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Abstract

I compute the masses of the Λb and Ωb-baryon using Wilson twisted
mass lattice QCD with Nf = 2 flavors of sea quarks. I will consider light
quarks corresponding to a pion mass of mπ = 336 MeV. I will discuss a
creation operator which will generate the quantum numbers of the particle
of interest when applied to the vacuum state. In contrast to previous,
similar works the inversions leading to the light quark propagators are
done by using the point source method. I compare the statistical errors
with those results obtained in these previous works where timeslice sources
were used for the inversions.



Zusammenfassung

In der vorliegenden Arbeit berechne ich die Massen des Λb und Ωb-
Baryons mittels Wilson twisted mass Gitter-QCD mit Nf = 2 Seequark-
Flavors. Die leichten Quarks werden mit Massen korrespondierend zu
einer Pion Masse von mπ = 336 MeV implementiert. Ich werde einen
Erzeugungsoperator vorschlagen und zeigen, dass dieser angewandt auf
den Vakuumzustand die gewünschten Quantenzahlen des Teilchens er-
zeugt. Im Gegensatz zu früheren Arbeiten werden die Invertierungen, die
zu den Propagatoren der leichten Quarks führen, mit Hilfe von Punkt-
quellen durchgeführt. Ich vergleiche die statistischen Fehler mit jenen aus
den genannten früheren Arebeiten, in denen für die Invertionen timeslice
Quellen verwendet wurden.
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1 INTRODUCTION

1 Introduction

How to compute the mass of a particle seems to be a rather simple question.
Naively one would think to simply sum up the ingredients of the particle which
would be in case of baryons the valence quark masses. But this simple assump-
tion fails even in the simplest cases, e.g. the proton. While the proton has a
mass of about 1 GeV the sum of the valence quarks (up, up, down) only reaches
out to about 15 MeV which is about 1000 times smaller. It is already known for
a long time that determining the mass of a baryon is much more complicated
due to the fact that it is mainly generated by the interaction of the quarks and
gluons within the baryon. This makes the question on how to compute the mass
of a particle quite fascinating. The correct way to describe such interaction is
given by Quantum Chromo Dynamics (QCD) which describes interaction due
to the strong force.

In the following work I will compute bottom baryon masses from lattice QCD
using Monte Carlo methods. A bottom baryon is a bound state consisting of
one bottom and two light quarks. I will consider up, down and strange quarks
as these light degrees of freedom. I choose Wilson twisted mass fermions which
automatically improve numerical computations by O(a), with a being the lattice
spacing, and a static approach, i.e. I will set the mass of the bottom quark to
infinity, because it is hardly feasible to perform computation with a dynamical
bottom quark.
The main goal of this thesis is to investigate whether the statistical errors which
arise while computing baryon masses using timeslice sources will be reduced by
implementing the point source method. It was shown in [11] that the error for
meson masses could be reduced drastically in this way. In fact a bottom baryon
also consists of two light quarks. Thus the idea was to reduce the error in exact
the same way, i.e. using point sources rather than timeslice sources. In case
of the point source method the errors occur only because of the gauge fields
whereas using timeslice sources there also will be an error due to statistical
noise. I will compare my results to those presented in [10, 3], where the same
lattice setup has been made.

This work was done in close collaboration with the work done by another bach-
elor student. Some important theoretical aspects can be found in more detail
in his thesis [1].

In the following I will use the euclidean formulation of (lattice) QCD. Hence the
γ-matrices fulfill the following commutator relations:

{γEµ , γEν } = 2δµ,ν

{γE5 , γEµ } = 0 ∀µ

which implies that ∀µ : (γEµ )
2 = 1, as well as (γE5 )2 = 1.

I will omit ‘E’ indices on γ-matrices to simplify the notation.
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2 QCD BASICS

2 QCD Basics

2.1 Continuum QCD

A theory like QCD can be defined by the Lagrangian or the action of a system.
The equation of motions follow from the principle of least action. The QCD
Lagrangian is given by:

LQCD
[
ψ, ψ̄, Aµ

]
= LF

[
ψ, ψ̄, Aµ

]
+ LG [Aµ] (2.1)

LF refers to the gauge invariant fermionic Lagrangian, which describes the dy-
namics of the quarks. As can be seen in (2.2) and (2.3), LF depends on the
gauge fields as well as the fermionic fields.

