(t2)O(t1)|Ω〉
= ±〈Ω|ψ̄(f1)(x1, t2)�t2(x1,y1)ΓA�t2(y1,x2)ψ(f1)(x2, t2)

× ψ̄(f2)(x3, t1)�t1(x3,y2)ΓB�t1(y2,x4)ψ(f2)(x4, t1)|Ω〉

(37)

Executing the same steps as in (25) yields

C(t2 − t1) = 〈Tr[ΦB(t2)τ (f1)(t2, t1)ΦA(t1)τ (f2)(t1, t2)]〉 (38)



Computation of the perambulator 10

In the last line the following definitions were used

ΦA
AB(t) ≡ V †t ΓAAB(t)Vt

τAB(t2, t1) ≡ V †t2(D−1)AB(t2, t1)Vt1
(39)

ΦA(t) is called the distilled gamma matrix and τ(t2, t1) the perambulator. The latter contains
information about the quark propagator from every spatial point on timeslice t to every spatial
point on timeslice t′.
Similar to Vt, τAB(t2, t1) is a complex N ×N matrix where N is the number of eigenvectors

used. The complete perambulator holds therefore T 2 × 42 × N2 complex numbers. Similarly
ΦA
AB(t) is also a N × N matrix and the complete distilled gamma matrix has T × 42 × N2

complex entries. Both matrices can be calculated independently from each other.

3.4 Computation of the perambulator

The propagator (D−1(f))abAB(x; y) is defined by the following equation [1]∑
y

(D(f))abAB(x; y)(D−1(f))bcBC(y; z) = δacδACδ(x, z) (40)

To calculate the perambulator one computes solutions to the following linear equation, in the
following text named "inversions",∑

x

(D(f))abAB(x; y)ψ
(f)b
B (y) = ξaA(x)

ψ
(f)b
B (y) =

∑
x

(D−1(f))baBA(y, x)ξaA(x)
(41)

where ξ(x) is the so called source term, also a fermionic field. Recall the definition of the
perambulator (39), writing it explicitly will enable us to identify the inversion in the last equation
[6]

τAB(t2, t1) ≡ V †t2(D−1)AB(t2, t1)Vt1

=

N∑
k=1,k′=1

∑
x,y

v†ak,t2(x)(D−1(f))abAB(x, t2;y, t1)vbk′,t1(y)

=
N∑

k=1,k′=1

∑
x,y,x0,y0

v†ak,t2(x)δAA′δt2x0(D−1(f))abA′B′(x, x0;y, y0)vbk′,t1(y)δBB′δt1y0

(42)

The inversion (41) can now be identified

ψ
(f)a
A;B,t′,k′(x, x0) = (D−1(f))abA′B′(x, x0;y, y0)vbk′,t′(y)δBB′δt′y0 (43)

The indices B, t′, k′ express that ψ(f)a
A;B,t′,k(x, t) is defined on time slice t′ and spin index B for

the k′th eigenvector.

The source terms ξ(x) can also be identified:

ξaB;B′,t′,k′(y, y0) = vbk′,t′(y)δBB′δt′y0 (44)

The source terms are fields of the necessary size L3× 4× 3 but have non-zero entries only at one
specific spin index and timeslice.
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Finally, equation (42) becomes:

τ
(f)
A′B′(t2, t1) =

N∑
k=1,k′=1

∑
x,x0;y,y0

ξ†aA;A′,t2,k
(x, x0)ψ

(f)a
A;B′,t1,k′

(y, y0) (45)

To compute the complete perambulator one needs to compute T×4×N inversions for all values of
B, t′, k and then multiply these with the hermitian conjugate of the sources as shown in equation
(42). The eigenvectors were computed using a program provided inside the contraction code
written by members of our work group. The source terms were calculated using code written by
a previous bachelor student [6] and then submitted to the program tmLQCD [4] which calculates
the inversions. Details about the implementation can be found in section 4.
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4 Implementation

4.1 Overview

The computation of the correlation function on one gauge configuration can be broken down into
the following steps

1. computation of N eigenvectors

2. generation of T × 4×N sources

3. computation of an inversion for every source

4. calculation of the perambulator and distilled gamma matrices

5. computation of the correlation function

This work builds on the contraction code written by members of our group and the aforemen-
tioned tmLQCD package. For documentation about steps 1 through 3 please see [6].

4.2 Programs

The following programs written in C++11 were added to the existing contraction code in
.../distillation/. Every module consists of a main.cpp, a module.h and a module.cpp file.
The documentation of each function can be found in the corresponding .h file.

• perambulator/: Calculates the perambulator using the sources and inverted sources.

