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Chapter 1

Introduction

The topic of this bachelor thesis is put of the research programme of the CRC-TR 211 project A03. The
collaborative research center investigates in strong interacting matter under extreme conditions in tem-
perature and chemical potential, while the subordinated A03 project examines inhomogeneous phases
in Quantum Chromodynamics (QCD) or QCD inspired models at low temperature and high chemical
potential [5].
One of the simplest examples of a QCD like theory is the 1+1 dimensional GN model in the large N-
limit. Such unphysical theories (they do not describe particles that occur in nature) are used to research
low T and high µ areas, where QCD simulations did not yield results, yet [21]. The GN model [4] is,
as an analytically solved QCD like theory useful to develop methods for computing a chiral phase dia-
gram in the µ, T plane. The phases differ in the presence, absence or space dependent presence of chiral
symmetry. The expectation value of a scalar field σ corresponding to the chiral condensate is used as
order parameter. In the large-N limit only the global minimum of the action as a function of the field
σ describes physics and therefore this minimum needs to be found to calculate expectation values like
the chiral condensate [6]. A purely homogeneous phase diagram with spatially constant σ as well as a
possibly space dependent σ are researched. Treating the GN model numerically, no ansatz for the shape
of a chiral condensate is needed and furthermore, the results can be verified by the analytical solution
[3]. To handle the infinite field degrees of freedom (dof’s) numerically they are reduced by lattice dis-
cretization and/or basis function expansion. Since numerical tests and partially analytical proofs show
an extremum for the action at σ = 0 in all phases, a stability analysis can be used to determine second
order transitions to the homogeneous phase (global minimum of the action in σ = 0). The numerical
results match up with the analytical ones relatively good, but finite volume effects at the homogeneous
to inhomogeneous phase boundary disturb them. The reason is, that the wavelength of a spatially oscil-
lating σ does not match into the finite volume, but the periodic boundary conditions force σ to adopt an
inappropriate function [1]. The main emphasis of the thesis is an algorithm to remove this effects [2] and
the improved results are graphically compared to the previous ones. The algorithm is slow because all
eigenvalues of a large matrix are computed, although only the lowest one is needed. Four algorithms:
First minors, Power Method, or library functions from GSL and LAPACK [7][16 - 20], that were candi-
dates for speeding the computation up, are presented and compared. All of them perform on an similar
level. Finally some outlook for the following goals is given.
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Chapter 2

Theoretical background and Motivation

This chapter gives a brief introduction to (thermodynamical) Quantum Field Theory (QFT) [8][9] at the
important example of QCD. Furthermore, the way such theories are handled numerically [10] and the
reason for investigating in more or less unphysical models and their behavior [11] is described. The
natural unit system and euclidean spacetime is used in the following.

In QFT, matter is represented through fields, like in quantum mechanics, but in a many-body system.
Also, interaction between matter is represented through so-called gauge fields. A QFT in the path inte-
gral formalism is given by a Lagrangian or equivalent an action containing classical nonoperator fields
by which one can theoretically calculate the path integral Z and thus the expectation values of vari-
ables/observables O that are dependent on the occurring fields (collected in Φ)

〈O〉 =
∫

DΦ O(Φ) · e−S[Φ]

Z
with Z =

∫
DΦ e−S[Φ] (2.1)

A theory, where fields (e.g. matter and gauge) are coupled to each other by multiplication is called
interacting field theory. If powers of fields higher than quadratic order or field mixing terms in inter-
acting field theories occur the path integral is usually not analytically solvable [8]. For some QFT’s it is
additionally not possible to expand the integral in low energies because interacting field theories with a
nonabelian gauge group can lead to an effect called asymptotic freedom with a coupling constant that
is big for low energies (high distances) and low for high energies (small distances). Therefore only high
energy expansions and precise forecasts are possible. In practice, this is observable as an effect called
confinement, that prohibits observations of single particles of these fields, because moving them away
from each other leads to a growing force until the energy is enough to produce two new particles and
both pairs are confined again.

QFT includes none of the thermodynamical properties like temperature or chemical potential, but it
can be extend to a statistical field theory which contains these. By comparing the thermodynamical
partition function with the path integral a great similarity occurs and the time t can be identified with
the inverse temperature T: t ∝ 1

kb·T = β. The following operations should be understood as a rough
picturing (for details see [8][9]):

Partition function: ∑
i

e−β·Ei Path integral: Z =
∫

DΦ e−S[Φ] (2.2)

Z =
∫

e−S[Φ] = 〈Φ f (t f ,~x)|Φi(ti,~x)〉

≈ 〈Φ f (~x)|e−∆tH |Φi(~x)〉 ∼∑
i

e−∆tEi

⇒ ∆t ∼ β
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S is the action, H is the Hamilton operator, Ei an energy eigenvalue of the system and Φi & Φ f are in-
and outgoing states of the field. As a result of this derivation, time expansion is finite in the following,
corresponding to the inverse system temperature.
Hereinafter, fermionic Grassmann fields ψ will be treated. The chemical potential µ is inserted coupled
to the zeros Dirac matrix γ0, since it describes the particle density ρ (i.e. if there is an excess or lack of
particles).

ψ̄γ0µψ = µψ†γ2
0ψ = µψ†ψ ∼ µρ (2.3)

A practical example for an asymptotically free QFT is QCD with the nonabelian gauge group SU(3), that
describes the strong interaction between quarks by the interaction particles called glouns. Both carry
the charge color and are therefore confined at low energies, which leads to the building of indivisible
hadrons like protons and neutrons. The quark sector of the QCD Lagrangian has another approximate
symmetry called chirality [12]. Chiral symmetry means, that the Lagrangian is unchanged under a
chiral symmetry transformation, which is the case if it can be divided into independent left- and a right-
handed fermionic field parts (ψL,R), that describe two different type of particles [8].

Distinction of the field: ψ =
1− γ5

2
· ψ︸ ︷︷ ︸

ψL

+
1 + γ5

2
· ψ︸ ︷︷ ︸

ψR

(2.4)

γ5 is the fifth Dirac matrix.
The chiral symmetry of QCD is explicitly broken, because QCD has a mass term for every flavor, pro-
portional to (ψ̄ψ)2, which is not separable into left and right handed fields:

(ψ̄ψ)2 = [(ψ̄L + ψ̄R) · (ψR + ψL)]
2 (2.5)

= ψ̄LψRψ̄LψR + ψ̄LψRψ̄RψL + ψ̄RψLψ̄LψR + ψ̄RψLψ̄RψL

Since the flavors up and down are very light in comparison to the other flavors, QCD is approximately
chirally symmetric for these [12]. The approximate symmetry is spontaneously broken for some µ and
T in thermodynamical QCD, which in simple words means that the ground state of the field has less
symmetries, than its equation of motion. Therefore it can be used to calculate a chiral phase diagram.
Absence, presence of the symmetry or the spatial shape of the ground state, identified with the later
introduced chiral condensate, is used to indicate the different phases in the diagram.

