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Abstract

This work aims to investigate the structure of the flux tube generated by a static quark
antiquark pair. For that purpose a trial state of an infinitely heavy quark and antiquark
on the lattice connected by the gauge potential using SU(2)-Yang-Mills-theory is con-
sidered. At first, the potential between quark and antiquark in the lowest energy state
is computed for different distances between quark and antiquark by evaluating Wilson
loops. In the second part, the structure of the chromoelectric field in the direction paral-
lel to the quark antiquark axis in the region around the quark antiquark pair is specified.
This is done by computing the product of a Wilson loop between quark and antiquark
and a plaquette at the place where the chromoelectric field shall be evaluated. The
determined values representing the chromoelectric field are proportional to the energy
density of the chromoelectromagnetic field and thereby yield the structure of the flux
tube.

Zusammenfassung

Diese Arbeit dient der Erforschung von der Struktur des Flussschlauchs, der durch ein
statisches Quark-Antiquark-Paar erzeugt wird. Dazu wird ein Testzustand bestehend
aus unendlich schwerem Quark und Antiquark, die durch das Eichpotential auf dem
Gitter verbunden sind, unter Verwendung von SU(2)-Yang-Mills-Theorie betrachtet.
Zunächst wird das Potential zwischen Quark und Antiquark im Energiegrundzustand
für verschiedene Abstände analysiert, indem Wilson Loops ausgewertet werden. Im
zweiten Teil wird die Struktur des chromoelektrischen Feldes in paralleler Richtung zur
Quark-Antiquark-Achse in der Region um das Quark-Antiquark-Paar bestimmt. Dies
wird umgesetzt durch Berechnung des Produkts eines Wilson Loops zwischen Quark
und Antiquark und einer Plaquette an dem Ort, wo das chromoelektrische Feld ausgew-
ertet werden soll. Die ermittelten Werte, die die Stärke des chromoelektrischen Feldes
widerspiegeln, sind ein Maß für die Energiedichte des chromoelektromagnetischen Feldes
und führen damit auf die Struktur des Flussschlauchs.
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1 Introduction

Quantum Chromodynamics is a gauge theory based on the non-abelian gauge group
SU(3) describing particles with colour charge red, blue and green interacting through
gluon exchange. By contrast, the SU(2) Yang-Mills-theory postulates a local invariance
of the Lagrangian under SU(2) transformations and describes infinitely heavy particles
with two possible colour charges. The phenomena described by SU(2) Yang-Mills-theory
are similar to the ones described by SU(3) Quantum Chromodynamics. Especially,
confinement can be observed in both theories. In this work physical quantities are
evaluated by using lattice gauge theory, which implies that calculations are implemented
by discretisation of space-time. As lattice gauge theory calculations are easier and faster
to perform for SU(2) Yang-Mills-theory, the computations are done on the basis of this
theory.

An exciting aspect of confinement is the formation of gluonic flux tubes between quark
antiquark pairs when their separation is increased. These flux tubes are related to the
linear rise of the potential between quark and antiquark with increasing distance. Cor-
respondingly, in order to investigate the structure of flux tubes, firstly the potential
between quark and antiquark and secondly the energy density of the chromoelectro-
magnetic field will be computed.

The chromoelectric field strength E contributes to the energy density of the chromo-
electromagnetic field as ω ∼ 1

2 (E2 +B2) with the energy density ω and the chromo-
magnetic field strength B. In [1] the authors studied the composition of the energy
density made up of chromoelectric and chromomagnetic contributions. They observed
that the chromoelectric field in parallel direction (in relation to the quark antiquark axis)
is dominant whereas the vertical components’ and the chromomagnetic field’s ratio is
negligibly small. This is why in this work the chromoelectric field in parallel direction
is computed to obtain the dominating contribution to the energy density.

Already in 1990 the chromoelectric flux tube was studied on the lattice in SU(2) and
SU(3) gauge theory in [2].

Continuative considerations investigating the QCD flux tube in pure gauge SU(3) and
fitting the flux tube profile with Gaussian and exponential functions were done in [3],
[4] and [5].
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2 Calculation of the quark antiquark
potential in SU(2) Yang-Mills-theory

This chapter aims to derive a formula to calculate the quark antiquark potential on the
lattice.

Details concerning the following computations can be found in [6].

Consider a trial state consisting of an infinitely heavy quark at point ~y (generated by
the operator Qβb(~y, 0)) and an infinitely heavy antiquark at point ~x (generated by the
operator Qαa(~x, 0)) connected by the gauge potential,

|Φαβ(τ = 0, ~x, ~y)〉 = Qαa(~x, 0)Uab(~x, 0; ~y, 0)Qβb(~y, 0) |Ω〉 = Oαβ(0, ~x, ~y) |Ω〉 . (2.1)

τ is the euclidean time, α, β ∈ {0, 1, 2, 3} are the Dirac indices and a, b ∈ {1, 2} are
the colour indices. |Ω〉 is the vacuum state. Uab(~x, τ1; ~y, τ2) are the matrix-valued link-
variables, that are group elements of SU(2) and can be expressed by the gauge potential
A that is a linear combination of the generators of SU(2),

Uab(~x, τ1; ~y, τ2) = P
(
eı̇g
∫ y
x
dzµAµ(z)

)
ab
. (2.2)

P is the path ordering operator and g is the coupling constant. How the path ordering is
performed can be seen by dividing the path between the space-time-points x = (τ1, ~x) =
x0 and y = (τ2, ~y) = xn into n pieces of length a (lattice spacing) which corresponds to
the lattice formulation of the link variable,

U lattice
ab (~x, τ1; ~y, τ2; a) = P

(
eı̇g
∑n−1

l=0 aµAµ(xl)
)
ab

=
(
eı̇ga

µAµ(x0)
)
aa1
· ... ·

(
eı̇ga

µAµ(xn−1)
)
an−1b

= U lattice
aa1 (x0, x1; a) · ... · U lattice

an−1b (xn−1, xn; a). (2.3)

The four-vector a is defined by a = (y − x)/n. According to Equation (2.3), the path
ordering orders the lattice link variables along the path from x to y.

If the continuum limit a → 0 is performed, the lattice formulation of the link variable
turns into the continuum formulation.
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The correlation function between the states |Φαβ(0)〉 and |Φα′β′(τ)〉, defined by

Cα′β′αβ(~x, ~y, 0, τ)
= 〈Φα′β′(τ, ~x, ~y)|Φαβ(0, ~x, ~y)〉
=
〈
Ω|T (Qβ′a′(~y, τ)Ua′b′(~y, τ ; ~x, τ)Qα′b′(~x, τ)Qαa(~x, 0)Uab(~x, 0; ~y, 0)Qβb(~y, 0))|Ω

〉
,

(2.4)

describes the euclidean time evolution of the state. Because of the infinitely heavy
quark masses the correlation function is only non vanishing if the quark and antiquark
positions are the same for both states.

By considering only τ > 0, the time ordering can be omitted.

2.1 Path integral representation

This correlation function (Equation (2.4)) can be written in the path integral represen-
tation,

Cα′β′αβ(~x, ~y, 0, τ) = 1
Z

∫
DADQDQ (Qβ′a′(~y, τ)...Qβb(~y, 0))e−Sgauge−SQ . (2.5)

The expression in brackets is the same as the one in the time ordering in Equation (2.4).
Z corresponds to the path integral with the expression in brackets set to one.

The euclidean action in the exponential contains the Yang-Mills gauge field interaction
term

Sgauge[A] = 1
4

∫
d4x F a

µν(A(x))F a
µν(A(x)) (2.6)

and the fermionic action for the static quark and antiquark SQ[Q,Q,A].

