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Abstract

In this work quark propagators are computed via distillation for mass degenerate up and down quarks
using Wilson twisted mass fermions. The computations are performed on a set of 11 gauge configura-
tions. The gauge configurations correspond to Nf = 2 + 1 + 1 mass degenerate up and down sea and
valence quarks plus mass split strange and charm sea quarks. The computations are performed on a
lattice of size (L/a = 24)3 × (T/a = 48) using distillation with 5 eigenvectors of the gauge covariant
lattice Laplacian.
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1. Introduction

1. Introduction

It appears to be an impelling need of humanity trying to understand the fundamental principles and
laws of nature and to investigate the elementary building blocks of matter which are called particles.
The physicists current answer to these questions is the so called Standard Model that includes all
particles that are supposed to be elementary according to the current state of science. The Standard
Model also describes the interactions of these elementary particles via three of the four fundamental
forces namely the electromagnetic force, the weak force and the strong force.

This work will focus on particles interacting via the strong force that is described by a mathematical
framework called quantum chromodynamics (QCD). The elementary particles interacting via the strong
force are called quarks and they interact with each other via the exchange of so called gauge bosons
- the gluons. Quarks appear in six different flavours and are characterised by a set of properties like
mass and the so called quantum numbers, e.g. electric charge, spin, total angular momentum, color
charge, etc. Quarks are fermions - all of them have spin 1/2. There are also antiquarks that differ
from their non-anti counterparts in opposite signs of all charge-like quantum numbers.

Gluons are the force carriers of the strong force. As different particles with different properties
the eight gluons are described by a different set of quantum numbers. First of all, they are massless
and as a boson the gluon has an integer spin taking the value 1. The most interesting property of the
gluons is that they carry a color charge. Likewise, the electric charge is the field-generating quantity
in electrodynamics, the color charge is the source of the strong force. Having a color charge means for
a gluon that it can interact with other gluons.

Particles composed of quarks and antiquarks are called hadrons. One distinguishes between hadrons
composed of a quark-antiquark pair - the mesons and bound states of three valence quarks - the
baryons. But there are so called exotic hadrons as well. The properties of hadrons arise from the
quantum numbers of their constituents. These properties are measurable quantities that can be ob-
tained in experiments and it is essential for a theory like QCD to reproduce the measured results to a
certain precision. Unfortunately, in QCD physical observables are very difficult to obtain by analytical
computations due to the high complexity of the mathematical framework. A way to deal with this
problem, that gained popularity due to the increasing computational power of modern computers, is
the numerical treatment of QCD.

QCD can be treated effectively on computers if it is reformulated on a lattice of discrete points in
spacetime. This approach is known as lattice QCD. In this thesis lattice QCD is used to calculate quark
propagators that are needed for the computation of meson masses. Meson masses can be obtained
from a so called temporal correlation functions or correlators that are vacuum expectation values of
hadron creation operators. A correlation function can be evaluated numerically and the meson mass
can be extracted from a fit of the correlator that exponentially decreases in time.

Apart the constraint that the hadron creation operators have to create the right quantum numbers
of the meson under investigation, there is some degree of freedom in their construction. This ambiguity
is utilized by a method called distillation. Distillation is a way of constructing hadron creation operators
using eigenvectors of the lattice Laplacian. This method provides the possibility to compute all-to-
all quark propagators not only in principle but also in practice. Further distillation is suitable for
observing ground states of hadronic spectra with small statistical errors.

The numerical computation of all-to-all quark propagators using the method of distillation is the
subject of this thesis.
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2. Theoretical basics

2. Theoretical basics

2.1. Conventions

Physical units are chosen in a way that velocities are measured in units of the speed of light c and
actions are measured in units of the reduced Planck constant ~, i.e., natural units are used in this
work:

c = ~ = 1.

On the lattice energies are measured in units of the inverse lattice spacing a−1.

If there are equations with an index appearing twice and no explicit summation is written down, the
Einstein notation has been used, i.e., there is an implicit summation over these indices.

The euclidean formulation of QCD is used by substituting the real time x0 by the imaginary time
x0 = −ix4. Consequently the Minkowski metric tensor is replaced by the unit matrix:

gµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The euclidean Dirac matrices are defined to possess the following properties:

� {γµ, γν} = 2δµν

� {γ5, γµ} = 0 with γ5 ≡ γ1γ2γ3γ4

� γ2µ = γ25 = 1 for µ = 1, 2, 3, 4

2.2. QCD

QCD is a quantum field theory (QFT). In such a theory particles are treated as discrete excitations
of fields. A field is a function that maps a mathematical object, e.g. a scalar, vector, spinor or tensor,
etc. to every point x in spacetime. All physical information of QCD is encoded in its action [1]:

SQCD[ψ, ψ̄, A] =

∫
d4x

( Nf∑
f=1

ψ̄(f)(x)(γµDµ +m(f))ψ(f)(x)︸ ︷︷ ︸
fermionic part

+
1

4

8∑
a=1

F aµν(x)F
a
µν(x)︸ ︷︷ ︸

gauge part

)
. (2.1)

QCD is a SU(3) gauge theory, i.e., the action (2.1) is invariant under local SU(3) transformations.
The SU(3) symmetry defines QCD and gives rise to its distinct properties.
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2. Theoretical basics

Further the QCD action is invariant under local U(1) transformations. The approximate flavour
symmetry of the theory is broken because quarks of different flavours have different masses in nature.
QCD has some discrete symmetries as well, like parity and charge conjugation.

The fermionic part of the action (2.1) contains information about the dynamics of QCD’s fermionic
degrees of freedom, i.e., the quarks and it determines the coupling of the quarks to the gluons. The
gauge part describes the dynamics and self interactions of the gluons.

Dµ denotes the gauge-covariant derivative:

Dµ = ∂µ − igAµ(x) = ∂µ − ig

8∑
a=1

T aAaµ(x). (2.2)

To be gauge-covariant means that Dµ does not change its form under local SU(3) transformations.
The constant g is the bare coupling of the theory. T a are SU(3) generators, i.e, they are the elements
of the Lie algebra of SU(3).