To calculate expectation values of observables at low energies, non perturbative lattice QCD simula-
tions can be used, since low energy expansion is impossible. To handle a field theory numerically the
infinite degrees of freedom of the field need to be reduced, for example by discretizing spacetime to a
lattice. Additionally, the number of lattice points needs to be finite, which is realized by creating a space
time hyper torus, with periodic boundary conditions. The path integral can then be calculated explicitly
(for example by Monte Carlo integration [9]). For sufficiently low lattice point distances the continuum
solution of the field is reproduced [10]. This way of solving the problem is numerically very expensive
and unusable for chemical potential much bigger than zero because the numerical sign problem (incal-
culable oscillating integrals) occurs for high densities [11].

Another way to approach the QCD phase diagram problem is to investigate effective alternative the-
ories, which are QCD like i.e. they fulfill some similar properties than the original one, but do not bring
up a sign problem or can be calculated analytically. Two of these properties are: asymptotical freedom
and spontaneously chiral symmetry breaking. There are several theories that fulfill some of these prop-
erties, but one of the easiest and already analytically solved one is the GN model in 1+1 dimensions. It



Chapter 2. Theoretical background and Motivation 4

is renormalizable, asymptotically free and spontaneously chiral symmetry breaking occurs. No gauge
fields are part of the theory, but a four-fermion-selfinteraction. Nevertheless, there are big differences
to QCD, like 2 missing spatial dimensions or the absence of gauge fields, but if different effective mod-
els produce similar phase diagrams, the assumption that the one of QCD looks also similar is at least
reasonable [22]. That is why the investigation in unphysical models is worthwhile. To handle more com-
plicated effective theories, that are also in a large-N limit, but not analytically solved, stable algorithms
are needed to find phase boundaries and a solved theory (e.g. GN) is perfect to develop them.
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Chapter 3

GN model in 1+1 dimensions

The GN model in 1+1 dimensions in the large-N limit is a relativistic field theory of Dirac fermions
and a simple example of QCD like theories [4]. Its correct analytical solution, with an inhomogeneous
phase region was found [3], after doubts came up in the 2000’s whether a purely homogeneous solution
(σ = const) is the stablest one. This chapter is based on the stated papers.

Starting point is a massless QFT Lagrangian with N fields ψ f named flavors, a coupling g, the Dirac
matrices γµ, and a quadratic selfinteraction.

L =
N

∑
f=1

ψ̄ f γµ∂µψ f +
1
2

g2(
N

∑
f=1

ψ̄ f ψ f )
2 (3.1)

1+1 dimensions are used since the theory is asymptotically free, without gauge fields in this case, which
is impossible in higher dimensions. Without a mass the theory fulfills chiral symmetry. Translating
the Lagrangian into a thermodynamical QFT by introducing the chemical potential γ0µ and associating
time with the inverse temperature leads to the following theory:

L = ∑
f

ψ̄ f (γ
µ∂µ − γ0µ)ψ f +

1
2

g2(∑
f

ψ̄ f ψ f )
2 (3.2)

The chiral symmetry of this theory is spontaneously broken for certain µ and T. Since the GN model
was developed to investigate it analytically, the four fermion interaction needs to be removed because
the path integral can otherwise not be calculated. There are various ways to do so, like introducing a
new action, which additionally depends on a scalar field σ.

S[ψ̄, ψ] =
∫

d2X

∑
f

ψ̄ f
(
γµ∂µ

)
ψ f + ∑

f
ψ̄ f (γ0 · µ)ψ f −

1
2

g2

(
∑

f
ψ̄ f ψ f

)2
 (3.3)

S̃[ψ̄, ψ, σ] =
∫

d2X

 1
2g2 σ2 + ∑

f
ψ̄ f

γµ∂µ + γ0 · µ + σ︸ ︷︷ ︸
Q

ψ f

 (3.4)

On the first view, the actions are very different, but the Hubbard-Stratonovich-Transformation shows,
by integrating the quadratic scalar field σ out, that their path integrals are physically equivalent (sum-
mation over f is meant implicitly below):
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∫
Dσ exp {−S[ψ̄, ψ, σ]} =

∫
Dσ exp

{
−
∫

d2x
(

1
2g2 σ2 + ψ̄ f

(
γµ∂µ + γ0 · µ + σ

)
ψ f
)}

= exp
{
−
∫

d2x
(

ψ̄ f
(
γµ∂µ + γ0 · µ

)
ψ f
)}
·
∫

Dσ exp
{
−
∫

d2x
(

1
2g2 σ2 + ψ̄ f ψ f σ

)}

= exp
{
−
∫

d2x
(

ψ̄ f
(
γµ∂µ + γ0 · µ

)
ψ f )
)}
·
(

det

[
1
g2δ(2)(x− y)

])−1/2

(3.5)

× exp
{

1
2

∫
d2x g2

(
ψ̄ f ψ f

)2
}

=

(
det

[
1
g2δ(2)(x− y)

])−1/2

exp (−S[ψ̄, ψ])

= N exp (−S[ψ̄, ψ])

Since σ is multiplied by ψ̄ψ in the new action, it takes the role of a mass which breaks chiral symmetry
if it is unequal to zero. That is why the expectation value of the scalar field (called chiral condensate)
expresses if chiral symmetry is restored or spontaneously broken, dependent on µ and T. σ’s expec-
tation value can therefore, be used as the order parameter of the phase diagram. Its value is zero if
homogeneous chiral symmetry is restored, non zero but constant in the phase with homogeneous chiral
symmetry breaking and oscillating in the inhomogeneous phase called (chiral) crystal.

To finally get rid of the remaining dependence of ψ f in the path integral, the following identity be-
longing determinant calculation via Grassmann valued fields can be used:

∫
Dψ̄Dψ e−ψ̄jQψj

=
N

∏
i=1

∫
Dψ̄iDψi e−ψ̄iQψi =

N

∏
i=1

det(Q) = det(Q)N (3.6)

Additionally, N factorizes in the action and in the case of large-N, it is strongly repressed in the ex-
ponential. If N goes to infinity only the field configuration minimizing Seff has necessary impact on a
calculated expectation value just like in a classical limit.