By plugging in the action SQ in Equation (2.5) and performing the integration over the
Grassmann variables Q and Q the following result can be found [6],

Cα′β′αβ(~x, ~y, 0, τ)

= 1
Z

∫
DA [Sα′β′b′a′(x′, y′, A)Sβαba(y, x, A)− Sα′αb′a(x′, x, A)Sββ′ba′(y, y′, A)]

Uab(~x, 0; ~y, 0)Ua′b′(~y, τ ; ~x, τ)e−Sgauge . (2.7)

S(z, z′, A) with z = (τ1, ~z) and z′ = (τ2, ~z
′) is the propagator describing the propagation

of the quark Q from ~z to ~z′ during the euclidean time difference from τ1 to τ2,
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ı̇S(z, z′, A)cd =δ3(~z − ~z ′)Ucd(~z, τ1, ~z
′, τ2){

Θ(τ1 − τ2)1 + γ0

2 e−MQ(τ1−τ2) + Θ(τ2 − τ1)1− γ0

2 eMQ(τ1−τ2)
}
. (2.8)

Inserting Equation (2.8) into Equation (2.7), Cα′β′αβ(~x, ~y, 0, τ) can be rewritten to

Cα′β′αβ(~x, ~y, 0, τ)
= (P+)α′α (P−)ββ′ e

−2MQτ

1
Z

∫
DA Uab(~x, 0; ~y, 0)Uba′(~y, 0; ~y, τ)Ua′b′(~y, τ ; ~x, τ)Ub′a(~x, τ ; ~x, 0)e−Sgauge , (2.9)

with the projection operators

P± = 1± γ0

2 . (2.10)

The product of the two projection operator components in Equation (2.9) is only non
vanishing for four combinations of indices. This is related to the fact that in the de-
scription of infinitely heavy quarks two components of the four component Dirac spinor
vanish. By combining the remaining degrees of freedom, namely quark vs. antiquark
and spin up vs. spin down, four different combinations exist. To get a non-vanishing
correlation function one of these combinations of indices has to be chosen.

Considering the colour indices of the product of matrix-valued link variables in Equation
(2.9), one finds that it is a trace in colour space of the product of link variables along a
closed path CL. Therefore, performing the transition to the lattice produces a Wilson
loop,

WCL,a,r,τ [U ] = U lattice
ab (~x, 0; ~y, 0; a)U lattice

ba′ (~y, 0; ~y, τ ; a)U lattice
a′b′ (~y, τ ; ~x, τ ; a)U lattice

b′a (~x, τ ; ~x, 0; a)

= Tr
 ∏
l ∈ CL

P
{
U lattice(l; a)

} . (2.11)

This gauge invariant quantity is illustrated in Figure (2.1). CL is the path connecting
the lattice points (0, ~x), (0, ~y), (τ, ~y), (τ, ~x) and (0, ~x) with r = |~y − ~x| on a lattice with
lattice spacing a. l ∈ CL are all lattice points on this path and U lattice(l; a) all link
variables connecting the point l with the following lattice point along the path. As the
product of SU(2) link variables produces a SU(2) matrix and the trace of a SU(2) matrix
is real, the Wilson loop has a real value.
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Figure 2.1: Wilson loop.

Equation (2.9) leads to the lattice expression

C lattice
α′β′αβ(~x, ~y, 0, τ ; a) = (P+)α′α (P−)ββ′ e

−2MQτ 〈WCL,r,τ,a[U ]〉 , (2.12)

with

lim
a→0

C lattice
α′β′αβ(~x, ~y, 0, τ ; a) = Cα′β′αβ(~x, ~y, 0, τ ; a). (2.13)

The expression 〈WCL,r,τ,a[U ]〉 is the euclidean Wilson loop expectation value

〈WCL,r,τ,a[U ]〉 = 1
Z

∫
DAWCL,r,τ,a[U ]e−Sgauge . (2.14)

2.2 Energy eigenvalue representation

The correlation function (Equation (2.4)) can also be rewritten by using the time evolu-
tion of |Φαβ(0, ~x, ~y)〉 and inserting an identity expressed by the energy eigenbasis |QQ, n〉,

Cα′β′αβ(~x, ~y, 0, τ) =
∑
n

〈φα′β′(0, ~x, ~y)|QQ, n〉 〈QQ, n|φαβ(0, ~x, ~y)〉 e−(En(r)−EΩ)τ . (2.15)

EΩ is the vacuum energy contribution and En is the energy of the n-th energy eigenstate
of the system consisting of infinitely heavy quark and antiquark. By setting τ →∞ all
contributions with n 6= 0 vanish as they are exponentially suppressed,



6

lim
τ→∞

Cα′β′αβ(~x, ~y, 0, τ) = 〈φα′β′(0, ~x, ~y)|QQ, 0〉 〈QQ, 0|φαβ(0, ~x, ~y)〉 e−(E0(r)−EΩ)τ

= Gα′β′αβe
−V

QQ
(r)τ . (2.16)

The state |QQ, 0〉 corresponds to the lowest energy state of the system consisting of
infinitely heavy quark and antiquark and has a non-vanishing overlap with the trial
state,

Gα′β′αβ = 〈φα′β′(0, ~x, ~y)|QQ, 0〉 〈QQ, 0|φαβ(0, ~x, ~y)〉 . (2.17)

In the exponent, the quark antiquark potential

VQQ(r) = E0(r)− EΩ (2.18)

can be identified.

Accordingly, the quark antiquark potential can be obtained by the following expression,

VQQ(r) = lim
τ→∞

1
a

ln
(

Cα′β′αβ(~x, ~y, 0, τ)
Cα′β′αβ(~x, ~y, 0, τ + a)

)
. (2.19)

This calculation is performed on the lattice by computing the correlation functions from
Wilson loops (see Equation (2.12)) leading to an expression for the effective lattice
potential V lattice,eff.

QQ
(r, a, τ) . For a→ 0 and τ →∞ the lattice expression corresponds

to the continuum expression VQQ(r). Consequently, the quark antiquark potential can
be quantified by extrapolating lattice results for different a and τ to a→ 0 and τ →∞,

VQQ(r) = lim
a→0

V lattice
QQ

(r, a) = lim
τ→∞
a→0

V lattice,eff.

QQ
(r, a, τ) = lim

τ→∞
a→0

1
a

ln
(
〈|WCL,r,τ,a[U ]〉
〈WCL,r,τ+a,a[U ]〉

)
.

(2.20)
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3 Calculation of the chromoelectric
field in SU(2) Yang-Mills-theory

In the following, a formula to calculate the chromoelectric field on the lattice will be
derived.

Let Pµν(l, a) be the plaquette (the smallest Wilson loop of extension a in the directions
µ and ν on a lattice with lattice spacing a) at the lattice point l,

Pµν(l, a) =U lattice
ab (l, l + µ̂)U lattice

bc (l + µ̂, l + µ̂+ ν̂)
U lattice
cd (l + µ̂+ ν̂, l + ν̂)U lattice

da (l + ν̂, l)
=
(
eı̇gaAµ(l)

)
ab

(
eı̇gaAν(l+µ̂)

)
bc

(
e−ı̇gaAµ(l+ν̂)

)
cd

(
e−ı̇gaAν(l)

)
da

=Tr
(
eı̇gaAµ(l)eı̇gaAν(l+µ̂)e−ı̇gaAµ(l+ν̂)e−ı̇gaAν(l)

)
. (3.1)

µ̂ and ν̂ correspond to the unit vectors of length a in the directions µ and ν, respectively.