LF
[
ψ, ψ̄, Aµ

]
=

∑
f

ψ̄f (iγµDµ +mf )ψf (2.2)

Dµ = (∂µ − igAµ) (2.3)

Note that the gluon field Aµ is of the form Aµ = Aaµ
λa

2 where λa are the
generators of the SU(3) Lie-Algebra, i.e. the eight (a ∈ {1...8}) Gell-Mann
matrices.
The gauge field Lagrangian is given by:

LG [Aµ] =
1

4
F aµνF

a
µν =

1

2
tr (FµνFµν) (2.4)

In this case Fµν is the gluon field strength tensor defined as:

Fµν = F aµν
λa

2
(2.5)

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (2.6)

In order to perform numerical calculations it is of advantage to quantize QCD
with the path integral formalism. In this approach the observables are vacuum
expectation values (VEV ) which consist of time ordered products of suitable
operators. Using the Euclidean formalism VEVs can be calculated by

⟨Ω|T{O1(x1)...On(xn)}|Ω⟩ =
1

Z

∫
DψDψ̄DAµO1(x1)...On(xn)e

−SE [ψ,ψ̄,Aµ]

(2.7)
where xj = x(τj), Z =

∫
DψDψ̄DAµe

−SE [ψ,ψ̄,Aµ] and SE
[
ψ, ψ̄, Aµ

]
is the Eu-

clidean action of the system.
Note that the integration DψDψ̄DA stands for all possible fermionic field con-
figurations, i.e.

DψDψ̄DA :=
∏
x,α

∏
y,β

∏
z,µ

Dψα(x)Dψ̄β(y)DAµ(z)

where ψ and ψ̄ are Grassmann variables.
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2 QCD BASICS

2.2 Lattice QCD

Since QCD is up to now not solvable analytically I have to rely on numerical
methods and therefore will use the approach of lattice QCD for my investigation.
When going on the lattice the quark fields ψ(x), ψ̄(x) are defined on discrete
spacetime points, i.e. ψcS,f (n), ψ̄

c
S,f (n), with c being the color, S being the spin,

f being the flavor index and n the lattice site [10]. The gauge fields are now
represented by so-called links which correspond in the continuum to

Uµ(n) ≡ U(n, n+ aµ) = exp

(
ig

∫ n+aµ

n

dzµ Aµ(z)

)
(2.8)

A possible gluonic action expressed by link variables is given in [6]:

SG [U ] =
∑
P

2

g2
Tr

[
1− 1

2

(
Uµν(n) + U†

µν(n)
)]

(2.9)

where the summation is over all possible plaquettes P and Uµν(n) refers to a
product of link variables forming a closed loop on the lattice (cf. [6]).
When trying naively a discretized version of the fermion action from (2.2), one
will be confronted with the so-called fermion doubling problem. One way to avoid
this is to use a variant of the below defined Wilson fermionic action (cf. (2.10)),
i.e. using so-called Wilson twisted mass fermions described in subsection 2.3.

S
(W )
F

[
ψ, ψ̄, U

]
= a4

∑
n

ψ̄(n)(DW +m)ψ(n) (2.10)

DW =
1

2
γµ(∇µ +∇∗

µ) +
ar

2
∇µ∇∗

µ (2.11)

In the above expression ∇µ and ∇∗
µ are the forward and backward covariant

derivatives on the lattices [10, 1]. Note that the Wilson term will vanish in the
continuum limit.

More details on lattice QCD can be found in [1].

2.3 Wilson twisted mass fermions

To get rid of O(a) lattice discretization errors (cf. [8]) in numerical calculations
I will work with so-called wilson twisted mass fermions. In order to do so I will
use the following action:

SF [χ, χ̄, U ] = a4
∑
n

χ̄(DW +m+ iµγ5τ3)χ (2.12)

with χ = (χu, χd), µ the so-called twisted mass and τ3 being the Pauli matrix
in flavor space.
I will refer to {χ, χ̄} as the twisted mass basis which can be obtained from the
physical basis {ψ, ψ̄} by the twist rotation

ψ = exp
(
i
ω

2
γ5τ3

)
χ, ψ̄ = χ̄ exp

(
i
ω

2
γ5τ3

)
(2.13)
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3 QUANTUM NUMBERS AND CREATION OPERATORS

3 Quantum Numbers and Creation Operators

In order to excite a b-baryon, I need an operator producing suitable quantum
numbers when applied to the vacuum. In the following I will choose an ansatz
from the literature motivated by phenomenological considerations and verify
that indeed this operator produces the desired quantum numbers like parity,
spin and isospin:

O(r⃗) = ϵabcQa(r⃗)
(
(ψb1)

T (r⃗)CΓ(ψc2(r⃗))
)

(3.1)

with C = γ0γ2 standing for the charge conjugation matrix and Γ representing
a certain combination of γ-matrices which has to be chosen appropriately for
the particle being investigated. While Q stands for the heavy quark field, ψ1/2

name the light quark fields in the physical basis.