Z = N
∫

Dσ
(
det

(
γµ∂µ + γ0 · µ + σ

))N e
−
∫

d2x 1
2g2 σ2

= N
∫

Dσ exp
{
−N

(∫
d2x

1
2λ

σ2 − ln
(
det

(
γµ∂µ + γ0 · µ + σ

)))}
(3.7)

⇒ Seff[σ] := N
{∫

d2x
1

2λ
σ2 − ln

(
det

(
γµ∂µ + γ0 · µ + σ

))}
λ = N · g2 is the coupling constant of the effective action. Raising the determinant to the exponential

by logarithm, requires it to be strictly positive, which will be shown later for the purely homogeneous
case. A space dependent σ forces the determinant to be real [14], which ensures the transformation to
be correct if the number of flavors is even.
Since the only contributing field configuration is the one minimizing the effective action e−Seff[σ] ≈
const · δ(σ− σSmin), no path integral, but a minimization of Seff in σ needs to be computed to calculate
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expectation values.

〈O〉 =
∫

Dσ O(σ) · e−Seff[σ]

Z
≈ O(σSmin) · const

const
= O(σSmin) (3.8)

For generating a chiral phase diagram, the searched expectation value is the one of the field itself (the
chiral condensate) i.e., only the minimum of Seff needs to be computed in σ for various chemical poten-
tial and temperature.

The analytical solution of the GN model in 1+1 dimensions shows a phase diagram (see Figure 3.1) with
a homogeneous broken phase for low temperature and chemical potential, a chirally restored phase
for high temperature (and/or low chemical potential) and an inhomogeneous phase for low temper-
ature and high chemical potential. The shape of the crystal is an oscillating function in space, whose
wavelength shrinks for growing chemical potential.
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FIGURE 3.1: Analytical solution of the GN model in 1+1 dim and the large-N limit [3]
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Chapter 4

Implementation

As explained in the introduction, the infinite dof’s of a field theory need to be reduced from infinite to a
finite number of variables. Developing the discretized effective action as a function of these variables is
the aim of this chapter [6].

At first, the size of spacetime needs to be restricted. One chooses a space length L (in a higher di-
mensional case a volume V) and a time extension Tt (do not mix up with temperature T) with a kind of
periodic boundary conditions. Two ways of reducing the still infinite dof’s are presented in the follow-
ing:

1. Lattice discretization: Similar to the described lattice QCD the spacetime becomes discrete by re-
ducing it to a finite number of lattice points at which the field strength is one variable. The spacing
between two lattice points is a in space and time direction. The number of lattice points in the respec-
tive direction is NT and NL.

(x, t)→ (xi, ti)

σ(x)→ σ(xi) = σi (4.1)

xi ∈ [n · a, n = 0, ..., NL]

ti ∈ [n · a, n = 0, ..., NT] (4.2)

2. Expansion in a set of basis functions until a given cutoff: Any orthogonal basis functions can be
chosen e.g. complex exponentials or trigonometrical functions (Fourier series). The higher the order i.e.
the frequency, the lower is the effect on the resulting function. Therefore a cutoff is reasonable. The field
variables are the amplitudes of the expansion.

σ(x)→
NL

∑
nx=1

anx · einxx (4.3)

Both opportunities have advantages and disadvantages [15]. The basis functions lead to a continuous
σ(x) as a solution but without a lattice, the determinant of the operator Q = γµ∂µ + γ0 · µ+ σ also needs
to be computed via continuous basis functions. That leads to a problem, because the result of Q acting
on a basis function can leave the finite not complete function space and therefore spoil the computation.
This is not occurring on a lattice, because the lattice basis functions are delta functions and Q acting on
them produces in the worst case shifted delta functions on other spacetime points. But since the lattice
has (anti)periodic boundary conditions, the space of functions can not be left. The disadvantage of lat-
tice discretization is the fermion doubling effect which means, that the number of flavors is doubled.
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Here, a combination of both, using the advantages and avoiding the disadvantages is performed: Lat-
tice discretization in space direction with periodic boundary conditions ( f (x) = f (x + L)) and sin(ωi ·
t), cos(ωi · t) basis function expansion with antiperiodic boundary conditions (g(t) = −g(t + Tt)) in
time direction. The basis functions in time are eigenfunctions (actually complex exponentials are the
eigenfunctions, but this is equivalent to a 2 dimensional sin, cos vector and a complex number imple-
mentation is avoided) of the time dependent part of Q. Therefore the matrix Q is diagonal in time
direction. Q acting on its eigenfunctions does not change them (except a factor) and therefore the finite
function space is never left. To not take infinitely many eigenfunctions in account is reasonable because
Q acting on higher order time eigenfunctions produces additional terms proportional to the growing
frequency ωi. Therefore higher order eigenvalues λi get less dependent on σ:

ln(det(Q)) = ln(∏
i

λi) = ∑
i

ln(λi) ∝ ∑
i

ln(ωi) (4.4)

It follows, that high order eigenfunctions do only add constants to the action, but constant values do
not change the dynamics of a system and can be neglected. The fermion doubling on the lattice is not a
problem, because GN is in the large-N limit and a doubling of infinity is irrelevant.
Field discretization:

σ(x)→ σ(xi) = σi (4.5)

(Hereinafter x is meant to be the spatial index)
Orthogonal basis functions for calculating the determinant:

| fm〉 =
g(ωnt)√

2 · L
· δB,A · δy,x m = (g, n, A, x), g ∈ (sin, cos) (4.6)

ωn =
2n− 1

Tt
· π

Where A is the Dirac matrix index and ωn follows from the antiperiodic boundary conditions in time
direction.
Since the absolute time and space length has no meaning to the computer, the density of lattice points
in L or modes in T can be chosen. A natural choice, that implies equal dof density in space and time is:

L
NL

= a =: 1→ Cuto f f : x = a (4.7)

Tt

NT
=

2π

ωcut
=: 2→ Cuto f f : ωcut = π

(ωcut is between the last mode inside and the first mode outside)
For the calculation of the determinant, the operator Q is brought into matrix form by using the basis
functions | fm〉:

〈 fm|Q| fm′〉 =(γ0)A,A′ · (〈
g(ωnt)

sqrt(2L)
, ωn′ ·

∂g′(ωn′ t)
sqrt(2L)

〉 · δx,x′ + µ · 〈 g(ωnt)
sqrt(2L)

,
g′(ωn′ t)
sqrt(2L)

〉 · δx,x′)

+ (γ1)A,A′ · 〈
g(ωnt)

sqrt(2L)
,

g′(ωn′ t)
sqrt(2L)

〉 · δx,x′−a − δx, x′ + a
2a

(4.8)

+ δA,A′δx,x′σ(x′)〈 g(ωnt)
sqrt(2L)

,
g′(ωn′ t)
sqrt(2L)

〉
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with ∂x → ∂x,x′ =
δx+a,x′ − δx−a,x′

2a

and <g,g’>= δn,n′ ·
(

1 0
0 1

)
<g, ∂g’>= δn,n′ ·

(
0 1
−1 0

)
An useful information from this derivation is, that the matrix Q is translational invariant in x as long as
all σi’s have the same value.