As the plaquette can be expressed by the gluon field strength tensor, the expectation
value of the field strength can be calculated by computing the expectation value of the
plaquette. In order to determine the chromoelectric field, the component P0j has to be
evaluated. For easier computation we make use of temporal gauge A0 = 0. This does
not affect the value of the plaquette because it is a gauge invariant quantity. Temporal
gauge leads to the expression

P0j(l, a) = Tr
(
eı̇gaAj(l+0̂)e−ı̇gaAj(l)

)
. (3.2)

It is important to point out that this plaquette is a time ordered quantity, which will be
used later in order to rewrite plaquette expectation values in the path integral formalism.
To compute the plaquette P0j the expansion of the exponential functions to order a2 is
performed,

eı̇gaAj(l) = 1 + ı̇gaAj(l)−
g2a2

2 A2
j(l) +O(a3). (3.3)

This yields to

P0j(l, a) = Tr
(

1 + g2a2

2
[
−A2

j(l + 0̂)− A2
j(l) + 2Aj(l + 0̂)Aj(l)

])
+O(a6). (3.4)
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Here, the property of SU(2) matrices, that the trace is always a real number, was used.
Accordingly, all imaginary contributions inside Tr(...) can be omitted. This is not the
case for SU(3), so that at this point the calculation is restricted to SU(2) Yang-Mills-
theory.

Compare this result with the euclidean lattice formula for the field strength tensor [7],

E0j = F0j = −i∂0Aj → F lattice
0j (l + 0̂/2) = −ı̇ Aj(l + 0̂)− Aj(l)

a
, (3.5)

and for the square of the field strength tensor,

[
F lattice

0j (l + 0̂/2)
]2

= 1
a2

[
−A2

j(l + 0̂)− A2
j(l) + Aj(l + 0̂)Aj(l) + Aj(l)Aj(l + 0̂)

]
. (3.6)

If time ordering is performed in Equation (3.6), the square brackets in Equation (3.4)
and (3.6) coincide, so that the time ordered square of the field strength can be expressed
by the plaquette,

Tr
(
T
{[
F lattice

0j (l + 0̂/2)
]2})

= 2
g2a4 (P0j(l, a)− 2) +O(a2). (3.7)

The time ordered square of the field strength does not correspond to the square without
time ordering and therefore can not be used as a quantity representing the strength of
the gluon field. Though, it is possible to find a correlation between the time ordered and
not time-ordered square. Accordingly, in the next subchapters the following steps are
performed in order to derive an expression for the chromoelectric field produced by the
infinitely heavy quark antiquark pair (in the lowest energy state of the system consisting
of quark and antiquark):

3.1) Plaquette expectation value
Evaluate the plaquette expectation value in the lowest energy state of the system
consisting of infinitely heavy quark and antiquark. The plaquette is located at lat-
tice point l = (~r ′, 0),
〈QQ, 0|P0j(~r ′, 0, a) |QQ, 0〉.

3.2) Expectation value of the time ordered square of the chromoelectric field
Evaluate the expectation value of the time ordered square of the chromoelectric
field in the lowest energy state of the system consisting of infinitely heavy quark
and antiquark by using Equation (3.7). The chromoelectric field is calculated at
lattice point l + 0̂/2 = (~r ′, a/2),
〈QQ, 0|Tr

(
T
{[
F lattice

0j (~r ′, a/2)
]2})

|QQ, 0〉.

3.3) Expectation value of the square of the chromoelectric field
Find the correlation between 〈QQ, 0|Tr

(
T
{[
F lattice

0j (~r ′, a/2)
]2})

|QQ, 0〉 and
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〈QQ, 0|Tr
([
F lattice

0j (~r ′, a/2)
]2)
|QQ, 0〉 to evaluate the expectation value of the

chromoelectric field.

3.4) Vacuum contribution
To find the final result for the chromoelectric field produced by the quark antiquark
pair, the vacuum contributions have to be subtracted from the expectation value
in the lowest energy state,
〈QQ, 0|Tr

([
F lattice

0j (~r ′, a/2)
]2)
|QQ, 0〉 − 〈Ω|Tr

([
F lattice

0j (~r ′, a/2)
]2)
|Ω〉.

3.1 Plaquette expectation value

In order to calculate the plaquette expectation value 〈0|P0j(~r ′, 0, a) |0〉 we follow simi-
lar steps as in the derivation of the lattice formula for the quark antiquark potential. The
first step is to calculate the correlation function 〈φα′β′(τ, ~x, ~y)|P0j(~r ′, τ/2, a)|φαβ(0, ~x, ~y)〉.
To use the path integral representation, the argument between 〈Ω| and |Ω〉 has to be
time-ordered, which is fulfilled by the given argument,

〈φα′β′(τ, ~x, ~y)|P0j(~r ′, τ/2, a)|φαβ(0, ~x, ~y)〉

= 1
Z

∫
DADQDQ (O†(τ))α′β′P0j(~r ′, τ/2, a)(O(0))αβe−Sgauge−SQ . (3.8)

The additional factor P0j(~r ′, τ/2, a) does not affect the calculation we did in the deriva-
tion of Equation (2.12). So we can rewrite Equation (3.8) to

lim
τ→∞
a→0
〈φα′β′(τ, ~x, ~y)|P0j(~r ′, τ/2, a)|φαβ(0, ~x, ~y)〉

= lim
τ→∞
a→0

(P+)α′α(P−)ββ′e−2MQτ
〈
WCL,r,τ,a [U ]P0j(~r ′, τ/2, a)

〉
. (3.9)

The energy eigenvalue representation is a second possibility to rewrite the correlation
function 〈φα′β′(τ, ~x, ~y)|P0j(~r ′, τ/2, a)|φαβ(0, ~x, ~y)〉. Replacing the time dependent oper-
ators by the euclidean time evolution of the operators at time τ = 0 and inserting twice
an identity expressed by the energy eigenbases 〈QQ, n| and 〈QQ,m| leads to

〈φα′β′(τ, ~x, ~y)|P0j(~r ′, τ/2, a)|φαβ(0, ~x, ~y)〉
=
∑
n,m

〈φα′β′(0, ~x, ~y)|QQ, n〉 〈QQ, n|P0j(~r ′, 0, a) |QQ,m〉 〈QQ,m|φαβ(0, ~x, ~y)〉

e−( 1
2Em(r)+ 1

2En(r)−EΩ)τ . (3.10)

By setting τ →∞ all contributions with n 6= 0 orm 6= 0 vanish as they are exponentially
suppressed. Comparing the result with the calculation in Equation (2.16) and (2.12)
yields
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lim
τ→∞
a→0
〈φα′β′(τ, ~x, ~y)|P0j(~r ′, τ/2, a)|φαβ(0, ~x, ~y)〉

= lim
a→0
〈φα′β′(0, ~x, ~y)|QQ, 0〉 〈QQ, 0|φαβ(0, ~x, ~y)〉 e−(E0(r)−EΩ)τ 〈QQ, 0|P0j(~r ′, 0, a) |QQ, 0〉

= lim
τ→∞
a→0

Cα′β′αβ(~x, ~y, 0, τ) 〈QQ, 0|P0j(~r ′, 0, a) |QQ, 0〉 (3.11)

= lim
τ→∞
a→0

(P+)α′α(P−)ββ′e−2MQτ
〈
WCL,r,τ,a [U ]

〉
〈QQ, 0|P0j(~r ′, 0, a) |QQ, 0〉 . (3.12)

By comparing the path integral representation in Equation (3.9) and the energy eigen-
value representation in Equation (3.12) we find an expression to calculate
〈QQ, 0|P0j(~r ′, 0) |QQ, 0〉 on the lattice,

lim
a→0
〈QQ, 0|P0j(~r ′, 0, a) |QQ, 0〉 = lim

τ→∞
a→0

〈
WCL,r,τ,a [U ]P0j(~r ′, τ/2, a)

〉
〈
WCL,r,τ,a [U ]

〉 . (3.13)

3.2 Expectation value of the time ordered square of the
chromoelectric field

By using Equation (3.7) and (3.13) we get the following result for the expectation value
of the time ordered square of the chromoelectric field,

lim
a→0
〈QQ, 0|Tr

(
T
{[
F lattice

0j (~r ′, a/2)
]2})

|QQ, 0〉

= lim
a→0

2
g2a4 (〈QQ, 0|P0j(~r ′, 0, a) |QQ, 0〉 − 2)

= lim
τ→∞
a→0

2
g2a4


〈
WCL,r,τ,a [U ]P0j(~r ′, τ/2, a)

〉
〈
WCL,r,τ,a [U ]

〉 − 2
 . (3.14)

3.3 Expectation value of the square of the
chromoelectric field

This subchapter aims to find the relation between the lowest energy state expectation
value of the time ordered square of the chromoelectric field and the square of the chro-
moelectric field without time ordering.