The field strength tensor Fµν(x) = T aF aµν(x) is defined by the following commutator:

Fµν = − i

g

[
Dµ, Dν

]
(2.3)

= ∂µAν − ∂νAµ − ig
[
Aµ, Aν

]
(2.4)

= ∂µAν − ∂νAµ − ig AaµA
b
ν

[
T a, T b

]
(2.5)

= ∂µAν − ∂νAµ + g fabcAaµA
b
νT

c (2.6)

= T c
(
∂µA

c
ν − ∂νA

c
µ + g fabcAaµA

b
ν

)
︸ ︷︷ ︸

F cµν

. (2.7)

In the step from (2.5) to (2.6) the Lie algebra of SU(3)
[
T a, T b

]
= ifabcT c with the structure constants

fabc has been used.

The quark fields ψ and ψ̄ = ψ†γ4 internal degrees of freedom are listed in Table 1. Single components

of the quark fields are notated as ψ
(f),c
A (x) respectively ψ̄

(f),c
A (x).

degree of freedom index number of components

spin A 4
color c 3
flavour f Nf

Table 1: Structure of quark fields

The gluon fields Aµ(x) appear with eight color degrees of freedom that mathematically correspond to
the fact that the gluons transform under the adjoint representation of SU(3).
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2. Theoretical basics

The fermionic part of the action (2.1) gives rise to quark-gluon interactions:

∼ g

Figure 1: Quark-gluon vertex [2]

Because the gluon field strength tensor Fµν is quadratic in Aµ and appears quadratic in LQCD there
are gluon self-interactions up to order g2:

∼ g ∼ g2

Figure 2: Three-gluon vertex and Four-gluon vertex

2.3. Lattice QCD

In order to do numerical QCD calculations continuous spacetime is replaced by a 4 dimensional lattice
of discrete spacetime points. The lattice is defined by a set of points:

Λ4 = {n = (n, n4) | 0 ≤ nµ ≤ Lµ} , µ = 1, 2, 3, 4. (2.8)

The implementation on a computer necessitates the use of a finite lattice. Usually the spatial dimen-
sions are chosen to be L1 = L2 = L3 ≡ L. The introduction of a finite lattice breaks the translational
invariance of the theory. Hence momentum conservation would be violated. The introduction of
periodic boundary conditions fixes that issue:

n+ Lµµ̂ = n , µ̂: unit vector in direction µ. (2.9)
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The introduction of a finite lattice with periodic boundaries furthermore implies the discretization of
momenta.

QCD has to be reformulated after introducing the lattice. The continuum action (2.1) is transferred
into the lattice action:

SQCD[ψ, ψ̄, A] → SLattice QCD[ψ, ψ̄, U ] ≡ S[ψ, ψ̄, U ]. (2.10)

The lattice action should preserve as many symmetries of the continuum action as possible, especially
the SU(3) gauge symmetry. To ensure gauge invariance of the fermionic part of the action the contin-
uum gauge field Aµ(x) has to be replaced by a new type of field Uµ(n) called link variable. While Aµ
is an element of the Lie algebra of SU(3) the link variable Uµ is an element of SU(3) itself:

Uµ(n) = e−igAµ(n). (2.11)

The lattice action is constrained to become the continuum action in the continuum limit, i.e., for the
lattice spacing a going to zero. A possible realization of a lattice gauge action that obeys this condition
is the Wilson gauge action [1]:

SU [U ] = β
∑
n∈Λ4

∑
µ<ν

Re tr
[
1− Uµν(n)

]
. (2.12)

β ≡ 6/g2 with the bare coupling constant g as it appears in (2.2). The so called plaquette Uµν(n) is
the simplest non-trivial closed loop of link variables on the lattice:

Uµν(n) = Uµ(n)Uν(n+ µ̂)U†
µ(n+ ν̂)U†

ν (n). (2.13)

Any closed loop of link variables like the plaquette is gauge invariant in general. Uµν(n) can be
visualized by the following diagram:

n n+ µ̂

n+ µ̂+ ν̂n+ ν̂

Uµ(n)

Uν(n+ µ̂)

U†
µ(n+ ν̂)

U†
ν (n)

Figure 3: The plaquette Uµν(n)

The summation in (2.12) is equivalent to a sum over all plaquettes that are located on the lattice.

The choice of the gauge action is not unique, hence other valid realisations of SU can be implemented
on the lattice as well, e.g. [3].
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2. Theoretical basics

Discretizing the fermion action is accompanied by difficulties. The first obvious guess for the fermion
action that is gauge invariant and has the correct continuum limit is:

SF [ψ, ψ̄, U ] =

Nf∑
f=1

∑
n∈Λ4

ψ̄(f)(n)

( 4∑
µ=1

Uµ(n) ψ
(f)(n+ µ̂)− U†

µ(n− µ̂) ψ(f)(n− µ̂)

2
−m(f)ψ(f)(n)

)

=

Nf∑
f=1

∑
n,m∈Λ4

ψ̄
(f),a
A (n) (D(f))abAB(n;m) ψ

(f),b
B (m). (2.14)

In the last line the lattice Dirac operator for some quark flavor f is introduced:

(D(f))abAB(n;m) = (γµ)AB

4∑
µ=1

(Uµ)
ab(n) δn+µ̂,m − (U†

µ)
ab(n− µ̂) δn−µ̂,m

2
+m(f)δA,Bδa,bδn,m. (2.15)

Unfortunately the propagator defined as the inverse of (2.15) creates unphysical quark degrees of
freedom that do not vanish in the continuum limit a → 0. These degrees of freedom are pure lattice
artifacts, hence the obvious guess for the fermion action is not a valid guess. This problem is referred
to as fermion doubling [1].

There can be found fermionic lattice actions of the form (2.14) using another choice of the lattice
Dirac operator preventing fermion doubling. One approach is to add an additional mass term in the
Dirac operator at the price of breaking chiral symmetry that continuum QCD possesses for vanishing
quark masses. The corresponding fermions are called Wilson fermions [1].