If σ is purely homogeneous, the determinant is easy to compute, since the spatial eigenvectors of the dis-
cretized lattice derivative are obvious just complex exponentials with the wavenumber k = 2πn

L for the
n’th eigenvector (from the periodic boundary conditions) and eikx corresponding to the x’th latticepoint
as entries. The eigenvalues to the n’th eigenvector are sin( 2πna

L ) [6]. So one just needs to calculate all
eigenvalues of Q and multiply them to compute the determinant. Only in Dirac space the determinant
needs to be calculated explicitly, which is simple, since it is just a 2x2 matrix.

det(Q) =
NT

∏
n=−NT+1

L−1

∏
x=0

det(γ0 · (
i · (2n− 1)ωcut

2NT
+ µ) + γ1 · i · sin(

2πx
L

) + σ) (4.9)

=
NT

∏
n=1

L−1

∏
x=0

(A(σ2)2 + B2) > 0

with γ0 =

(
0 1
1 0

)
and γ1 =

(
1 0
0 −1

)
the first, third Pauli-matrix and A, B are functions whose

explicit form is not of interest in the following.
The determinant is positive definite and therefore the prior rising by logarithm to the effective action
was correct. The analytical expression allows further simplifications due to the later out needed deriva-
tives of the action.

If space dependence of the field is permitted (σ =̂ σi), the calculation of the determinant is difficult,
because no spatial eigenvectors are obvious. Therefore the determinant is calculated explicitly by the
linear algebra library GSL.

The discretized effective action is:

Seff =
1

2λ
· (
∫ L

0
dx
∫ Tt

0
dtσ(x)2)− ln(det(Q(σ(x)))) (4.10)

→ 1
2λ
· 2NT · a ·

L

∑
x=1

σ2
x − ln(det(〈 fm|Q(σ(x))| fm′〉))

The computation starts with the calculation of the coupling constant λ, by inserting a critical time ex-
tension NT,c (it needs to be at least 10 to 15 times smaller than L, to get pictures close to the analytical
solution), a space extension L and µ = 0. The coupling constant is chosen to a value, so that the second
order transition (sign change of second derivative in σ = 0) from homogeneous broken to homogeneous
matches with NT,c. After that, the value of σ at T = 0, µ = 0 called σ0 (T = 0 corresponds to a very great
time extension NT,0) is computed. In the phase diagram, the values T, µ and σ get physical meaning by
dividing them by σ0, since in physics comparisons between variables of the same problem and in the
same unit count. The natural unit system gives them the same physical unit, since they are added in
the determinant calculation. With correct proportions, the diagram is completely physical and one can
compare the analytical phase boundaries to the numerical ones.
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Chapter 5

Homogeneous phase diagram

In the following chapter, the phase diagram of a purely homogeneous sigma (space independent) will
be computed and analyzed. The homogeneous phase diagram was thought to be the correct solution
of the GN model, until the 2000’s, when an inhomogeneous σ(x) led in some phase diagram regions to
a deeper minimum than before [3]. But the homogeneous diagram is still interesting, since the phase
boundary from homogeneous broken to homogeneous is the same as in the space dependent case and
can be calculated in way less computation time, since it is an one dimensional problem. Additionally,
the methods for the inhomogeneous calculation can easier be developed in one dimension and later be
generalized to the multidimensional function.

Two ways of finding phase boundaries are used: Minimization by a GSL function and stability anal-
ysis in σ = 0. A necessary condition for the stability check is an extremum in zero in all phases, since
it detects for which µ at a given temperature T the minimum in the homogeneous phase changes to a
maximum in the homogeneous broken phase. Therefore, the minimum needs to be shifted continuously
out of zero at the phase boundary so that a maximum remains. This is called a second order phase tran-
sition. The second derivative (the curvature) changes its sign when the minimum in zero changes into
a maximum and that is why its root can indicate a phase boundary. Additionally the action needs to be
symmetric with respect to zero because a non symmetric one could enable saddles instead of maxima
and minima, which would spoil the computation.

Proof symmetry of S (σ):

Seff(−σ) = const · (−σ)2 −∑
nt

∑
x

ln(A((−σ)2)2 + B2) = Seff(σ) (5.1)

The proof actually also shows that the action has an extremum in σ = 0. The analytically known ho-
mogeneous phase diagram has a second order phase boundary coming from high temperature and low
chemical potential until a critical point, where it changes to a first order transition moving to low tem-
perature and higher chemical potential. The second order phase boundary can successfully be found by
stability analysis, what can be looked up in Figure 5.2 where a maximum in zero appears in contrast to
figure 5.1. This procedure is not working for the first order transition, because in this case a local mini-
mum remains in zero and new deeper valleys appear in a not vanishing distance to zero (see figure 5.3),
which spoils the computation. The local minimum disappears deeper in the homogeneous phase (lower
chemical potential) and therefore a pseudo 2nd order phase boundary can be calculated (see Figure 5.4).
The first order transition can only be detected by a minimization of the effective action i.e., the phase
points have to be found, where the minima in zero and out of zero have equal depth. First order tran-
sitions can also occur in other models and therefore the stability analysis results are not valid but can
give a first and fast impression, how a phase boundary maybe looks like. The values for temperature
and chemical potential, the action is plotted at, can be referred to the phase diagram in figure 3.1.
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Finally, a phase diagram for the homogeneous σ case can be plotted and since σ is a number, a 3d
plot can be generated by minimizing the action for various chemical potential and temperature (see Fig-
ure 5.5). As visible, the first order transition is related to a jump in the phase diagram, because the value
of the chiral condensate changes discontinuously. The second order transition corresponds to a kink in
the order parameter, since the order parameter moves continuously out of zero.
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Chapter 6