The same calculation that led to Equation (3.11) provides the following two equations,
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lim
τ→∞
〈φα′β′(τ, ~x, ~y)|Tr

([
F lattice

0j (~r ′, τ/2 + a/2)
]2)
|φαβ(0, ~x, ~y)〉

= lim
τ→∞

Cα′β′αβ(~x, ~y, 0, τ) 〈QQ, 0|Tr
([
F lattice

0j (~r ′, a/2)
]2)
|QQ, 0〉 , (3.15)

lim
τ→∞
〈φα′β′(τ, ~x, ~y)|Tr

(
T
{[
F lattice

0j (~r ′, τ/2 + a/2)
]2})

|φαβ(0, ~x, ~y)〉

= lim
τ→∞

Cα′β′αβ(~x, ~y, 0, τ) 〈QQ, 0|Tr
(
T
{[
F lattice

0j (~r ′, a/2)
]2})

|QQ, 0〉 . (3.16)

In consideration of these equations it becomes obvious that the function of interest can
be found by determination of the correlation between the two trial state expectation
values. To achieve that, the following computation is performed. The same calculation
for quantum mechanics can be found in [6].

Let l′′ be a lattice point with the same spacial coordinates but a different time coordinate
τ ′′ in comparison to the lattice point l′ with time coordinate τ ′. Suppose that τ ′ and τ ′′
both are ∈ [0, τ ]. Differentiating the expression

1
Z

∫
DADQDQ

(
O†αβ(τ, ~x, ~y)Tr (Aj(l′)Aj(l′′))Oαβ(0, ~x, ~y)

)
e−Sgauge−SQ

= 〈φα′β′(τ, ~x, ~y)|Tr (T {Aj(l′)Aj(l′′)}) |φαβ(0, ~x, ~y)〉
= 〈φα′β′(τ, ~x, ~y)|Tr (θ(τ ′ − τ ′′)Aj(l′)Aj(l′′) + θ(τ ′′ − τ ′)Aj(l′′)Aj(l′)) |φαβ(0, ~x, ~y)〉

(3.17)

two times with respect to τ ′ and τ ′′ (in lattice formulation) leads to a definition of
the difference between the two trial state expectation values in Equation (3.15) and
Equation (3.16).

Differentiation with respect to τ ′ yields

1
Z

∫
DADQDQ

(
O†αβ(τ, ~x, ~y)Tr

(
−ı̇F lattice

0j (l′)Aj(l′′)
)
Oαβ(0, ~x, ~y)

)
e−Sgauge−SQ

= 〈φα′β′(τ, ~x, ~y)|Tr
(
−ı̇θ(τ ′ − τ ′′)F lattice

0j (l′)Aj(l′′)− ı̇θ(τ ′′ − τ ′)Aj(l′′)F lattice
0j (l′)

)
|φαβ(0, ~x, ~y)〉 . (3.18)

The two terms containing delta-functions produced by the differentiation of the two
theta-functions cancel each other due to different signs.

Differentiation with respect to τ ′′ yields

1
Z

∫
DADQDQ

(
O†αβ(τ, ~x, ~y)Tr

(
−F lattice

0j (l′)F lattice
0j (l′′)

)
Oαβ(0, ~x, ~y)

)
e−Sgauge−SQ

= 〈φα′β′(τ, ~x, ~y)|Tr
(
−ı̇δ(τ ′ − τ ′′)

[
Aj(l′′), F lattice

0j (l′)
]
− T ′

{
F lattice

0j (l′)F lattice
0j (l′′)

})
|φαβ(0, ~x, ~y)〉 . (3.19)
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It must be pointed out that the time-ordering appearing in Equation (3.14) on the
left hand side and in Equation (3.19) do not coincide. The time-ordering in Equation
(3.14) denoted by T {...} time-orders all products of Aj appearing in the quadration
of F lattice

0j (l′). In contrast, the time ordering in Equation (3.19) denoted by T ′ {...}
time-orders only the fixed F lattice

0j (l′) and F lattice
0j (l′′) depending on τ ′ and τ ′′,

T ′
{
F lattice

0j (l′)F lattice
0j (l′′)

}
= θ(τ ′ − τ ′′)F lattice

0j (l′)F lattice
0j (l′′)+

θ(τ ′′ − τ ′)F lattice
0j (l′′)F lattice

0j (l′). (3.20)

The time-ordering in Equation (3.19) is fulfilled by definition because the Hamiltonian
of the system does only depend on F lattice

0j (l′), so that it commutes with F lattice
0j (l′). Con-

sequently, F lattice
0j (l′) and F lattice

0j (l′′) commute. Accordingly, the time-ordering operator
T ′ {...} can be omitted.

On a lattice with lattice spacing a the delta function in Equation (3.19) merges to

δ(τ ′ − τ ′′)→ 1
a
δl′l′′ =

∫ π/a

−π/a

dA

2π e
ı̇A(l′−l′′)a, (3.21)

δ(0)→ 1
a
δl′l′ =

∫ π/a

−π/a

dA

2π = 1
a
. (3.22)

The path integral in Equation (3.19) can be rewritten to the vacuum expectation value
of the expression appearing inside the path integral by writing that expression in time-
ordered products of Aj. This is exactly what the time ordering T {...} does,

1
Z

∫
DADQDQ

(
O†αβ(τ, ~x, ~y)Tr

(
F lattice

0j (l′)F lattice
0j (l′′)

)
Oαβ(0, ~x, ~y)

)
e−Sgauge−SQ

= 〈φα′β′(τ, ~x, ~y)|Tr
(
T
{
F lattice

0j (l′)F lattice
0j (l′′)

})
|φαβ(0, ~x, ~y)〉 . (3.23)

The commutator in Equation (3.19) has the value

[
Aj(l′′), F lattice

0j (l′)
]

= ı̇δl′′l′ . (3.24)

Considering Equation (3.19) for τ ′ = τ ′′ = τ/2 + a/2 and spacial coordinate ~r ′ the
following result can be found,

〈φα′β′(τ, ~x, ~y)|Tr
([
F lattice

0j (~r ′, τ/2 + a/2)
]2)
|φαβ(0, ~x, ~y)〉

= 2
a
Cα′β′αβ(~x, ~y, 0, τ)+

〈φα′β′(τ, ~x, ~y)|Tr
(
T
{[
F lattice

0j (~r ′, τ/2 + a/2)
]2})

|φαβ(0, ~x, ~y)〉 . (3.25)
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In combination with Equation (3.15) and (3.16) this equation has the outcome

〈QQ, 0|Tr
([
F lattice

0j (~r ′, a/2)
]2)
|QQ, 0〉 = 2

a
+ 〈QQ, 0|Tr

(
T
{[
F lattice

0j (~r ′, a/2)
]2})

|QQ, 0〉 .
(3.26)

3.4 Vacuum contribution

For the vacuum contribution a similar calculation as in the previous chapter is per-
formed. Starting with the expression on the left hand side of Equation (3.17) dropping
O†αβ(τ, ~x, ~y) and Oαβ(0, ~x, ~y) yields

〈Ω|Tr
([
F lattice

0j (~r ′, a/2)
]2)
|Ω〉 = 2

a
+ 〈Ω|Tr

(
T
{[
F lattice

0j (~r ′, a/2)
]2})

|Ω〉 . (3.27)