3.1 Gauge invariance

To describe a physical state (3.1) has to be gauge invariant. In QCD a spinor
transforms under gauge transformations G(r⃗) ∈ SU(3) in the following way:

ψa(r⃗) → ψa′(r⃗) = Gab(r⃗)ψb(r⃗) (3.2)

Thus the chosen operator transforms like

O(r⃗) → O′(r⃗) = ϵabcGad(r⃗)Qd(r⃗)
(
Gbe(r⃗)(ψe1)

T (r⃗)CΓGcf (r⃗)ψf2 (r⃗)
)

= ϵabcGad(r⃗)Gbe(r⃗)Gcf (r⃗)Qd(r⃗)
(
(ψe1)

T (r⃗)CΓψf2 (r⃗)
)

= ϵdefdet(G)Qd(r⃗)
(
(ψe1)

T (r⃗)CΓψf2 (r⃗)
)

= O(r⃗) (3.3)

and is therefore invariant under gauge transformations. Note that (ψ)T is being
transposed in the spin basis. Therefore (ψ)T transforms according to (3.2).
In the third step I used the following identity

ϵabcGadGbeGcf = det(G)ϵdef

followed by detG = 1 since G ∈ SU(3).

3.2 Parity

A light quark field transforms under parity in the following way:

Pψ(r⃗) = γ0ψ(−r⃗) (3.4)

while a static quark field does not transform at all:

PQ(r⃗) = Q(r⃗) (3.5)

7



3 QUANTUM NUMBERS AND CREATION OPERATORS

Therefore O transforms under a parity transformation like

O → O′ = ϵabcQa
(
(ψb1)

T γ0CΓγ0ψc2
)

= ϵabcQa
(
(ψb1)

T γ0γ0γ2Γγ0ψ
c
2

)
= ϵabcQa

(
(ψb1)

TC(−γ0Γγ0)ψc2
)

(3.6)

Note that the γ-matrices (in euclidean representation) suffice the algebra: {γµ, γν} =
2δµν .
Since according to (3.5) the static quark is invariant under parity transformation
the parity of the exited b-baryon is given by

P = + for Γ = −γ0Γγ0 (3.7)

P = − for Γ = +γ0Γγ0 (3.8)

It is important to mention that the twisted mass formalism breaks the parity-
symmetry of the action. However a specific combination of parity and isospin,
i.e.

P (tm)χ := γ0τ1χ

P (tm)χ̄ := χ̄γ0τ1 (3.9)

is still a symmetry:

SF [χ, χ̄, U ] → S′
F [χ, χ̄, U ] = a4

∑
n

χ̄τ1γ0(DW +m+ iµγ5τ3)γ0τ1χ

= a4
∑
n

χ̄(DW +m+ iµτ1γ0γ5γ0τ3τ1)χ

= a4
∑
n

χ̄(DW +m+ iµτ1(−γ5)τ3τ1)χ

= a4
∑
n

χ̄(DW +m+ iµγ5)χ (3.10)

= SF [χ, χ̄, U ] (3.11)

where (τa)2 = 1 and τaτ b = iϵabcτ c + δab was used.
In consequence a mixing of states with different parity in the correlator oc-
curs. Nevertheless this is not a problem since I will investigate only the lightest
baryon for a given light flavor combination. A slight mixing is unavoidable but
in the effective mass the heavier states with opposite parity are exponentially
suppressed.

3.3 Spin

In this thesis I consider operators where the quark orbital momentum L is zero.
This means that the total momentum J is equal to the spin S. Since the spin
of the static quark has no influence on the mass of the baryon it is appropriate

8



3 QUANTUM NUMBERS AND CREATION OPERATORS

to label the states by the spin j of the light quarks.
In quantum field theory the spin is given by the spinor representation of the
Lorentz transformations S(Λ) generated by the spin operator S⃗ which can often
be found in the literature to be written as (cf. [7])

S⃗ =
1

2
Σ⃗ (3.12)

Here Σ⃗ stands for a three component object, where each component Σj is itself
a 4x4 matrix. In the literature Σj can be found to be (cf. [4, 7]):

Σj = −iγ1γ2γ3γj (3.13)

Now a rotation by an angle α is given by:

e−(iαaSa) = e−(i
αa

2 Σa) = e−(
αa

2 γ1γ2γ3γa) = e(
αa

2 γ0γ5γa) (3.14)

where (γ0)
2 = 1 and γ5 = −γ0γ1γ2γ3 was used in the last step.