Inhomogeneous phase diagram

If σ is allowed to be space dependent, the solutions change in comparison to the homogeneous case and
an inhomogeneous region in the phase diagram occurs for high chemical potential and low temperature
(see Figure 3.1). The critical question is, if this behavior also appears in QCD and therefore simple and
time saving numerical algorithms are needed to perform them on other QCD inspired models. The ef-
fective action is now a function in many variables σi. The minimum can, as in the purely homogeneous
case, be found in different ways. The here chosen option is stability analysis for 2nd order phase bound-
aries at σi = 0 (i.e. only transitions to the homogeneous phase can be detected). Since zero becomes
a global minimum for all σi in the homogeneous phase and hopefully somehow unstable, but still an
extremum, in other phases. There is, like in the purely homogeneous case no guarantee for instability
in zero at a transition from the homogeneous to nonhomogeneous phases, since a local minimum could
remain in zero (1st order transition). This is not the case in the inhomogeneous GN model; all phase
transitions are of 2nd order [3]. Therefore, the predictions for other models by this methods should be
treated with caution and should only give an idea of the phase diagram.

In analogy to the homogeneous case the symmetry of the effective action implying the existence of a
local extremum in all phases in σi = 0 is a necessary condition to perform a stability analysis. Both is
not proven analytically yet, but numerical tests imply, that it holds. The Hessian matrix is the needed
object to investigate in hyperdimensional stability analysis.

(HSeff(~σ))ij = (
∂2Seff(~σ)

∂σi∂σj
)ij (6.1)

Diagonalizing this matrix yields eigenvalues that describe the local curvature (like the second derivative
in the one dimensional case) in the direction of the corresponding eigenvector, e.g. in σi = 0.

∀ λi

{
> 0, Minimum in the eigenvector direction
< 0, Maximum in the eigenvector direction

(6.2)

If both, positive and negative eigenvalues appear, the function has an unstable extremum in zero called
a saddle. A positive lowest eigenvalue indicates, that all directions have positive curvature i.e. the
action is parabolic and the homogeneous phase is occurred. Comparable to the homogeneous case the
root of the lowest eigenvalue function indicates the transition.
The numerical calculation of the Hessian matrix in~σ = 0 proceeds by building the differential quotient
for a finite but sufficiently small ε twice. The resulting formulae for nondiagonal elements is:

(HSeff)ij =
Seff(σi = σj = ε) − Seff(σi = −ε, σj = ε) − Seff(σi = ε, σj = −ε) + Seff(σi = σj = −ε)

4ε2

(6.3)
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While for the diagonal elements it reads:

(HSeff)ii =
Seff(σi = ε) − 2 · Seff(σi = 0) + Seff(σi = −ε)

ε2 (6.4)

All other σk entries are zero.
The calculation of the matrix can be accelerated by using symmetries of the Hessian matrix.

1. It is real and symmetric: Hij = Hji. Only the upper or lower triangular part of the matrix needs
to be calculated.

2. As shown in the implementation, the matrix Q and therefore also the effective action are translational
invariant, if all σi entries are equal (the quadratic field term has an even higher degree of symmetry since
all σi are equally treated). This means that the entries of Hij only depend on differences between their
indices (or on the magnitude of the difference, when using the symmetry). Therefore every row can be
copied to the next by a shift of one. Additionally, the space is periodic i.e. a circle and the indices L and
zero are equal. Because of that, index differences over L also count, i.e. only the first half row needs to
be calculated.

H =


H00 ... H1 L

2
... H00

H01
. . .

...

 (6.5)

A bisection of the lowest eigenvalue function can be performed for a given temperature and the root
marks the corresponding chemical potential at a second order phase transition. The eigenvector belong-
ing to the lowest eigenvalue indicates the direction of steepest descent in zero. It does not necessarily
need to point to the global minimum, since local minima near of zero can arise, except at the phase
boundary to the homogeneous phase. There the global minimum needs to move continuously out of
zero (2nd order transition) and is therefore, the nearest one.

The phase boundaries from homogeneous broken to homogeneous and from inhomogeneous to ho-
mogeneous are in good accordance with the analytical results. The crossing from homogeneous broken
to inhomogeneous cannot be detected in this way, because sigma is not zero at the transition. Never-
theless, the results of the inhomogeneous to homogeneous transition do not match with the analytical
solution as good as the crossing from homogeneous broken to homogeneous. The reason is a finite vol-
ume effect [1], that distort the results. Since the phase boundary points were calculated by a bisection of
the lowest eigenvalue function, it is meaningful to plot this function to search for systematical mistakes
[2] (see Figure 6.1, violet dots). The resulting function is continuous but not smooth. The reason is, that
the finite volume box with periodic boundary conditions does not enable arbitrary wavelength of the
chiral condensate. If the wavelength minimizing the effective action is not an integer divider of the box
length L, it is not adopt because the periodic boundary conditions forbid it, but the next closest wave-
length, which is a divider. The new (allowed) minimum of the action lies not as deep as the original one
and therefore the curvature in zero is increased. This behavior reaches a maximum at a wavelength that
would fit n + 1

2 times into the box, since this is the length most far away from matching. Consequently
the lowest eigenvalue function shows unphysical peaks/heels and therefore, its root is falsified. For a
growing number of lattice points, this effect lowers e.g. for a doubling of lattice points, a former peak is
split into two smaller ones [1]. In the infinite volume limit L → ∞, the process should therefore vanish
[1]. The effect does not occur at the phase transition from homogeneous to homogeneous broken, since
the minimum that arises and moves out of zero, is in this case not an oscillating, but spatially constant
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σ and therefore no wavelength need to fit into the box.