In addition, Equation (3.7) gives

〈Ω|Tr
(
T
{[
F lattice

0j (~r ′, a/2))
]2})

|Ω〉 = 〈Ω| 2
g2a4 (P0j(~r ′, 0, a)− 2) |Ω〉+O(a2). (3.28)

In temporal gauge the plaquette is a time ordered quantity. This is why the vacuum
expectation value and the expectation value that is calculated on the lattice are the
same,

〈Ω|P0j(~r ′, 0, a) |Ω〉 = 1
Z

∫
DA P0j(~r ′, 0, a)e−Sgauge = 〈P0j(~r ′, 0, a)〉 . (3.29)

Considering the results in Equation (3.14), (3.26), (3.27), (3.28) and (3.29) we get the
final result to compute the chromoelectric field on the lattice,

〈QQ, 0|Tr
(
[Ej(~r ′)]2

)
|QQ, 0〉 − 〈Ω|Tr

(
[Ej(~r ′)]2

)
|Ω〉

= lim
a→0

{
〈QQ, 0|Tr

([
F lattice

0j (~r ′, a/2)
]2)
|QQ, 0〉 − 〈Ω|Tr

([
F lattice

0j (~r ′, a/2)
]2)
|Ω〉

}

= lim
τ→∞
a→0

2
g2a4


〈
WCL,r,τ,a [U ]P0j(~r ′, τ/2, a)

〉
〈
WCL,r,τ,a [U ]

〉 − 〈P0j(~r ′, 0, a)〉

 . (3.30)
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4 Evaluation of Wilson loops on the
lattice

As discussed in the previous chapters, the two quantities that will be evaluated (the
quark antiquark potential and the chromoelectric field) are assigned to expectation
values of Wilson loops and plaquettes, which are Wilson loops as well. Consequently,
Wilson loops are the quantities to calculate on the lattice.

4.1 Value assignment on the lattice

In order to compute Wilson loops and plaquettes on the lattice, every lattice point l
has to be assigned to link variables U lattice

ab (l, l + µ̂). Accordingly, every lattice point is
attached to four SU(2) matrices describing the links in three spacial and one temporal
direction. The values of these matrices represent the strength of the gauge potential.
Corresponding to quantum field theoretical considerations all configurations of a link
variable and therefore all values of these matrices contribute to measurable quantities.
Every configuration of a link variable contributes to measurements weighted by the
action that results from this configuration. This is why an algorithm producing con-
figurations of link variables weighted by the action is needed, so that the gauge field
configuration of the whole lattice can be generated from this amount of link variables.
For this work a given program [8] producing gauge field configurations using the heat-
bath algorithm [6] is applied.

Before the heatbath algorithm can be used, the SU(2) matrices have to be initialised
with starting values. Either a cold start with all SU(2) matrices set to the unit ma-
trix or a hot start with all SU(2) matrices chosen randomly is possible. The heatbath
algorithm produces new lattice configurations by changing only a single link of the pre-
vious configuration at a time according to the distribution e−Sgauge , where all other links
are fixed. After an amount of thermalisation steps the lattice gauge field configuration
reaches a status, where every link variable configuration appears weighted by its action,
so that averaging over the whole lattice produces realistic results. As can be seen in
Figure 4.1, after about 100 thermalisation steps the expectation value of the plaquette
for cold and hot start coincide. Since generating gauge field configurations does not
take much computing time, configuration numbers starting from 300 are used to have
assurance that the thermalisation is completed.

In order to generate accurate results, an infinite lattice would be needed. Instead, a
lattice with a fixed temporal and spacial extension that repeats periodically is used.
To improve the results, after firstly averaging over the results generated on different
lattice points of a gauge field configuration, a second averaging over different gauge field
configurations is performed.
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In the heatbath algorithm the parameter seed can be chosen. Using the same value of
seed in a new process of producing lattice gauge field configurations the same configura-
tions will be produced again. The parameter β is a value defining the lattice spacing a.
The relation between β and a has to be determined by computing a physical quantity,
e.g. the string tension, in lattice units and identifying the result with the corresponding
experimental result. Here, the relations between particular a and β, published in [9]
and achieved by identifying r0 with 0.46fm in the equation |FQQ(r0)r2

0| = 1.65, are used.
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cold start
hot start

Figure 4.1: Plaquette expectation value generated by averaging over the whole lattice and all possible
directions with lattice configuration depending on the step number of the heatbath algo-
rithm.
Lattice parameters: β = 2.5⇒ a = 0.073 fm, temporal and spacial extension of the lattice
T = L = 18.

4.2 Error analysis

Because of the functionality of the heatbath algorithm, configurations generated con-
secutively and therefore quantities calculated using these configurations are correlated.
So it is reasonable not to use configurations appearing consecutively but to use con-
figurations with more steps of the algorithm lying between them. In this work every
hundredth configuration is used.

To take into consideration that the formulas for the static quark antiquark potential
and the chromoelectric field are functions of expectation values containing quotients
and logarithms, the error analysis is performed using the Jackknife error [10].

4.3 Smearing of Wilson loops on the lattice

As the trial state |φαβ(0, ~x, ~y)〉 and the lowest energy eigenstate |QQ, 0〉 of the system
consisting of infinitely heavy quark and antiquark do not coincide, the limit τ → ∞
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has to be taken in the calculation of the potential (see Equation (2.15) and (2.20)).
The more similar these two states are, the lower τ can be chosen to achieve that only
the state |QQ, 0〉 contributes in Equation (2.15). Choosing a low value of τ is helpful
in numerical calculations because the relative error decreases with decreasing τ (see
Equation (2.16): The correlation function and consequently the absolute value of the
Wilson loop increases with decreasing τ so that the relative error of the Wilson loop
decreases). The similarity between the two states can be increased by using APE
smearing (cf. [11] and references therein). Whereas in a normal Wilson loop only
link variables along the axis between quark and antiquark are multiplied, it is known
that the strong interaction between quark and antiquark is characterised by a flux tube
having a non vanishing cross-sectional area. Accordingly, the trial state can be aligned
with the lowest energy eigenstate |QQ, 0〉 by expanding every link variable on the axis
by link variables following a path that leaves the axis on a spacial lattice piece vertical
to the axis, follows a path that is parallel to the axis for one lattice piece and returns
back to the axis. This can be done in four directions around the axis. In comparison to
the link on the axis the four ears of links are weighted by the APE smearing parameter
α. This procedure of smearing all spacial links is performed NAPE times. Summing up,
APE smearing stretches out the spacial part of Wilson loops from a line to kind of a
flux tube between quark and antiquark.

Another possibility to decrease the relative error of the Wilson loops is to use a different
lattice discretisation of the static quarks, the HYP2 static action [12]. This results in
a smearing of the temporal links of the Wilson loops. For small distances of the quarks
this produces systematical errors but for larger separations it is a helpful concept to
improve the accuracy of the results. Due to Heisenberg’s uncertainty relation a fixed
temporal link effects an infinitely wide momentum distribution, so that also infinitely
high momenta contribute. A smearing of the temporal links makes sense in order to
reduce the value of the highest momentum contribution. The lower the momentum the
smaller the value of the potential which affects the relative error of the Wilson loop in
the same way as the decreasing of τ does (see Equation (2.16)).
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5 Results: Quark antiquark potential

Following Equation (2.20), for evaluating the effective lattice potential V lattice,eff.

QQ
(r, a, τ)

between a quark and an antiquark separated by r, Wilson loops with spacial extension
r and different temporal extensions τ and τ + a have to be calculated,

VQQ(r) = lim
a→0

V lattice
QQ

(r, a) = lim
τ→∞
a→0

V lattice,eff.