The fermion action that is used for the numerical calculations in this thesis is the Wilson twisted mass
action [4]. This approach is valid for mass degenerate quarks m(u) = m(d) ≡ m:

SF [χ, χ̄, U ] =
∑
n∈Λ4

(
χ̄(n)(1 + i2κµlγ5τ3)χ(n)

− κ

4∑
µ=1

χ̄(n)Uµ(n, n+ µ̂)(1− γµ)χ(n+ µ̂)

− κ

4∑
µ=1

χ̄(n)U†
µ(n, n− µ̂)(1 + γµ)χ(n− µ̂)

)
. (2.16)

τ3 denotes the third Pauli matrix acting in flavor space. The doublet χ ≡ (χ(u), χ(d)) does not
contain the physical quark fields. χ is related to the physical quark doublet ψ = (ψ(u), ψ(d)) via the
transformation: ψ = eiωγ5τ3/2χ respectively ψ̄ = χ̄eiωγ5τ3/2. The parameters that are required as input
for the computations are the twisted quark mass µl and the hopping parameter κ that is defined as
[4]:

κ =
1

8 + 2m
. (2.17)

Combining the the gauge action and the fermion action yields the lattice action of QCD:

S[χ, χ̄, U ] = SF [χ, χ̄, U ] + SU [U ]. (2.18)
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3. Meson correlation functions

3. Meson correlation functions

Correlation functions of hadron creation and annihilation operators are the fundamental objects of
hadron spectroscopy. Hadronic energy spectra can be directly extracted from correlation functions by
observing their temporal decrease. In this section the focus is set on correlation functions of meson
creation and annihilation operators.

3.1. Meson creation operators

Mesons typically are quark anti-quark states. A meson state is characterized by a set of quantum
numbers:

� Total angular momentum: J ∈ N since all mesons are bosons

� Parity: P = ±1

� Charge conjugation (for identical flavours): C = ±1

� Flavor quantum numbers listed in table 2

Flavor quantum numbers
Flavor Isospin-z: I3 Strangeness: S Charm: C Bottomness: B′ Topness: T

up u +1/2 0 0 0 0
down d -1/2 0 0 0 0
strange s 0 -1 0 0 0
charm c 0 0 +1 0 0
bottom b 0 0 0 -1 0
top t 0 0 0 0 1

Table 2: Flavor quantum numbers of quarks

Neglecting flavor quantum numbers a meson state can be denoted with the quantum numbers I(JP )
[5]. I denotes the total isospin. To observe a particular meson state a meson creation operator has to
be constructed that has the quantum numbers of this meson.

Aside the constraint that the operator has to carry suitable quantum numbers there is some freedom
in its construction. In principle one could use any operator as meson creation operator as long as it has
the quantum numbers of the meson under investigation. The simplest local meson creation operators
basically have the form of bilinear covariants:

O(n) = ψ̄(f1)(n)Γψ(f2)(n), O†(n) = ±ψ̄(f2)(n)Γψ(f1)(n). (3.1)

The quark fields have to be chosen in a way to provide the desired quark flavors f1 and f2. Γ is
a matrix in Dirac space - usually a combination of Dirac matrices that correspond to total angular
momentum J and parity P .

The overall sign of the hermitian conjugate O†(n) depends on Γ since γ4Γ
†γ4 = ±Γ. Table 3 lists

different Γ’s and the corresponding values of J and P .
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3. Meson correlation functions

Transformation law J P Γ Particles

Pseudoscalar 0 -1 γ5, γ4γ5 π±, π0, ηc, ...
Scalar 0 +1 1, γ4 a0, K

∗
0 , ...

Vector 1 -1 γi, γ4γi ρ±, ρ0, K∗, ...
Axial vector 1 +1 γiγ5 a1, ...
Tensor 1 +1 γiγj b1, ..

Table 3: Γ-structure and corresponding quantum numbers [1]

Some examples of local meson creation operators are:

� K∗
0 : OK∗

0
(n) = s̄(n)d(n)

� Pion π−: Oπ−(n) = ū(n)γ5d(n)

� ρ meson ρ+: Oρ+(n) = d̄(n)γiu(n) with i = 1, 2, 3.

Acting on the vacuum |Ω〉 a local creation operator O(n) with quantum numbers I(JP ) creates a
field excitation with these quantum numbers localized at position n. The corresponding state can be
expanded in the energy eigenbasis:

O(n) |Ω〉 =
∞∑
k=0

|k〉 〈k|O(n) |Ω〉︸ ︷︷ ︸
ak

=

∞∑
k=0

ak |k〉 . (3.2)

|k〉 ≡ |I(JP ); k〉 denotes an energy eigenstate corresponding to quantum numbers I(JP ). The absolute
value of the coefficient ak gives information how much the energy eigenstate |k〉 contributes to the
superposition.

For example [5], computing the energy of a pion corresponds to observing the ground state |1(0−); 0〉.
Higher energy eigenstates are many particle pion states like |π + π + π〉 and excitations of the pion
like the |π(1300)〉.

In order to investigate the ground state |0〉 the freedom of choosing any suitable O(n) can be exploited.
Creation operators can be constructed from smeared quark fields [6] such that the overlap 〈0|O(n) |Ω〉
has a large magnitude compared to the overlaps 〈k|O(n) |Ω〉 of higher states (k > 0). Distillation can
be viewed as a smearing as well.