Getting a more realistic root for the lowest eigenvalue, that is closer to the continuum solution is the
goal of the algorithm described below. Principally the valleys of the lowest eigenvalue function are con-
tinuum solutions and fitting a function on them lead to a good approximation of the thermodynamic
limit solution in a close area. Since polynomial functions of order lower 3 are easy to handle, a parabolic
fit, as well as a linear one, are used:

• calculate the root µprev of the lowest eigenvalue graph by bisection

• improve for µprev
σ0

> 0.6 (inhom to hom transition), store pairs of (µ, λmin) in an 1d array, choose a
stepsize≈ 0.02 · σ0 (used in this thesis)

• search to the left (by Peakseeker method) until two peaks are found (add elements in front of the
array by push back)

– less than 2 peaks after 40 calculations, return previous root

• search to the right (by Peakseeker method) until two peaks are found (add elements in the back)

– less than 2 peaks after 40 calculations, return previous root

• first valley estimate: middles between peaks, these points named plotpoints

– generate a parabola through these 3 points e.g. calculate the parabola for all µ values than
the original smallest eigenvalue function

• compare the parabola and lowest eigenvalue points

– replace the closest plotpoint if a lowest eigenvalue lies deeper

∗ generate a parabola through these 3 points e.g. calculate the parabola for the µ values the
original function is calculated for

– if one or many replacements took place start again with the comparison, stop that process
after 10 iterations

• return the root of the parabola (check whether the left or right root by examining the sign of the
purely quadratic term)

– if the root is complex (i.e. none of the valleys is higher than zero), expand the lowest eigen-
value function to the right until a new peak is found

– remove the most left plotpoint and add one to the right

∗ generate a parabola through these 3 points

– start again with the comparison

– repeat this expansion process maximal 3 times

∗ no real result, return previous root

Peakseeker method:

• The slope (since the stepsize is constant, focus on functional differences) grows until an edge and
shrinks abruptly after it; therefore: f0 − f1 < f1 − f2 indicates an edge. (Problem: This inequality
corresponds to negative curvature i.e. a hill)
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• If the peak is a maximum, the edge seeker would indicate peaks everywhere between the two
belonging turning points, because the curvature is negative there. To prohibit that, the algorithm
blocks new peak observation if one edge was found until the edge algorithm returns no more
peaks at one go. (Note: If a maximum appears, the peak is not detected precisely, but this does not
matter, because only a rough approximation is needed since the parabolic improvement changes
the plotpoints anyhow)

The parabola can be calculated via three plotpoints by using its general form:

f (x) = ax2 + bx + c

inserting the points and rearrange for a, b and c.
The algorithm of linear root approximation is similar, except that two instead of one plotpoints and the
general form of a linear function are used.
The resulting plot for 80 lattice points, 8 as the critical number of time basis functions and a temperature
of 70 looks as follows:

-30

-25

-20

-15

-10

-5

	0

	5

	10

	0.4 	0.6 	0.8 μpre/σ0 	1 μimprove /σ0 	1.2

lo
we

st
	E
W
	o
f	H

es
sia

n	
m
at
rix

μ/σ0

lowest	eigenvalue:	Ntc=8,	Nt0=200,	L=80,	Temp=70	(1/Nt	prop	to	0.26)

lowest	EW	of	Hessian	matrix
quadratic	fit

linear	fit

FIGURE 6.1: Lowest eigenvalue function and valley fit improvement



Chapter 6. Inhomogeneous phase diagram 19

The parabolic (green) and linear (red) fits on the valleys of the lowest eigenvalue function (violet) (see
Figure 6.1) do not differ much, but for growing µ the linear approximation yields worse results than the
parabolic one. In the phase diagram the parabolic improved results (green) are shown in comparison
to the unimproved bisection results (violet) and the analytical ones (black doted). For growing µ the
improved results get worse (see Figure 6.2).
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results

As explained before, it is possible, that the eigenvector corresponding to the lowest eigenvalue points
to the global minimum, if no other spoiling local minima are closer to zero (especially close to homo-
geneous phase boundaries, there is a good chance, because the global minimum arises from zero). In
that case, the entries of the eigenvector are a good approximation for the spatial shape of the chiral
condensate. Numerical tests show, that the eigenvector entries behavior in the inhomogeneous phase
matches to the analytical oscillating function, and can therefore be used as a first approximation of the
chiral condensate, which needs to be substantiated by a real minimization. It looks as follows for var-
ious µ and fixed temperature. The wavelength of the crystal shrinks as expected for growing chemical
potential (see Figure 6.3 & 6.4).

But that the eigenvectors point to the global minimum is not necessarily the case. Numerical tests
in the homogeneous broken phase, show an eigenvector that points to a local minimum, which shows
a nonconstant shape for the chiral condensate. That is why the phase border from the inhomogeneous
to homogeneous broken phase cannot be detected via the distinction of constant or nonconstant eigen-
vector entries. The reason, that local minima are closer to zero is, that the phase transition from inho-
mogeneous to homogeneous broken happens in a nonvanishing distance to zero. The global minimum
of the inhomogeneous phase comes closer to a homogeneous broken solution i.e., the wavelength of the
crystal grows until it is infinity (as long as the box), but the amplitude (distance to zero) is never zero.
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Chapter 7

Computing time improvements

The calculation of all eigenvalues of the Hessian matrix is relatively time consuming, although only the
smallest one is of interest. Calculating the improved phase diagram takes for an acceptable but small
box length L ≈ 60 at least half a day (Lenovo ThinkPad L420 i5). The situation will become even worse
if a model in higher dimensions is going to be investigated prospectively, because the number of vari-
ables grows by a factor of L for every dimension. Therefore 4 methods are investigated which were
candidates to speed up the eigenvalue calculation. The first two subsections and their algorithms are
partially new developments of this thesis.

7.1 Determinants of first minors

First minors are square submatrices of the original matrix A, starting from the left upper end. Determi-
nants of them are represented by ∆i [23]:

A =


a11 a12 ...

a21
. . .

...

 (7.1)

∆1 = a11, ∆2 = det
(

a11 a12
a21 a22

)
, ...

The interesting property of the first minors is, that all of them are positive definite, if the original matrix
is it too [23]. Positive definiteness of a matrix means, that all its eigenvalues λi are bigger than zero:

A positive definite⇔ ∆i > 0⇔ λi > 0 (7.2)

Therefore a determinant of a first minor smaller than zero indicates, that eigenvalues lower than zero
exist i.e. the phase point does not lie in the homogeneous phase. The method could only be used if the
value of the smallest eigenvalue is not needed explicitly (but the information if an eigenvalue smaller
than zero exists), which is only the case for the bisection to find the first assumption of the lowest eigen-
value root. In a positive scenario, the entry a11 is always negative if a nonhomogeneous phase is adopt.
In a negative scenario e.g. in the homogeneous phase, all first minor determinants need to be calculated
to realize, that no eigenvalue is smaller than zero. The question is, if calculating some small determi-
nants, but also a lot of big ones is more effective then calculating only big ones.