QQ
(r, a, τ) = lim

τ→∞
a→0

1
a

ln
(
〈|WCL,r,τ,a[U ]〉
〈WCL,r,τ+a,a[U ]〉

)
.

(5.1)

For fixed r, a and τ the value of the effective lattice potential is generated by averaging
the value of a Wilson loop with temporal extension τ and the value of a Wilson loop
with temporal extension τ + a over the three possible spacial directions on every lattice
point of each configuration, respectively. Afterwards the logarithm of the quotient is
calculated and divided by the lattice spacing. The outcome of this is Figure 5.1 in
which the lattice potential depending on the time extension τ is plotted for different
quark antiquark separations r.
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Vlattice(1a,a)=(0.47630+/-0.00025)1/fm
Vlattice(2a,a)=(1.0511+/-0.0012)1/fm
Vlattice(3a,a)=(1.8507+/-0.0036)1/fm
Vlattice(4a,a)=(2.4605+/-0.0069)1/fm

Vlattice(5a,a)=(2.989+/-0.012)1/fm
Vlattice(6a,a)=(3.477+/-0.020)1/fm
Vlattice(7a,a)=(3.934+/-0.030)1/fm
Vlattice(8a,a)=(4.372+/-0.040)1/fm

Figure 5.1: Effective lattice potential V lattice,eff.

QQ
(r, a, τ ) and lattice potential V lattice

QQ
(r, a).

Lattice parameters: β = 2.5 ⇒ a = 0.073 fm, temporal and spacial extension of the
lattice T = L = 18, hot start, 3200 configurations produced of which 30 configurations
{300, 400, ..., 3200} are used.
APE smearing parameters for the Wilson loops: NAP E = 15, α = 0.5.
The error bars for the values of V lattice,eff.

QQ
(r, a, τ) are Jackknife errors whereas the errors

of V lattice
QQ

(r, a) are the errors of the linear fit of the lattice potential for τ̂ = {3, ..., 7} taking
the Jackknife errors into account.
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As APE smearing and HYP2 smearing is used in the computation of the Wilson loops,
the result for V lattice,eff.

QQ
(r, a, τ) converges already for values of τ in the range τ̂ = τ/a ∈

{3, .., 7} and not only for τ → ∞. Accordingly, the potential V lattice
QQ

(r, a) is computed
for fixed r and a by averaging V lattice,eff.

QQ
(r, a, τ) for τ̂ ∈ {3, ..., 7}.

By doing the same calculation for gauge coupling β = 2.4 corresponding to lattice
spacing a = 0.102 fm, in Figure 5.2 the values of V lattice

QQ
(r, a) as a function of the

distance r between quark and antiquark are plotted for both lattice spacings.
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Figure 5.2: Quark antiquark potential V lattice
QQ

(r, a).
Lattice parameters: β = 2.5⇒ a = 0.073 fm and β = 2.4⇒ a = 0.102 fm.

Whereas the Coulomb-like part for small distances of quark and antiquark is only vaguely
indicated, for both lattice spacings starting from r ≈ 0.4 fm the linear rise of the poten-
tial with the distance of the quarks can be seen. The two slopes of the linear parts (the
so called string tension σ) are in agreement, which confirms the expectation that the
lattice spacing is chosen small enough to find results corresponding to the limit a→ 0.
Though the data points for a = 0.073 fm are shifted to higher values in comparison to
the data points for a = 0.102 fm. This is related to the fact that due to Heisenberg’s
uncertainty relation a smaller lattice spacing corresponds to a wider momentum distri-
bution and therefore also to high momentum contributions. This increases the value of
the potential.

The linear rise of the potential characterizes the phenomenon of confinement. Compared
to the electric potential, that flattens with increasing distance of the interacting particles
and thus produces a decreasing force, the strong force between quark and antiquark is
constant irrespective of their distance. Because of this it is to be expected that the
gluon field forms a narrow flux tube between the quark and antiquark. This will be
investigated in the next chapter.



19

6 Results: Chromoelectric field

As emphasized in the introduction, the focus of this explanatory study is on the parallel
component of the chromoelectric field because its contribution to the energy density is
expected to be by far the largest. Taking into account Equation (3.30),

〈QQ, 0|Tr
(
[Ej(~r ′)]2

)
|QQ, 0〉 − 〈Ω|Tr

(
[Ej(~r ′)]2

)
|Ω〉

= lim
a→0

{
〈QQ, 0|Tr

([
Elattice
j (~r ′, a/2)

]2)
|QQ, 0〉 − 〈Ω|Tr

([
Elattice
j (~r ′, a/2)

]2)
|Ω〉

}

= lim
τ→∞
a→0

2
g2a4


〈
WCL,r,τ,a [U ]P0j(~r ′, τ/2, a)

〉
〈
WCL,r,τ,a [U ]

〉 − 〈P0j(~r ′, 0, a)〉

 , (6.1)

this means that the spacial direction j of the plaquette has to be chosen in the same
direction as the separation axis between quark and antiquark in the calculation of the
Wilson loop.

It is important to be be aware of the fact that Equation (6.1) only holds for the limit
a → 0. To get an analog of Equation (6.1) on a lattice with finite a, the following two
aspects have to be taken into account.

Firstly, a plaquette at spacial lattice point ~r ′ has a non vanishing extension in direction
j and therefore yields to a value for the chromoelectric field at point ~r ′ + ĵ/2 with ĵ
being a vector in direction j with length a. This is a point between two lattice points.
For the limit a→ 0, ~r ′ and ~r ′ + ĵ/2 are identical.

Secondly, the same observation holds for the temporal extension of the plaquette. On a
lattice with non vanishing temporal lattice spacing a it is not the starting point of the
plaquette but its temporal middle, that has to be located at time τ/2 in the first term
of Equation (6.1). This indicates why the temporal extension τ of the Wilson loops in
Equation (6.1) should be chosen as an odd multiple of a. Then the starting point of the
plaquette can be chosen at time (τ − a)/2 and the end point at time (τ + a)/2 which
are both multiples of a and thus temporal points on the lattice.

In consideration of these two remarks, the lattice analog of Equation (6.1) is

〈QQ, 0|Tr
([
Elattice
j (~r ′ + ĵ/2, a/2)

]2)
|QQ, 0〉 − 〈Ω|Tr

([
Elattice
j (~r ′ + ĵ/2, a/2)

]2)
|Ω〉

= lim
τ→∞

2
g2a4


〈
WCL,r,τ,a [U ]P0j(~r ′, (τ − a)/2, a)

〉
〈
WCL,r,τ,a [U ]

〉 − 〈P0j(~r ′, 0, a)〉

 . (6.2)
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A graphical representation of Equation (6.2) is shown in Figure 6.1.

Figure 6.1: Graphical representation of the curly bracket in Equation (6.2).
The figure shows how to evaluate the square of the parallel component of the chromoelectric
field generated by a static quark antiquark pair on the lattice.
Extension of the Wilson loop (distance of quark and antiquark): r = 3a.
Position, where the chromoelectric field is evaluated: on the quark antiquark axis in the
middle between quark and antiquark.

Concretely, in the illustrations below 1/2 times the value of the curly bracket in Equation
(6.2) is considered. In order to obtain meaningful absolute values for the chromoelectric
field, a renormalisation procedure has to be performed. This is not carried out in this
work as it is a challenging project by itself.

For fixed quark antiquark distance r, fixed position ~r ′ of the plaquette related to the
quark position ~y and the antiquark position ~x and for fixed τ the right hand side of
Equation (6.2) can be evaluated on the lattice in the way described in the following:

The procedure starts with the calculation of the first term. For this purpose, the expec-
tation value of the product of Wilson loop and plaquette and the expectation value of
the Wilson loop are calculated separately by averaging over the three possible spacial
directions on every lattice point of each configuration. In the product of Wilson loop
and plaquette it is necessary to ensure that the temporal and spacial position and the
spacial direction of the plaquette is adapted correctly to the position and the direction of
the Wilson loop. After the averaging process the quotient between the two expectation
values is formed.