In order to calculate energy spectra or particle masses one works with momentum projected meson
creation operators that are obtained by spatial Fourier transformation of the local operators:

Õ(p, n4) =
∑
n∈Λ3

O(n, n4)e
−in·p, (3.3)

where the summation over n takes place over all points inside the spatial part of the lattice Λ3.
Due to the restriction of the lattice to a finite volume the spatial components of the momentum are
pi = 2πmi/Li for i = 1, 2, 3 and mi ∈ Z.
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3. Meson correlation functions

For measuring a meson mass the local creation operator with the desired quantum numbers is projected
to momentum 0 by summing over all spatial lattice sides:

Õ(n4) ≡ Õ(0, n4)

=
∑
n∈Λ3

O(n, n4). (3.4)

3.2. Correlation functions of meson creation operators

Correlation functions of meson creation operators, also called correlators, are vacuum expectation
values (VEV’s) of these operators. On the lattice VEV’s are defined by the Feynman path integral as
well as in continuum:

〈Ω|O†(n)O(m) |Ω〉 = 1

Z

∫
D[ψ]D[ψ̄]

∫
D[U ] O†(n)O(m) e−S[ψ,ψ̄,U ]. (3.5)

Z denotes the partition function:

Z =

∫
D[ψ]D[ψ̄]

∫
D[U ] e−S[ψ,ψ̄,U ]. (3.6)

S[ψ, ψ̄, U ] is the lattice action (2.18). By introducing a finite lattice intrinsic difficulties of the path
integral are resolved. Divergent factors in the integration measure become finite and the infinite
dimensional integration is replaced by a high but finite dimensional integral:∫

D[ψ]D[ψ̄]

∫
D[U ] ∼

∏
n∈Λ4

∫
dψ(n) dψ̄(n)

∫
dU(n). (3.7)

In order to extract the mesonic energy spectrum one computes correlators of momentum projected
meson creation operators. By rewriting the correlation function in its spectral representation one can
gain insight how the spectrum can be extracted. The first step consists of inserting a complete 1 of
energy eigenstates:

C(t2 − t1) ≡ 〈Ω| Õ†(t2)Õ(t1) |Ω〉 , t2 > t1 (3.8)

=

∞∑
k=0

〈Ω| Õ†(t2) |k〉 〈k| Õ(t1) |Ω〉 .

Now one can use that Õ(t2) is a Heisenberg operator whose temporal evolution is determined by the
Hamiltonian H:

=

∞∑
k=0

〈Ω| eH(t2−t1)Õ†(t1)e
−H(t2−t1) |k〉 〈k| Õ(t1) |Ω〉 . (3.9)

The exponentials act on the vacuum state and the inserted energy eigenstates:

〈Ω| eH(t2−t1) = 〈Ω| eEΩ(t2−t1) e−H(t2−t1) |k〉 = e−E
′
k(t2−t1) |k〉 . (3.10)

10



3. Meson correlation functions

Continue from equation (3.9):

=

∞∑
k=0

〈Ω| Õ†(t1) |k〉 〈k| Õ(t1) |Ω〉 e−(E′
k−EΩ)(t2−t1)

=

∞∑
k=0

(〈k| Õ(t1) |Ω〉)† 〈k| Õ(t1) |Ω〉 e−(E′
k−EΩ)(t2−t1)

=

∞∑
k=0

∣∣ 〈k| Õ(t1) |Ω〉
∣∣2︸ ︷︷ ︸

|ak|2

e−Ek(t2−t1). (3.11)

Ek = E′
k − EΩ is the energy of state |k〉 measured relative to the infinite energy of the vacuum EΩ.

Ek is given by the relativistic energy momentum relation:

Ek =
√
m2
k + p2. (3.12)

Using meson creation operators projected to momentum 0 yields Ek = mk. For large temporal
separations ∆t = (t2 − t1) the sum (3.11) is dominated by the ground state since the other terms
vanish quicker due to mk � m0 for k > 0:

lim
∆t→∞

C(t2 − t1) = |a0|2 e−E0(t2−t1). (3.13)

A large overlap a0 = 〈0| Õ(t1) |Ω〉 causes faster convergence of (3.11) to the ground state. Hence a
smaller lattice can be used, i.e., computation time is saved by using creation operators of smeared
quark fields. After computing the temporal progression of the correlator the energy or mass of the
ground state can be extracted by an exponential fit of C(t2 − t1).

The numerical computation can be done using the correlators definition via the path integral (3.5).
The corresponding integration over the Grassmann-valued fermion fields can be performed by hand:

C(t2 − t1) ≡ C(n4 −m4) (3.14)

= 〈Ω| Õ†(n4)Õ(m4) |Ω〉

= ±
∑

n,m∈Λ3

〈Ω| ψ̄(f2)(n, n4)Γψ
(f1)(n, n4) ψ̄

(f1)(m,m4)Γψ
(f2)(m,m4) |Ω〉 .

The ± sign arises from the hermitian adjoint meson creation operator (3.1).

= ±
∑
n,m

〈Ω| ψ̄(f2),a
A (n, n4)ΓABψ

(f1),a
B (n, n4) ψ̄

(f1),b
C (m,m4)ΓCDψ

(f2),b
D (m,m4) |Ω〉

= ∓
∑
n,m

ΓABΓCD 〈Ω|ψ(f2),b
D (m,m4)ψ̄

(f2),a
A (n, n4) ψ

(f1),a
B (n, n4)ψ̄

(f1),b
C (m,m4) |Ω〉 . (3.15)

Interchanging the Grassmann-valued fermion fields yields an overall minus sign.
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3. Meson correlation functions

The fermionic path integral factorizes into two separate integrations for each flavor fi that can be
performed independently. In principle this step is equivalent to the application of Wick’s theorem [1]:

〈ψaA(m,m4)ψ̄
b
B(n, n4)〉F =

1

ZF

∫
D[ψ]D[ψ̄] ψaA(m,m4)ψ̄

b
B(n, n4) e

−SF [ψ,ψ̄,U ] (3.16)

= (D−1)abAB(m,m4;n, n4). (3.17)

SF denotes the fermion action that is of form (2.14), i.e., quadratic in the quark fields. It depends on
the gauge field as well. ZF is the fermionic partition sum and D−1 the inverse Dirac or propagator
that has components in color and Dirac space. After performing this step only the path integral over
the gauge field remains [1]:

〈
...