The calculation of determinants happens most effective and sturdily via LU decomposition (in Ger-
man: LR Zerlegung) e.g. by the function gsl_linalg_LU_det in GSL. A matrix A is decomposed into
a normalized lower triangular matrix L with ones on the diagonal and an upper triangular matrix U
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with the eigenvalues on the diagonal from which the determinant can be calculated (since L has only
ones on the diagonal its determinant is also one and following the determinants of U and A need to be
the same) [13]. The LU decomposition works similar to the Gaussian Jordan algorithm since from the
defining equation for each row of the nxn matrix A, n solvable equations appear, if the former row is
calculated.

Ajk =
n

∑
i=1

Lji ·Uik

A0k = L00 ·U0k = U0k (7.3)
A1k = L10 ·U0k + L11 ·U1k = L10 · A0k + U1k

A2k = ...

For every square matrix, a LU like decomposition exists. Nevertheless, the condition for a LU decom-
position: (det(∆A

i ) 6= 0), is not necessarily fulfilled. This inconsistency is removed by introducing row
exchanges in form of a pivoting matrix P ating on A [24]. P only changes the determinant by a factor of
-1. The complexity of LU decomposition is of order O(n3) [7].
With that information the complexity of the first minor algorithm in the homogeneous phase can be
calculated. The size of the first minors grows from one until the order of A:

n

∑
i=1

O(i3) = O(
n2

4
· (n + 1)2) = O(n4) (7.4)

The complexity in the homogeneous phase is of order O(n4) and therefore the computing time in the
phases with chiral symmetry breaking is irrelevant, because other algorithms of order O(n3) that calcu-
late all eigenvalues are common. That is why the algorithm using first minors is not practical an saves
no time.

7.2 Shifted matrix combined with power method

The power method is an iterative algorithm to find the eigenvalue with the biggest magnitude of an
arbitrary matrix A [20] Its algorithm is:
Choose an arbitrary initial vector y = y0

• v = y
|y|

• y = Av

• θ = vTy

• if y− θv < ε, return θ as eigenvalue with biggest magnitude.

Proof of convergence (k=Iteration and power):
The initial vector y0 is a linear combination of all eigenvectors v (since the eigenvectors of a full rank
square matrix span a basis of the corresponding space): y0 = ∑n

i=1 αi · vi

yk = Ak · y0 =
n

∑
i=1

αi · λk
i · vi = λk

max

n

∑
i=1

αi · (
λi

λmax
)k · vi → αλmax · λk

max · vλmax (7.5)

Where only the fracture with λmax in the nominator does not vanish for great k. No sign is computed
since the stretched eigenvector is projected on itself and therefore the scalar product is always posi-
tive. The problem about the method is, that the convergence is obviously dependent on the difference



Chapter 7. Computing time improvements 23

between the two eigenvalues with the biggest and the second biggest magnitude. Therefore no exact
complexity can be declared but the occurring matrix vector multiplication is at least of order O(n2).
If the spectrum of eigenvalues is approximately known, one can choose an upper estimate shift matrix,
to make all eigenvalues negative:

A · v = λv | · c · 1 · v
(A + c · 1)v = (λ + c)v

⇒ S = (A + c · 1) (7.6)
⇒ λ′ = λ + c
λ′max < 0

Where the identity multiplied by the shift c is the shift matrix.
Letting the power method act on S one receives the former lowest eigenvalue which has the biggest
magnitude after the shift:

|λ′min| ⇒ λmin = c− |λ′min| (7.7)

The reason not to choose an arbitrary large shift is, that the fraction of the two biggest eigenvalues will
come closer to one and therefore the convergence is slower. That is why the shift should be chosen as
small as possible to make all eigenvalues smaller than zero.
In case of the lowest eigenvalue function, the spectrum can be computed several times by a program
that computes all eigenvalues to find an upper bound and after that, the shifted power method can be
used. If it saves time, needs to be tested experimentally (see chapter 7.4).

7.3 Eigenvalue calculation via Tridiagonalization and QR decomposition
(GSL and LAPACK)

The freeware libraries GSL (in C++) and LAPACK (in Fortran) are taken into account for the calculation
of eigenvalues for symmetric nxn matrices. The function in GSL is: gsl_eigen_symm_v, that calculates
the eigenvalues and corresponding eigenvectors of a real symmetric matrix, while in LAPACK the inves-
tigated function is zheevr, which calculates a given range of eigenvalues and if required the belonging
eigenvectors of a complex hermitian matrix. All functions are in the end of order O(n3) [7] [16]. Both
work with similar algorithms: First, the matrix is transformed to tridiagonal form T via similarity rela-
tions which conserve the eigenvalues and the symmetry of the matrix [19]. Afterwards, the eigenvalues
are calculated via QR decomposition in GSL or by the dqds algorithm in LAPACK, if special eigenval-
ues are recognized (the dqds algorithm is not explained in the following since it does not take more
than order O(n3) and is therefore not characteristic for the complexity of zheevr). Tridiagonalization is
of order O(n3) and therefore the major computation time cause. For QR decomposition as well as for
tridiagonalization different methods exist: Gram Schmidt orthogonalization, Givens Rotation, but the
most common and in the considered libraries used one is the householder transformation [18] [7]. A
householder transformation matrix is used to remove a given number of column and/or row entries of
a matrix.
Such a matrix has the following form and properties:

H = 1− 2vvT, |v| = 1 (7.8)

HT = H symmetric, HT = H−1 orthogonal
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where the outer product between the vectors v produces a matrix.
Pictorially, the matrix H acting on another vector x results the reflection of it at the axis orthogonal to v.

7.3.1 Tridiagonalization

Tridiagonalization means, that the resulting matrix has entries only on the diagonal and on the upper
and lower second diagonal [7]. It is performed to stabilize the following algorithm that computes eigen-
values and speed it up. For the tridiagonalization, column as well as row entries, need to be removed.
Therefore Householder matrices acting from both sides on the matrix as a similarity transformation are
needed:

T = QT AQ, Q =
n−2

∏
i=1

Hi (7.9)

where Hi are n-2 Householder matrices. The algorithm to find the matching Householder matrices and
let them act on a nxn matrix A is:
k = 1, B = A

• s =
√

∑n
i=k+1 b2

ik

– if s=0⇒ k→ k + 1, calculate s new

• vi = 0 ∀i = 0, ..., k
vk+2 =

√
z

vi =
SG·bki

2·vk+1·s
∀i = k + 2, ..., n

• H = 1− 2vvT

• A = H · B · H

• if k = n− 2⇒ A is tridiagonal, stop

• k→ k + 1, B = A, start again

The complexity is of order O(n3), because matrix multiplication occurs. If the eigenvectors are of inter-
est later, Q needs to be computed explicitly (and stored) and the exact complexity is 8n3

3 . Otherwise only
the tridiagonal matrix T needs to be stored which is of order 4n3

3 [19].