For the second term, the value of the plaquette is averaged over the three spacial direc-
tions on every lattice point of every configuration.

For both terms the calculated value for every single configuration is saved to generate
reduced samples and the jackknife errors from it. Whereas the difference of the two
terms is taken to obtain the mean value, the total error is determined by adding up the
Jackknife errors of both terms.

In the computation of the Wilson loops APE smearing is used. HYP2 smearing is
not used in order to reduce cutoff effects and thereby generate more accurate results
near the quarks. The plaquette is computed without using any smearing techniques.
This is related to the fact that the correlation between the chromoelectric field and the
plaquette was derived for a non-smeared plaquette.
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6.1 Temporal extension of the Wilson loop

Firstly, the question arises, which temporal extension of the Wilson loops has to be
chosen in order to find results corresponding to the limit τ →∞. The best way would
be to calculate every lattice quantity for different temporal extensions and observe the
behavior with increasing τ as it was done for the potential. If the value of the quantity
converges and for some τ reaches a constant value within the measurement error, using
this value averaged over some τ starting from the convergence point is reasonable. As
this work aims to produce qualitative results and studying the time dependence is quite
time-consuming, the time dependence is only investigated exemplary for three lattice
quantities. The purpose of this is to decide for a fixed temporal extension of the Wilson
loops that yields valid results.

Therefore, the value of the chromoelectric field on three fixed points for different tempo-
ral extensions is investigated. Concretely, firstly the spacial extension of the Wilson loop
is set to r = a and the plaquette is located on the quark antiquark axis in the spacial
middle between quark and antiquark. In doing so, Wilson loop and plaquette have the
same spacial extension and position. For the second and third point, r = 9a is used and
the plaquette is located on the quark antiquark axis on the first lattice piece next to the
quark/antiquark and in the middle between quark and antiquark, respectively.

In the first case presented in Figure 6.2, a clear convergence can be identified. Starting
from τ ≈ 5a the value representing the square of the chromoelectric field in parallel
direction fluctuates only within the error. The error rises with increasing temporal
extension of the Wilson loop, which implies that in order to keep the error small using
a small temporal extension is to be preferred. Accordingly, here the choice of τ = 5a
would lead to trustworthy results keeping the error small.
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Figure 6.2: Evolution of the value representing the chromoelectric field with rising τ .
1/2 times the value of the curly bracket in Equation (6.2) is plotted.
Lattice parameters: β = 2.7 ⇒ a = 0.038 fm, temporal and spacial extension of the
lattice T = L = 24, cold start, 20200 configurations produced, of which 200 configurations
{300, 400, ..., 20200} are used.
APE smearing parameters for the Wilson loops: NAP E = 20, α = 0.5.
Extension of Wilson loop (distance of quark and antiquark): r = 1a.
Position, where the chromoelectric field is evaluated: on the quark antiquark axis in
the middle between quark and antiquark.
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In the second case shown in Figure 6.3(a) the value representing the chromoelectric field
remains constant within the error for τ ∈ {1a, 3a, 5a, 7a}. For τ ≥ 9a the error increases
significantly. This is why the behaviour of the value representing the chromoelectric field
in parallel direction for large τ cannot be determined without any doubt. Though, the
constant behaviour of the graph for τ ∈ {1a, 3a, 5a, 7a} indicates that this constant
value is a reasonable result. Consequently, the choice of τ ∈ {1a, 3a, 5a} would make
sense to keep the error small.

In the third case in Figure 6.3(b), similar observations as in Figure 6.3(a) can be made.
The value remains constant within the error for τ ∈ {1a, 3a, 5a} and the error increases
significantly for τ ≥ 7a. As the value is close to zero within error bars, already the
result for τ = 5a has to be treated with caution. Hence, the choice of τ ∈ {1a, 3a}
seems to be appropriate.
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Figure 6.3: Evolution of the value representing the chromoelectric field with rising τ .
1/2 times the value of the curly bracket in Equation (6.2) is plotted.
Lattice parameters: β = 2.7 ⇒ a = 0.038 fm, temporal and spacial extension of the
lattice T = L = 24, cold start, 20200 configurations produced, of which 200 configurations
{300, 400, ..., 20200} are used.
APE smearing parameters for the Wilson loops: NAP E = 20, α = 0.5.
Extension of Wilson loop (distance of quark and antiquark): r = 9a.

To sum up, the ideal choice of the temporal extension of the Wilson loop to minimize
the error and to generate a reasonable result for the chromoelectric field depends on the
spacial extension of the Wilson loop and on the position of the plaquette. The choice of
τ ∈ {1a, 3a} produces too low results for small spacial extensions of the Wilson loop and
the plaquette in the middle of the quark and antiquark. On the other hand, the choice
of τ = 5a involves errors that are too high to be able to determine the chromoelectric
field between quark and antiquark with higher spacial distances in a sufficiently precise
way. Accordingly, the following calculations are performed for τ = 1a, τ = 3a and
τ = 5a keeping in mind the critical aspects of these three choices.
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6.2 Chromoelectric field on the quark antiquark axis

In this chapter the chromoelectric field on the quark antiquark axis is evaluated. The
spacial extension of the Wilson loop is chosen odd. Therefore, the plaquette can be
located either in the middle between quark and antiquark or somewhere else on the
quark antiquark axis. If it is not located in the middle, the results at lattice points with
same distance to the middle should coincide due to symmetry. This is a useful property
as symmetry is a necessary condition and thus a powerful crosscheck of the results. In
Figure 6.4 the symmetry of the chromoelectric field within the error bars can be seen.

The property of symmetry can be used to decrease the error by generating only one
value for the two symmetry points left and right of the middle. So one averages over
twice the number of values, which decreases the jackknife error because also the amount
of reduced samples doubles. From now this averaging is applied.
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Figure 6.4: Symmetry investigation: Lattice value representing the chromoelectric field for two
different distances between quark and antiquark.
1/2 times the value of the curly bracket in Equation (6.2) is plotted.
Lattice parameters: β = 2.5 ⇒ a = 0.073 fm, temporal and spacial extension of the
lattice T = L = 18, hot start, 3200 configurations produced, of which 30 configurations
{300, 400, ..., 3200} are used.
Temporal extension of the Wilson loops: τ = 3a
APE smearing parameters for the Wilson loops: NAP E = 20, α = 0.5.

In Figure 6.5 and 6.6 the change of the chromoelectric field on the quark antiquark axis
with increasing quark antiquark distance is shown. Graphics for τ = 1a and τ = 5a
are collected. The differences between the two temporal extensions are as discussed
in the previous section. Accordingly, for τ = 1a and small distance of the quark and
antiquark (about r = 1a to r = 5a) the value for the chromoelectric field in the middle
of quark and antiquark is lower than the value for τ = 5a. Also the values for τ = 1a on
other points on the quark antiquark axis slightly differ from the values for τ = 5a which
provide results with smaller systematic error. Thus, for small spatial separations one
should use the results for τ = 5a. For bigger spacial distances (r = 7a and r = 9a) the
value representing the chromoelectric field between the quark and antiquark becomes
quite small. In order to be able to distinguish the chromoelectric field from statistic
noise, a smaller error is essential so that for bigger spacial distances the choice τ = 1a
is useful.
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Figure 6.5: Chromoelectric field on the quark antiquark axis (1).
1/2 times the value of the curly bracket in Equation (6.2) is plotted.
Lattice parameters: β = 2.7 ⇒ a = 0.038 fm, temporal and spacial extension of the
lattice T = L = 24, cold start, 20200 configurations produced, of which 200 configurations
{300, 400, ..., 20200} are used.
APE smearing parameters for the Wilson loops: NAP E = 20, α = 0.5.
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Figure 6.6: Chromoelectric field on the quark antiquark axis (2).
1/2 times the value of the curly bracket in Equation (6.2) is plotted.
Lattice parameters: β = 2.7 ⇒ a = 0.038 fm, temporal and spacial extension of the
lattice T = L = 24, cold start, 20200 configurations produced, of which 200 configurations
{300, 400, ..., 20200} are used.
APE smearing parameters for the Wilson loops: NAP E = 20, α = 0.5.