〉
U
≡ 1

ZU

∫
D[U ] ... det

(
D(f1)[U ]

)
det

(
D(f2)[U ]

)
e−SU [U ], (3.18)

where det
(
D(f)

)
denotes the fermion determinant, i.e., the determinant of the Dirac operator depend-

ing on the gauge field U . The partition function ZU contains the fermion determinants as well. This
yields for the correlator:

C(n4 −m4) = ∓
∑
n,m

ΓABΓCD

〈
(D−1(f2))baDA(m,m4;n, n4)(D

−1(f1))abBC(n, n4;m,m4)
〉
U

= ∓
∑
n,m

〈
(D−1(f2))baDA(m,m4;n, n4)ΓAB (D−1(f1))abBC(n, n4;m,m4)ΓCD

〉
U

= ∓
∑
n,m

〈
Tr

[
(D−1(f2))(m,m4;n, n4)Γ (D−1(f1))(n, n4;m,m4)Γ

]〉
U
. (3.19)

The big trace Tr[ ... ] acts in Dirac and color space.

At this point starts the numerical work. The path integral over the gauge field is on a finite lattice
nothing more like a high dimensional integration. Such an integral can be calculated as average over
samples of the gauge field, so called configurations. The samples are usually obtained from methods
using Markov chain Monte Carlo algorithms [1].

Another difficulty is the numerical handling of the quark propagators. On the lattice the Dirac
operator of flavour f is a very large quadratic complex matrix with following number of rows:

L1 × L2 × L3 × L4 × 3× 4 .

Consider a rather small lattice that has spatial dimension L = 24 and temporal dimension T ≡ L4 = 48.
The Dirac operator D(f) then has ≈ 63 · 1012 complex entries. To obtain the propagator, D(f) has to
be inverted what can not be done for such a large matrix in a reasonable amount of time. Additionally
the propagator has to be stored what is inconvenient since it corresponds to 1,014 terabytes of data
even for the rather small lattice.

One common method is the computation of so called point-to-all propagators [7]. A point-to-all
propagator describes the quark propagation from one fixed lattice site to all other sites. The costs of
this simplification appear as large statistical errors of computed quantities.

12



4. Distillation

4. Distillation

Distillation is a method of constructing hadron creation operators using eigenvectors of the gauge
covariant lattice Laplacian. Distillation is of interest because it enables the computation of all-to-all
quark propagators. Furthermore the method is well suited for the observation of ground states of
mesonic spectra. Distillation was first proposed in 2009 by Michael Peardon [8].

Notation: Variables in square brackets such as [t] are not understood as true variables implying a
real functional dependence but more as labels to enumerate expressions.

4.1. The lattice Laplacian

The discrete gauge-covariant Laplacian 4 is a linear, negative-definite and hermitian operator acting
on a M dimensional Hilbert space H = CM . The Laplacian is defined on a time slice t and the
corresponding eigenvalue equation on a particular time slice reads:

4|v(k)〉 = λ(k) |v(k)〉 , λ(k) ∈ (−∞, 0]. (4.1)

The label k denotes the number of eigenvalues and eigenvectors. Due to hermiticity and negative
semi-definiteness the Laplacian has real and strict negative eigenvalues. The eigenvectors of 4 are
orthogonal and one can find an orthonormal basis of CM spanned by the normalised eigenvectors:

M∑
k=1

|v(k)〉 〈v(k)| = 1, 〈v(j)|v(k)〉 = δjk. (4.2)

The eigenequation can be rewritten in position space, i.e., on the lattice as follows:∑
n

4(m;n)[t] v(k)(n)[t] = λ(k)[t] v(k)(m)[t]. (4.3)

This equation is solved numerically on every time slice t independently, hence v(k)(m)[t] denotes the
k-th eigenvector computed on time slice t that corresponds to the eigenvalue λ(k)[t] on this particular
time slice. The operator can be implemented on the lattice using a symmetric choice for the second
derivative:

4(m;n)[t] =

3∑
µ=1

(
U†
µ(n− µ̂, t) δm,n−µ̂ − 2δm,n + Uµ(n, t) δm,n+µ̂

)
. (4.4)

(4.4) is a M ×M matrix acting on CM . Here M is defined as M ≡ L1 × L2 × L3 ×Nc where Nc = 3
denotes the number of colors. In the lattice notation the completeness relation reads as:

M∑
k=1

v(k)(m)[t]
(
v(k)(n)[t]

)†
= δm,n. (4.5)

Because the gauge covariant Laplacian has color components its eigenvectors have color components
as well. Using this fundamental properties of the lattice Laplacian Distillation can be motivated from
Gaussian smearing.
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4.2. The distillation operator

An established smearing technique that is used to increase the contribution of the ground state to the
correlator (3.11) is the so called Gaussian smearing [8, 9]. Gaussian smearing works by the iterative
application of the smearing operator Jn on the quark fields:

Jn =

(
1− σ4

n

)n
, σ ∈ [0,∞). (4.6)

n denotes the smearing step and σ is the smearing parameter. 4 is the gauge-covariant Laplacian
(4.4), hence the smearing preserves gauge symmetry. Since 4 acts only within time slice t, only the
spatial part of the quark fields is smeared by applying Jn. For a large number of iterations one can
rewrite the smearing operator:

lim
n→∞

Jn = eσ4

≡ J. (4.7)

Distillation can be motivated from Gaussian smearing by expanding J in the eigenbase of of the lattice
Laplacian using the completeness relation (4.2):

J =

M∑
k=1

|v(k)〉 〈v(k)| J

=
M∑
k=1

|v(k)〉 〈v(k)| eσ4

=

M∑
k=1

|v(k)〉 〈v(k)| eσλ
(k)

. (4.8)

Since the eigenvalues of 4 are negative and it is |λ(k+1)| > |λ(k)| one can see that higher eigenmodes
are suppressed exponentially. Hence some number N � M can be found such that exp (σλ(N)) � 1,
thus higher eigenmodes can be neglected:

J ≈
N∑
k=1

|v(k)〉 〈v(k)| eσλ
(k)

. (4.9)

This observation is the motivation to define [8] the distillation operator that inherits a smearing
property similar to the Gaussian smearing operator J :

� ≡
M∑
k=1

|v(k)〉 〈v(k)| θ(|λ(N)| − |λ(k)|)

=

N∑
k=1

|v(k)〉 〈v(k)| . (4.10)