7.3.2 QR decomposition

In a QR decomposition, the matrix is distinguished into an orthogonal matrix Q and an upper triangular
R, from which the eigenvalues can be read off. The general process of QR decomposition is described,
which can be applied to a tridiagonal matrix. To form a upper triangular matrix R, only the entries lower
than the diagonal have to be removed and therefore a multiplication from the left with n-1 Householder
matrices is sufficient:

R = QT A, Q =
n−1

∏
i=1

Hi (7.10)

⇒ A = QR = H1 · ...Hn−1 · Hn−1 · ...H1 · A
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where Hi are the n-1 Householder matrices. The algorithm to find the matrices works similar to the
tridiagonalization case, but only the lower triangular needs to be removed this time. The dimension of
the treated matrix A shrinks in the following algorithm (in every iteration by one), and the entries in the
missing dimensions are the already generated numbers in the developing upper triangular matrix. The
algorithm for a nxn matrix A is:
k=1, a1 is the first column of the matrix A

• α = |a1| · sgn(a11)

• u = a1 − α · e1

• v = u
|u|

• Hk = 1n−k+1 − 2vvT

• Ak = Hk · Ak−1

• if k=n-1⇒ A is 2x2 and R is generated

where Hi are the n-1 Householder matrices and e1 is the first unit vector in the basis of shrinking A. The
simplification to tridiagonal form speeds the QR decomposition up, so that the complexity is only 24n2

without eigenvectors and 6n3 if they need to be computed [19].

7.3.3 LAPACK function: zheevr

The LAPACK function works in a similar way and has a complexity of O(n3) [16]. It has the advantage,
that the user can choose the range of eigenvalues and if eigenvectors should be calculated or not. Addi-
tionally, zheevr can handle complex hermitian matrices and not only real symmetric ones, which could
be of interest if complex models will be treated in the future.
The idea, that it may be faster than the gsl function arose, because one can calculate single eigenvalues
instead of all. The problem is, that the time wasting tridiagonalization is needed anyway [16].

Implementing the LAPACK library in a C++ code is not trivial since LAPACK is written in Fortran.
The implementation is described below:

• Download LAPACK libraries to Linux Ubuntu:

– sudo apt-get install gfortran

– sudo apt-get install libblas-dev

– sudo apt-get install liblapack-dev

• Include external functions (written in other languages) in C; write the following in your C-file:
#define F_
#ifdef F_
#define_F(s) s##_
#else
#define_F(s) s
#endif
extern"C" {
functiontype _F(functionname) (variabletype variable, ...)
}
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• Compilation order:
g++ -o programname filename.C -lblas -llapack

• Fortran uses call by reference while C uses call by value. Therefore pointer entries should be
transferred to fortran functions

7.4 Run time measurement

To validate the theoretical knowledge about the complexity of the analyzed algorithms, a run time
experiment is performed to compare the times practically. The shifted power method, zheevr and
gsl_eigen_symm_v are compared. The largest eigenvalues were detected to be smaller than 1000 for
various chemical potential and temperature and therefore a safety shift of 5000 was used for the Power
method. A shift of 50000 increased the computing time for the largest tested matrix (180) around 1.2%.
zheevr was set to calculate only the lowest eigenvalue and no eigenvectors, while the GSL function cal-
culates all eigenvalues and the belonging eigenvectors. The first significant differences began at size 40
matrices.
The following results occurred:

TABLE 7.1: Run times in seconds of various smallest eigenvalue calculators

matrix size time LAPACK time power method time GSL
40 41.666690 41.682130 41.872192
60 166.919073 167.033397 167.578391
90 703.859076 703.469764 706.325420
130 2740.512141 2835.361280 2740.252389
180 10926.52869 10926.612059 10897.650380
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FIGURE 7.1: Computing time plot

Obviously, the times do not differ too much. As expected, zheevr is faster, except for the last cal-
culation, which is surprising. The power method is at least able to compete with the highly developed
libraries, but the unpredictability of the run time of an iterative process causes that it is sometimes faster
or slower than the other algorithms. Tests with higher order matrices will be needed to make final
statements, but none of the algorithms promised a large reduction of computing time yet.
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Chapter 8

Conclusion

Summarizing, it can be said, that the major goal: Computing the phase boundaries, of second order
transitions by stability analysis is fulfilled and that the developed methods can be applied to other
models in a large-N limit. The results of these calculations should only give a first assumption of the
phase diagram since only second order phase boundaries can be detected. Additionally, sign changes in
the curvature in e.g. zero can appear without a phase transition (pseudo second order) or the curvature
can keep its sign while crossing a first order transition. The eigenvector corresponding to the lowest
eigenvalue can give a first approximation to the form of the chiral crystal, as long as it points to the
global minimum. The goal to speed the slow calculation of eigenvalues up is not fulfilled yet.

8.1 Outlook

One of the first following goals will be to investigate in the purely homogeneous phase in the pseudo
2nd order phase boundary, which shows an unphysical behavior for growing NT. Still one of the most
important aims is finding a way to bypass the slow eigenvalue calculation and a promising way to do
so is using the additional translational symmetries of the Hessian matrix, which is a so called Toeplitz
matrix. The entries of this class of matrices only depend on the difference between their indices. Fast
algorithms seem to exist, to calculate the eigenvalues of symmetric Toeplitz matrices which are only
of order O(n2), but this needs to be studied in detail. Furthermore, the results until now are only
approximative expectations. To find the real minimum of an action that depends on a space dependent
function, a multidimensional minimization is needed. Various of these algorithms are accessible on
GSL, that use the way of steepest descent i.e., the direction given by the negative gradient, to find the
minimum. To find a global minimum other strategies are needed, since the algorithm starts anywhere in
a multidimensional mountains range and the global minimum is maybe not accessible without crossing
a hill. Therefore, an algorithm should also go upwards with a given percentage. One possibility to do
so is simulated annealing. The algorithm starts at a given ~σi and chooses an arbitrary adjacent ~σi+1,
calculates its value and changes to this point if its value is lower or, if the value is higher, it changes with
a given probability.
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