As can be seen in Figure 6.5 and 6.6, when quark and antiquark are separated the value
of the chromoelectric field between decreases with increasing distance. The value in the
middle is the lowest and moving outside towards the quarks it becomes higher and the
slope grows.

The plots are in agreement with the phenomenon of confinement. Correspondingly, for
bigger spacial distances (r = 7a and r = 9a) in the middle of quark and antiquark a
region, where the value of the chromoelectric field has a non vanishing constant value
within the error, can be observed. It can be excluded that the non vanishing value in the
middle is generated by the single quark and antiquark and not by their interaction as on
the sides facing away from quark/antiquark the value representing the chromoelectric
field drops to zero at a distance of about 3a whereas between quark and antiquark a
non-vanishing value still remains at a distance of even 4a.

This already is an indication for the flux tube being formed by pulling apart quark and
antiquark. In the next section the cross-sectional area of the flux tube shall be computed
by determination of the chromoelectric field beside the quark antiquark axis.

6.3 Chromoelectric field beside the quark antiquark axis

To evaluate the chromoelectric field beside the quark antiquark axis, the position of the
plaquette has to be chosen appropriately. In order to keep the symmetry considerations
simple, only positions on a two dimensional surface spanned by the quark antiquark
axis and one of the two remaining spacial lattice directions perpendicular to this axis
are taken into account. Using odd spacial distances between quark and antiquark the
plaquette can be located in four different symmetry areas. These are characterised by
the number of lattice points that are related by symmetry:
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1) The plaquette is located in in the middle between quark and antiquark on the axis,
which yields one symmetry value.

2) The plaquette is located on the quark antiquark axis beside the middle, which yields
two symmetry values (left/right).

3) The plaquette is located on the axis perpendicular to the quark antiquark axis
intersecting the quark antiquark axis in the middle of quark and antiquark, which
yields two symmetry values (up/down).

4) The plaquette is located beside these two central axes, which yields four symmetry
values (up left, up right, down left, down right).

The four different symmetry areas are shown in Figure 6.7. plavertical gives the distance
from the quark antiquark axis in multiples of a.

Figure 6.7: Symmetry areas.
The coloured lines show the possible spacial position and extension of the plaquette on a
two dimensional spacial surface. The temporal extension of the plaquettes is perpendicular
to that surface and cannot be seen in the plot.
Extension of Wilson loop (distance of quark and antiquark): r = 3a.

By averaging over all symmetry points (the number of symmetry points depends on the
symmetry area), only one value is generated for the one to four symmetry points, that
can be assigned to every symmetry point. As in the case on the quark antiquark axis
this decreases the error.

Firstly, the profile of the chromoelectric field on axes parallel to the quark antiquark
axis is plotted in Figure 6.8. As the distances r = 5a and r = 9a between quark and
antiquark are used it can be assumed that the choice τ = 1a is acceptable.
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In the plots on the left hand side the chromoelectric field on the axis (plavertical = 0)
and for the distances plavertical ∈ {1, 2} is presented whereas on the right hand side it is
zoomed into the plot for plavertical ∈ {0, 1, 2, 3} to exhibit the profile of the chromoelectric
field beside the quark antiquark axis in detail.
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Figure 6.8: Profiles of the chromolectric field parallel to the quark antiquark axis.
1/2 times the value of the curly bracket in Equation (6.2) is plotted.
Lattice parameters: β = 2.7 ⇒ a = 0.038 fm, temporal and spacial extension of the
lattice T = L = 24, cold start, 20200 configurations produced, of which 200 configurations
{300, 400, ..., 20200} are used.
APE smearing parameters for the Wilson loops: NAP E = 20, α = 0.5.

In comparison to the quark antiquark axis the decrease of the chromoelectric field on the
axis with plavertical = 1 is significant (Figure 6.8(a)/(c)). Nonetheless, for plavertical = 1
the peaks at the places where quark and antiquark are located can still be seen clearly
in Figure 6.8(b) and (d). Whereas these peaks vanish for plavertical = 2 (for r = 5a
they vanish completely, for r = 9a signs of these peaks can still be observed) the flux
tube, recognizable by the non-vanishing constant value of the chromoelectric field in
an area between quark and antiquark, remains even for plavertical ∈ {2, 3}. This shows
that the flux tube has a relatively large cross-sectional characterised by a diameter of
at least 0.2fm. In addition, the profiles for plavertical = 3 indicate that the flux tube
has a slightly rounded form having the largest radius in the middle between quark and
antiquark. The deviation of the flux tube from a straight cylindrical shape can be linked
to the 1/r correction term providing an additional energy contribution in the formula
for the quark antiquark potential [13].
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Secondly, the chromoelectric field on the two dimensional surface spanned by the quark
antiquark axis and one of the two remaining spacial lattice directions perpendicular to
this axis is plotted in Figure 6.9 by using the same values as in Figure 6.8. The colours
of the surfaces correspond to the average value of the four chromoelectric field values
on the edges of the surface. Whereas the flux tube cannot be seen so well in Figure
6.9(b) for r = 9a as the value of the chromoelectric field in the region of the flux tube is
much smaller than the peaks at the places where quark and antiquark are located, the
existence of the flux tube in Figure 6.9(a) for r = 5a is clearly visible.
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Figure 6.9: 3d plots of the chromoelectric field.
1/2 times the value of the curly bracket in Equation (6.2) is plotted.
Lattice parameters: β = 2.7 ⇒ a = 0.038 fm, temporal and spacial extension of the
lattice T = L = 24, cold start, 20200 configurations produced, of which 200 configurations
{300, 400, ..., 20200} are used.
APE smearing parameters for the Wilson loops: NAP E = 20, α = 0.5.
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7 Conclusion and outlook

In this work the chromoelectric field as a measure of the energy density in the region of
an infinitely heavy quark antiquark pair on a two dimensional surface was investigated
for different distances of quark and antiquark. Thereby the influence of the temporal
extensions of theWilson loops used in the calculation on the results was studied. In doing
so, it has been observed that the chromoelectric field between quark and antiquark has
a non vanishing value also for large quark antiquark distances. Moreover, this flux tube
has a diameter of at least 0.2fm. These observations are consistent with confinement of
the strong interactions.

For further investigations it would be interesting to increase the accuracy of the results
by calculating the lattice quantity representing the chromoelectric field on every single
lattice point for different temporal extensions and observe the behaviour with increasing
τ .

Moreover, a three dimensional analysis of the chromoelectric field taking into account
axes parallel to the quark antiquark axis that are not part of the two dimensional
surface could deliver results for a larger range of distances from the quark antiquark
axis. Consequently, the structure of the flux tube could be investigated more in detail,
so that the results can be checked against string model calculations [13].

In order to generate absolute values for the energy density a renormalisation procedure
could be performed. A crude but simple way would be to calculate the string tension
σ by fitting the potential in Figure 5.2, which gives a value for the increase of energy
with increasing quark antiquark distance. Integrating the value representing the square
of the parallel chromoelectric field component (and thus also representing the energy
density as the other contributions to the energy density are negligibly small) over the
whole space around quark and antiquark yields a value for the energy of the quark
antiquark binding. In doing so for different quark antiquark distances a value for the
string tension σ′ is produced, that can be renormalised by assignment to σ, which leads
to renormalised energy density values.
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