• distilled_gamma/: Computes the distilled gamma matrix given the calculated eigenvec-
tors.

• correlator_trace/: Computes the correlator for a given perambulator and distilled gamma
matrix.

In addition to the above a MultiVector class has been written which can store a matrix of
arbitrary dimension. Such a matrix can then be written to the disk. The definition of this class
can be found in helper/multivector.hpp. It is used to store the perambulator, distilled gamma
matrix and correlator trace.
For a more technical documentation see the provided README files and comments inside the

source code.

4.2.1 Computation of the perambulators

This program computes the perambulator for all sources and inverted sources in two directories.
The sources and the inverted sources have to be in the format

source.CONF-ID.time##.vec##.spin#
source.CONF-ID.time##.vec##.spin#.CONF-ID.00.inverted

respectively. Here # stands for a digit and CONF-ID is usually a 4-digit number. The program will
read in all sources and inverted sources for one pair (k, k′) into memory at once. This was done
to reduce the times source terms were read from disc which proved to be a major performance
factor. Hence running the program uses, for the gauge configurations used, about 48GB of RAM.

The program can be started by calling

./perambulator path-to-sources path-to-inverted-sources conf_id
path-to-target-dir num_vec T L
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where num_vec is the total number of eigenvectors N , T is the time dimension and L the spacial
dimension of the lattice. Both path-to-sources and path-to-inverted-sources are paths to
the directory where the sources and inverted sources live. The perambulator will be saved to the
directory given by path-to-target-dir in the format

perambulator.CONF-ID.num_vec##.time##

using the MultiVector storage type mentioned earlier.

4.2.2 Computation of the distilled gamma matrix

This program computes the distilled gamma matrix for a given eigenvector. The gamma matrix
Γ can be changed inside the source code. The distilled gamma matrix will be saved in the format

gamma.CONF-ID.num_vec##.time##

again using the MultiVector storage type.
The program can be started by calling

./gamma path-to-ev conf_id path-to-target-dir num-vec T L

path-to-ev is the path to the file which holds the eigenvectors.

4.2.3 Computation of the correlation function

To calculate the correlation function call

./trace path-to-gamma-matrix path-to-perambulator conf_id
path-to-target-dir num_vec T

Here path-to-gamma-matrix and path-to-perambulator are the paths to the files holding the
distilled gamma matrix and perambulator calculated earlier. The correlator will be saved in the
format

trace.CONF-ID.num_vec##.time##

This file will contain all T 2 elements of the correlation function. To read the trace and calculate
the mean values for every ∆t run

./trace -r path-to-trace T

This will print all values in the format

∆t real(C) imag(C)

where C is the correlation function. The output of this operation is the basis for the results in
section 5.

4.2.4 Python control script

In addition to the modules already mentioned a python script to control the simulation was
written. It can find all files necessary for the simulation and can set up slurm job scripts (which
are necessary on the FUCHS super computer) automatically. The script can be found inside the
folder .../distillation/scripts/ alongside its documentation. To start the script run

./run.py

The script will walk you through the setup process. It is written in python version 3.6.



Results 14

5 Results

5.1 Lattice setup

Gauge configurations in this work were obtained from the ensemble A40.24 which has been
generated using Nf = 2 + 1 + 1 quark flavors. Details can be looked up in [2]. The number of
configurations was kept comparatively small since this work is only a first test of distillation.

# used configurations β κ aµI aµσ aµδ (L/a)3 × T
11 3.9 0.160856 0.0040 0.150 0.190 243 × 48

Table 2: Parameters of gauge configurations used

5.2 Meson masses

To investigate the correctness and efficiency of the method of distillation described in this thesis
computations of charmonium correlation functions where performed. These allow to test differ-
ent configurations of eigenvectors in relatively short times compared to the use of light doublet
states. Beside the number of gauge configurations the number of eigenvectors can be set arbi-
trarily. In this section I will present the results for 1, 2, 5 and 10 eigenvectors on the 11 gauge
configurations mentioned in the previous section.

Figure 1: Combined results for 1, 2, 5 and 10 eigenvectors

In all computations the following creation operator was used:

O(t) = χ̄(c)(t)γ5χ
(c)(t) (46)

Therefore the resulting meson has quantum numbers 0(0−) [5] which therefore corresponds to a
ηc meson with a mass of 2983.4± 0.5MeV [8]. This was achieved by using for both propagators
(D−1(f)) the same flavor f . This approach reduced the amount of inversions that had to be
calculated by a factor of two. For the same reason a charmonium state was chosen in contrast
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to e.g. the calculation of a pion mass. Inversions for particles with higher masses converge
significantly faster.
To compute the mass of the charmonium state the mean value of all configurations for one

value of ∆t were computed and a simple linear function was fitted to ln(C(∆t)). The results for
1, 2, 5 and 10 eigenvectors can be seen in figure 1. One can see the similar shapes of all four
results. Because the exponential nature of the correlation function holds for ∆t→∞ only a few
points were chosen to be fitted. In figure 2 one can see the four results side by side. The points
which were used to fit the linear function are colored differently.
The masses of these four simulations are shown in table 3, the errors were calculated using the

Jackknife [11] method.