θ(x) denotes the Heaviside step function. Hence, distillation is also referred to as LapH smearing which
is an abbreviation for “Laplacian Heaviside”.
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As well as the Gaussian smearing operator J the distillation operator acts on a time slice t. � is a
projection operator into CN , i.e., the subspace of CM that is spanned by the N lowest eigenvectors.
Hence it is �2 = �. Furthermore (4.10) becomes the completeness relation of the eigenstates for
N =M , i.e., � = 1 for N =M . The distillation operator can be written as well as a matrix product:

�[t] = V [t]V †[t], (4.11)

where V [t] is an M ×N matrix whose k-th column contains the eigenvector of (4.4) corresponding to
the k-th lowest eigenvalue on time slice t. Writing out the lattice components this expression reads:

�(m,n)[t] =

N∑
k=1

v(k)(m)[t]
(
v(k)(n)[t]

)†
. (4.12)

Quark fields that are smeared by applying the distillation operator are also referred to as distilled
fields:

χ(f)(m, t) ≡
∑
n

�(m,n)[t]ψ(f)(n, t). (4.13)

The distilled fields χ(n) inherit all symmetry properties of the unsmeared fields ψ(n) [8], hence the
corresponding meson creation operators do so as well.

4.3. Meson correlation functions of distilled fields

Meson creation operators like (3.4) can be constructed from distilled quark fields:

Õ(t) =
∑
m

χ̄(f1)(m, t)Γχ(f2)(m, t)

=
∑
m

∑
n1

∑
n2

ψ̄(f1)(n1, t)�(m,n1)[t] Γ �(m,n2)[t]ψ
(f2)(n2, t), (4.14)

Õ†(t) = ±
∑
m

χ̄(f2)(m, t)Γχ(f1)(m, t)

= ±
∑
m

∑
n1

∑
n2

ψ̄(f2)(n1, t)�(m,n1)[t] Γ �(m,n2)[t]ψ
(f1)(n2, t). (4.15)

The temporal correlation function of these creation operators is:

C(t′ − t) = 〈Ω| Õ†(t′)Õ(t) |Ω〉

= 〈Ω| ψ̄(f2)(n1, t
′)�(m1,n1)[t

′] Γ �(m1,n2)[t
′]ψ(f1)(n2, t

′)

× ψ̄(f1)(n3, t)�(m2,n3)[t] Γ �(m2,n4)[t]ψ
(f2)(n4, t) |Ω〉 , (4.16)

where is an implied summation over all repeated spatial arguments.
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In the notation of matrix vector multiplication just writing time indices the correlator can be written
as well as:

C(t′ − t) = 〈Ω| ψ̄(f2)(t′)�[t′] Γ �[t′]ψ(f1)(t′) ψ̄(f1)(t)�[t] Γ �[t]ψ(f2)(t) |Ω〉 . (4.17)

Now the same steps as for (3.14) can be performed to rewrite the correlator. Using the expression
(4.11) for the distillation operator the correlator reads after performing the fermionic path integral [8]:

C(t′ − t) =
〈
Tr

[
τ (f2)[t′, t]Γ̃[t]τ (f1)[t, t′]Γ̃[t′]

]〉
U
, (4.18)

where the following definitions have been used:

Γ̃AB [t] ≡ V †[t]ΓABV [t], (4.19)

τ
(f2)
AB [t′, t]︸ ︷︷ ︸
N ×N

≡ V †[t′]︸ ︷︷ ︸
N ×M

(D−1(f2))AB(t
′; t)︸ ︷︷ ︸

M ×M

V [t]︸︷︷︸
M ×N

, τ
(f1)
AB [t, t′] ≡ V †[t](D−1(f1))AB(t; t

′)V [t′]. (4.20)

A and B denote spin indices. τ [t′, t] is the reduced propagator or perambulator ; it contains the
complete information of the corresponding quark’s propagation from every spatial point on time slice
t to any spatial point on time slice t′. τAB [t

′, t] is a complex N ×N matrix, where N is the number of
eigenvectors used to construct the distillation operator. Since it is N � M the perambulator can be
computed in a reasonable amount of time.

(4.18) reveals a further useful property [8] of the distillation method: The perambulators τ (f)[t′, t] that
contain the information about the quark propagation and Γ̃[t] that contains the quantum numbers of
the meson under investigation can be computed independently. This means that perambulators once
computed and stored can be reused to observe different mesons simply by combining the existing
τ (f)[t′, t]’s with different Γ̃[t]’s carrying the quantum numbers of interest.

4.4. Computation of the propagators

In order to obtain the propagator the Dirac operator, that is a large matrix on the lattice, has to be
inverted. The propagator is defined by the equation:∑

u,u0

(D(f))abAB(m,m0;u, u0) (D
−1(f))bcBC(u, u0;n, n0) = δa,cδA,Cδm0,n0

δm,n. (4.21)

Numerically one does not calculate the entire propagator at once but so called inversions Φ(m) that
correspond to single columns of the propagator in the case of point-to-all propagators [7]. Thus, the
inversion Φ(m) is defined to be the solution of the following linear equation system:∑

m,m0

(D(f))abAB(n, n0;m,m0) Φ
(f),b
B (m,m0) = ξaA(n, n0) (4.22)

⇔ Φ
(f),a
A (m,m0) =

∑
n,n0

(D−1(f))abAB(m,m0;n, n0) ξ
b
B(n, n0). (4.23)

ξ(n) is the so called source that is, as well as Φ(m), a fermionic field with color components.
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The inversions Φ(m) of the Dirac operator are calculated under the specification of a special type of
sources ξ(n) [7]. This approach can as well be used to compute the perambulators (4.20).