Therefore a spinor transforms like

ψ → ψ′ = e(
αa

2 γ0γ5γa)ψ (3.15)

(ψ)T C → (ψT )′C = (e(
αa

2 γ0γ5γa)ψ)T C = (ψ)T Ce−(
αa

2 γ0γ5γa) (3.16)

This means that the spin of the light quarks depend on the expression

e−(
αa

2 γ0γ5γa)Γe(
αa

2 γ0γ5γa) (3.17)

A general rotation, e.g. around the z-axis, by an infinitesimal small angle α of
some state O|Ω⟩ can be written as

Rz(α) (O|Ω⟩) = exp (−iαzJz) (O|Ω⟩)
= (1− iαzJz) (O|Ω⟩)
= O|Ω⟩ − iαJzO|Ω⟩ (3.18)

On the other hand I could transform the operator O first and than afterwards
apply it to the vacuum. This again should yield the same rotated state. Doing
the algebra one finds that for infinitesimal small angles the operator O trans-
forms like:

O|Ω⟩ → O′|Ω⟩ = (1− αz

2
Jz)O(1 +

αz

2
Jz)|Ω⟩

= O|Ω⟩ − iαÕ|Ω⟩+O(α2) (3.19)

As mentioned before (3.19) and (3.18) should be the same state. Thus a com-
parison yields the action of the momentum operator Jz on the state O|Ω⟩, as is
shown in (3.20).

JzO|Ω⟩ = Õ|Ω⟩ (3.20)

9



3 QUANTUM NUMBERS AND CREATION OPERATORS

The spin quantum number j is defined by J 2O|Ω⟩ =
(
J 2
x + J 2

y + J 2
z

)
O|Ω⟩ =

j(j + 1)O|Ω⟩. Following the steps above, acting the momentum operator twice
for each space component on the state and summing up will therefore yield the
spin. With this procedure I will compute the spin of the light quark bilinear sim-
ply by choosing O = (ψb(1))

T CΓ(ψc(2)) and following the steps described above.

It should be said here that there is a more elegant way to compute the spin
of some state ψ̄Γψ|Ω⟩. The spin is defined by the transformation behavior of
the creation operator, e.g. of O = ψ̄Γψ. It can be shown that if the γ-matrices
combination Γ of the bilinear state is invariant under such a transformation it
describes a spin-0 particle. On the other hand if it transforms like a vector,
e.g. Γ = γµ → γµ′ = S−1(Λ)γµS(Λ) = Λµνγ

ν the state corresponds to a spin-1
particle. This is stated in the Wigner Eckart theorem.
Note that the rotational symmetry is broken on the lattice and therefore the
above consideration are only rigorous valid in the continuum.

3.4 Isospin

The two light quarks, e.g. one up and one down quark, can form an isospin
doublet. This doublet has a well defined isospin of 0 or 1 corresponding to the
behavior under isospin transformation. It is known from quantum mechanics
that an antisymmetric combination of two spin-1/2, or in this case isospin-
1/2 particles form a (iso)spin-0 state while a symmetric combination shows a
(iso)spin-1 state. Since the operator remains unchanged or changes its sign
under exchange of the light quarks, i.e.

I = 1 : O(u, d) →
u↔d

O(d, u)

I = 0 : O(u, d) →
u↔d

−O(d, u) (3.21)

explicit implementation of the (anti-)symmetrization of (3.1) is not necessary in
this case and will therefore be neglected.
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4 QUANTUM NUMBERS OF THE ΛB- AND ΩB-BARYON

4 Quantum Numbers of the Λb- and Ωb-Baryon

In the following I will introduce the quantum numbers and creation operators
for the Λb- and Ωb-baryon. I will refer to u, d, s as the physical and χu, χd, χs
as the twisted quark fields. While I will investigate all quantum numbers in
the physical basis, the twisted quark fields are used in numerical calculations.
The states are labeled by isospin I, spin of the light quarks j and parity P . A
summary of the quantum numbers of the Λb- and Ωb-baryon can be found in
table 1.

4.1 The Λb-baryon

The Λb-baryon consist of one bottom, one up and one down quark, i.e. Λb =
b(ud− du), and has the following quantum numbers (cf. [3]):

Λb : I(jP ) = 0(0+) (4.1)

The mass difference to the B meson was determined to be ∆m(Λb, B) = mΛb
−

mB = 461 MeV [10].
I will show that the choice of Γ = γ5 in the creation operator from the ansatz
(3.1) will produce the desired quantum numbers when the operator is applied
to the vacuum.
In the following calculations of quantum numbers I therefore assume Γ = γ5
and thus the operator for the Λb-baryon to be

OΛb
= ϵabcba

(
(ub)T γ0γ2γ5dc

)
(4.2)

Note that in fact the creation operator (4.2) with the light quark combination
ud is the same as with −du and therefore proportional to the difference ud−du
in b(ud− du) = Λb.