Number of eigenvectors Mass (MeV)
1 3082± 255
2 3227± 215
5 2780± 91
10 2919± 88

Table 3: Calculated masses for the charmonium state

Figure 2: Logarithmic results for 1, 2, 5 and 10 eigenvectors with error bars. The data points
used for fitting are colored differently.

Looking at figure 1 one can see that a small number of eigenvectors corresponds to a small
value of C(t). Also one can see that computations with a higher number of eigenvectors the
assymptotic slope is reached earlier.



Discussion 16

6 Discussion

6.1 Complexity of the simulation depending on the number of eigenvectors

Throughout this section I will assume a lattice of size of 243 × 48.

The complexity of the simulation increases linearly with the number of configurations. When
changing the number of eigenvectors the simulation will be affected in different steps in a different
way:

• Naturally the time to calculate all eigenvectors depends linearly on the number of eigen-
vectors.

• The number of source and inverted source terms depend linearly on the number of eigen-
vectors as well. Therefore the same holds true for the time to calculate these.

• Computation times of the distilled gamma matrix increases quadratically with the num-
ber of eigenvectors.

• The time to calculate the perambulator depends quadratically on the number of source
terms used and therefore also quadratically on the number of eigenvectors. The time
of calculations depends here especially on the reading process of the source terms. This
proved to be a major factor influencing the performance.

• As the last step the calculation of the correlation function depends on the number of
eigenvectors to the fourth.

Figure 3: Distribution of the time the simulation will take
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The inversion of the source terms took for the number of eigenvectors shown in section 5 the
longest, followed by the computation of the perambulator. Calculating time for the eigenvectors,
source terms and gamma matrix can be safely neglected in comparison. The correlator (with
its N4 dependence) on the other hand can also be neglected for small (N < 5) number of
eigenvectors but starts to play a major role when increasing the number of eigenvectors.
Inverting a single source term takes, when calculating the mass of a charmonium state, about

20 minutes per thread on the FUCHS super computer. Calculating the perambulator for one
eigenvector takes about 5 minutes. The last step, computing the correlator, needs for a single
eigenvector circa 0.3 seconds. For the perambulator and correlator the time was determined from
the time each step runs for when using 5 eigenvectors.
In figure 3 a plot of the time each of these steps will run for with respect to the number of

eigenvectors can be seen. The curves were interpolated by the time measured when calculating
1, 2, 5 and 10 eigenvectors.
This is of course a rough estimate, the actual time depends on a series of factors, e.g. differences

between different computation nodes. It is also important to keep disc space constraints (ROM)
in mind. The following table shows the space the files for each step need. One can see that the
source terms and their corresponding inverted counterparts will start to use a lot of disc space
when using a higher number of eigenvectors. When computing the correlator with N = 10 on
11 configurations, all source terms combined used about 2.6TB of disc space.

Step Approximate space needed
eigenvectors 6MB × N

(inverted) source terms 61MB × T × 4×N
perambulator 0.6MB × N2

gamma matrix 12KB × N2

correlator 37KB

Table 4: Disc space each step needs

6.2 Outlook

This work represents a first test of distillation by Marc Wagner’s work group, therefore the
number of eigenvectors and gauge configurations was kept small.
The results show that calculating meson masses using distillation is feasible. The particle in

question is a light ηc charmonium with a mass of 2983.4± 0.5MeV [8]. Even using only 11 gauge
configurations a value close to that in the literature was observed. The results also show that a
greater number of eigenvectors has a notable effect on the accuracy of the simulation. It appears
preferably to use at least ten eigenvectors to reduce the error of the results. An increase of
configuration will also play a large role in improving the simulation. Further tests will be needed
to find a good balance between the number of eigenvectors and configurations.
Before attempting a computation of greater scale, a few improvements to the method can

and should be made: Especially to reduce the space and time needed the source terms should
be written into a single file. It probably has to be split again to be used by the inverter, but
the computation of the perambulator will be sped up significantly if the program only needs to
read one file into memory. Another step would be to utilize parallelism when computing the
perambulator, eigenvectors and correlator.
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