The goal is to obtain the sources ξ(n) that have to be specified to calculate inversions corresponding

to single columns of the perambulator τ
(f)
AB [t, t

′]. In order to do so the perambulator can be rewritten:

τ
(f)
A′B′ [t, t

′] = V †[t] (D−1(f))A′B′(t, t′)V [t′]

=
N∑
k=1

∑
m,n

(v†)(k),a(m)[t] (D−1(f))abA′B′(m, t;n, t′) v(k),b(n)[t′]

=

N∑
k=1

∑
m,n

(v†)(k),a(m)[t] δA,′A (D−1(f))abAB(m, t;n, t′) v(k),b(n)[t′] δB,B′

=

N∑
k=1

∑
m

∑
n,n0

(v†)(k),a(m)[t] δt,m0
δA,′A (D−1(f))abAB(m,m0;n, n0) v

(k),b(n)[t′] δt′,n0
δB,B′ . (4.24)

Now, the expression for the inversion can be identified from (4.24):

Φ
(f),a
A (m,m0)[t

′, B′, k] ≡
∑
n,n0

(D−1(f))abAB(m,m0;n, n0) v
(k),b(n)[t′] δt′,n0

δB,B′ . (4.25)

Φ(m)[t′, B′, k] is the an object with color and spin components on every lattice point. The label
[t′, B′, k] means that Φ(m)[t′, B′, k] is defined on time slice t′, spin index B′ for the k-th eigenvector.
Now the source term that has to be specified to obtain Φ(m)[t′, B′, k] can be read off comparing (4.25)
and (4.23):

ξbB(n, n0)[t
′, B′, k] = v(k),b(n)[t′] δt′,n0δB,B′ . (4.26)

In order to obtain all inversions to build the entire matrix τ [t′, t] one has to compute L4 × 4 × N
inversions Φ(m)[t′, B′, k] for all values of [t′, B′, k]. Thus, the same number of sources of type (4.26)
has to be generated.

For this work sources of type (4.26) have been generated and stored. The files containing the data of
a single source have been submitted to the program tmLQCD [10] that executes the computation of the
corresponding inversions. Details of the implementation are described in section 5.

4.5. Problems of distillation

In order to create a picture close to physical reality it is necessary to implement mesons on the lattice
with some finite spatial extension corresponding to the physical size of a meson that is 1fm in diameter.
Local meson creation operators like (3.1) are not adequate since they create a meson on one particular
lattice point, i.e., without any spatial extension. Meson operators creating spatially extended mesons
are obtained from the use of quark fields spatially smeared by the action of the Gaussian smearing
operator (4.7). It is called “Gaussian” smearing because the smeared quark wave function is of Gaussian
shape. Distillation provides a spatial smearing of quark wave functions with Gaussian shape as well.
By removing eigenmodes from (4.10), the spatial extension of the smeared field is increased.
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An unsmeared quark state |ψ〉 is localised at one lattice point, i.e., the spatial wave function ψ(n) =
〈n|ψ〉 is very narrow in its spatial extension. |ψ〉 can be expanded in the basis spanned by the
eigenmodes of the lattice Laplacian:

|ψ〉 =
M∑
k=1

|v(k)〉 〈v(k)|ψ〉

⇔ ψ(n) =

M∑
k=1

〈n|v(k)〉 〈v(k)|ψ〉 . (4.27)

By removing higher eigenmodes of the lattice Laplacian the completeness relation becomes the distil-
lation operator (4.10). The more eigenmodes are removed the lager becomes the width of the wave
function ψ(n).

A helpful analogy is to think of distillation as a kind of Fourier decomposition where some state |f〉 is
expanded in the eigenmodes of some differential operator D |k〉 = ik |k〉:

|f〉 =
∑
k

|k〉 〈k|f〉

⇔ f(x) =
∑
k

〈x|k〉 〈k|f〉

∼
∑
k

f̃k · eikx. (4.28)

Thinking of f(x) as a Gaussian wave packet, a large number of k-modes has to be added up in order
to obtain a well localized wave packet.

The same is true for distillation: In order to obtain a Gaussian shaped quark wave function ψ(n) whose
spatial extension resembles the size of a meson (1fm) a large number of eigenmodes has to be added
to the distillation operator (4.10). If the number of included eigenmodes is to low, the corresponding
quark wave function is extended over the entire spatial lattice (2-4fm). The overlap of this state and
the actual ground state would be small.

The computation of a sufficient number of eigenvectors in order to obtain a suitable quark wave
function is related to major computational efforts. But on the other hand, the possibility of computing
to all-to-all quark propagators is a profit since physical information is preserved and noise of the
correlation signal can be reduced [11].

5. Implementation and documentation

In this section some details of the implementation of the generation of the inversions (4.24) are provided.
The process of computing the inversions can be split in three sequential steps that are:

� the computation of the desired number N of eigenvectors

� the generation of L4 × 4×N sources (4.26) using the computed eigenvectors

� the computation of the inversions (4.25)
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For the implementation modules of the contraction code package written by the ETM Collaboration
are used as well as the tmLQCD package [10].

5.1. Lattice setup

The gauge field configurations used for the calculations as part of this thesis are obtained from the
ensemble A40.24 [12]. The ensemble has been generated using Nf = 2 + 1 + 1 quark flavours: mass-
degenerate up and down and mass-split strange and charm quarks. Details of the used fermion and
gauge actions can be looked up in [12]. The gauge configurations are characterized by the following
set of parameters:

# of used configurations β κ aµl aµσ aµδ (L/a)3 × T/a

11 1.9 0.1632700 0.0040 0.150 0.190 243 × 48

Table 4: Parameters of used gauge configurations

a denotes the lattice spacing, β the gauge coupling (2.12), κ is the hopping parameter (2.16), µl is
the twisted mass of the light doublet χl = (χ(u), χ(d)). µσ and µδ are twisted mass parameters as well
that arise from the fermion action that was used for the heavy doublet χh = (χ(s), χ(c)).

In this simulation sea quarks have flavours up, down, strange and charm while valence quarks are just
of the flavours up and down.

5.2. Performed computations

The computations that are performed for this thesis are:

� computation of N = 5 eigenvectors of the lattice Laplacian on every lattice time slice for all 11
gauge configurations

� computation of 48× 4× 5 distillation sources on each of the 11 configurations

� computation of the 48× 4× 5 inversions on each of the 11 configurations

The steps consuming the most computation time are the computation of the eigenvectors and the
computation of the inversions. Whereas the generation of the distillation sources can be done quite
fast. Details of the implementations of each step are provided in the next subsections.

5.3. Added modules

Modules written for this work are added to the contraction code in the directory /.../Distillation/.
The new modules are:

� /Distillation/generate_distillation_source/: contains the function that generates one distil-
lation source (4.26) for given values [t′, B′, k]

� /Distillation/eigenvector_utils/check_eigenvector/: contains a function that checks if a passed
eigenvector fulfills the eigenequation of the Laplacian (4.4)
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� /Distillation/eigenvector_utils/sort_eigenvectors/: contains a function that sorts the eigen-
values of a submitted eigenvector by increasing magnitude and arranges the corresponding eigen-
vectors in the storage according to this order

� /Distillation/eigenvector_utils/linear_algebra_operations/: contains a set of auxiliary func-
tions that perform linear algebra operations used to work with the eigenvectors

The modules listed above are written in the programming language C. Functions that may be reused
by others can be accessed by including the following header files:

� /Distillation/generate_distillation_source/generate_distillation_source.h

� /Distillation/eigenvector_utils/check_eigenvector/check_eigenvector.h

� /Distillation/eigenvector_utils/sort_eigenvectors/sort_eigenvectors.h

� /Distillation/eigenvector_utils/linear_algebra_operations/linear_algebra_operations.h

The parameters of each function declared in one of this .h-files are explained via a comment within
the respective .h-file.

5.4. Computation of eigenvectors

For the computation of eigenvectors code written for older projects [13, 14] is reused. Using this code
a main source file for the eigenvector computation has been written:

� /Distillation/calc_eigenvectors.c

The corresponding executable can be run in the command line via:

./calc_eigenvectors </path/to/config> </path/to/vector/> <T> <L> <gauge_field_id>

<total_number_eigenvectors>

where the following input parameters have to be specified:

� </path/to/config>: total path of config. file on that eigenvectors are shall be computed

� </path/to/vector/>: total path to the directory where one wants to store the vector

� <T>: temporal extension of the lattice

� <L>: spatial extension of the lattice

� <gauge_field_id>: ID of gauge configuration, i.e., the file extension of the config. file

� <total_number_eigenvectors>: the total number of eigenvectors one wants to compute, i.e., N

The program solves the eigenvalue equation of the Laplacian on every time slice of the lattice and
stores the eigenvectors of all timeslices together with the corresponding eigenvalues in a single block
of data. This data block is written into an output file whose file extension is the ID of the gauge
configuration on that the eigenvectors are calculated [14].
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5.5. Generation of sources

The source code that contains the main function that executes the calculation of the distillation sources
(4.26) is:

� /Distillation/generate_distillation_sources.c

The corresponding executable can be run in the command line via:

./generate_distillation_sources </path/to/vector> <gauge_field_id> </path/to/source/> <T>

<L> <total_number_eigenvectors>

The parameters not explained explicitly are the same as for the eigenvector program:

� </path/to/vector>: total path of file that contains eigenvector used to generate the sources

� <gauge_field_id>: ID of gauge field the eigenvector was computed on

� </path/to/source/>: total path to the directory where one wants to store the sources

This program generates T × 4×N sources from all T ×N eigenvectors that have been computed on
one particular gauge configuration.

5.6. Computation of inversions

In order to compute the inversions (4.25) the tmLQCD package [10] (“twisted mass Lattice QCD”) has
been used. The package is available on GitHub1. It provides the so called inverter, a program that
computes inversions (4.23) for submitted sources ξ(n) on a given gauge configuration.

During the build process of the tmLQCD package there is created a directory called .../bin/ inside the
installation directory. .../bin/ contains the executable of the inverter .../bin/invert. The inverter
can be run in the command line by submitting an inverter job script:

./invert -f inverter_script.input

An example of an invert job script is provided in Fig.4. The physical parameters that have to be
specified in inverter_script.input arise from the Dirac operator that shall be inverted. The parameters
for computation are listed in Tab. 4:

� 2KappaMu = 0.00130616 = 2 · κ · µl

� kappa = 0.1632700

The calculated inversions correspond to the Dirac operator that arises from the Wilson twisted mass
action (2.16) for the light quark flavours u and d. Since the twisted mass quarks are mass degenerate
inversions of flavour u and d are the same.

For every gauge configuration of the given ensemble T ×4×N distillation sources have to be submitted
to the inverter in order to obtain the same number of inversions.

1https://github.com/etmc/tmLQCD
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L=24

T=48

2KappaMu = 0.00130616

CSW = 1.0

kappa = 0.1632700

DebugLevel = 3

InitialStoreCounter = 249

seed = 6098312

Measurements = 1

ThetaT = 1.0

GaugeConfigInputFile = /path/to/configs/conf

UseEvenOdd = yes

UseRelativePrecision = yes

ReproduceRandomNumbers = yes

RanluxdLevel = 2

SourceFilename = /path/to/source/source.0750

ReadSource = yes

SplittedPropagator = no

Measurements = 1

Indices = 0

DisableIOChecks = yes

DisableSourceIOChecks = yes

BeginOperator TMWILSON

2kappaMu = 0.00130616

kappa = 0.1632700

SolverPrecision = 1e-24

MaxSolverIterations = 20000

AddDownPropagator = no

EndOperator

Figure 4: Inverter script inverter_script.input

6. Conclusions and outlook

The computations of the inversions are the first step in order to compute a meson mass. The next step
towards the meson mass is the computation of the correlator (4.18) using the generated inversions.
The correlator of any meson consisting of up and down valence quarks can be computed by combining
the inversions with a Γ̃ (4.19) carrying the quantum numbers of the meson one likes to observe.

This work constitutes a first step of a test of distillation by our work group with the aim to collect
first experience in working with this method. Hence the setup is kept simple by using a small set of
configurations and a small number of eigenvectors of the Laplace operator. Further, the eigenvectors
are computed for the sake of simplicity on unsmeared gauge configurations. The implementation of a
gauge field smearing is a further step for future projects in order to obtain better correlation signals.
The low number of used eigenvectors results in widely smeared meson states. Hence a larger number
O(100) of eigenvectors should be used to improve the computations’s quality.
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