4.1.1 Parity

According to (3.7) the parity in the physical basis is determined by

− γ0Γγ0 = −γ0γ5γ0 = +γ5 (4.3)

With the help of (3.6) it is straight forward to see that the parity is P = +.

4.1.2 Spin

Following the steps described in subsection 3.3 an infinitesimal rotation around
one arbitrary axis k with k ∈ {1, 2, 3} yields (for simplicity I will only consider
the necessary part in (4.2))

(ub)T γ0γ2γ5d
c|Ω⟩ → (ub)T γ0γ2

(
1− α

2
γ0γ5γk

)
γ5

(
1 +

α

2
γ0γ5γk

)
dc|Ω⟩

= (ub)T γ0γ2

(
1− α

2
γ0γ5γk

)(
1 +

α

2
γ0γ5γk

)
γ5d

c|Ω⟩

= (ub)T γ0γ2γ5d
c|Ω⟩+O(α2) (4.4)
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4 QUANTUM NUMBERS OF THE ΛB- AND ΩB-BARYON

The comparison in (3.20) leads to the fact that Jk
(
(ub)T γ0γ2γ5d

c|Ω⟩
)
= 0 and

therefore J 2
k

(
(ub)T γ0γ2γ5d

c|Ω⟩
)
= 0 which corresponds to a momentum of the

light quark doublet of j = 0. Since the heavy quark carries a spin of 1/2 the
total spin of the particle described by (4.2) is J = 1

2 .

4.1.3 Isospin

According to subsection 3.4 flavor exchange yields the isospin. This means, that
by using (3.21) the isospin can be determined to be I = 0, as is shown below.

ϵabcba
(
(ub)T γ0γ2γ5dc

)
= ϵabcba

(
(ub)TAγ

0
ABγ

2
BCγ

5
CDd

c
D

)
→ ϵacbba

(
(dc)TDγ

5
DCγ

2
CBγ

0
BAu

b
A

)
= ϵabcba

(
(db)T γ5γ2γ0uc

)
= −ϵabcba

(
(db)T γ0γ2γ5uc

)
(4.5)

4.2 The Ωb-baryon

The Ωb-baryon is made out of one bottom and two strange quarks. It has the
following quantum numbers (cf. [3]):

Ωb : I(jP ) = 0(1+) (4.6)

I will make a similar ansatz for the Ωb creation operator as I did in subsection 4.1
for the Λb creation operator (cf. (4.2)), i.e. I will choose γj as the suitable Γ in
(3.1).

OΩb
= ϵabcba

(
(ub)T γ0γ2γjdc

)
(4.7)

In the following I will show as before that this ansatz applied to the vacuum
produces the desired quantum numbers (4.6).

4.2.1 Parity

Looking at (3.7) the parity of the chosen creation operator (4.7) is given by the
expression

− γ0Γγ0 = −γ0γjγ0 = +γj (4.8)

With this the parity of the Ωb particle described by (4.7) is P = +, as can be
seen from (3.6).

4.2.2 Spin

Let us assume a certain γk-matrix in (4.7), e.g. k = 3. Now performing an
infinitesimal rotation, e.g. around the x-axis, as stated in subsection 3.3 leads

12



4 QUANTUM NUMBERS OF THE ΛB- AND ΩB-BARYON

to:

(ub)T γ0γ2γ3d
c|Ω⟩ → (ub)T γ0γ2

(
1− α

2
γ0γ5γ1

)
γ3

(
1 +

α

2
γ0γ5γ1

)
dc|Ω⟩

= (ub)T γ0γ2

(
1− α

2
γ0γ5γ1

)(
1− α

2
γ0γ5γ1

)
γ3d

c|Ω⟩

= (ub)T γ0γ2 (1− αγ0γ5γ1) γ3d
c|Ω⟩+O(α2)

= (ub)T γ0γ2 (1− αγ0(−γ0γ1γ2γ3)γ1) γ3dc|Ω⟩+O(α2)

= (ub)T γ0γ2γ3d
c|Ω⟩+ α(ub)T γ0γ2γ2d

c|Ω⟩+O(α2)

(4.9)

where I kept only the interesting part of (4.7) for simplicity. But according to
the comparison (3.20) this means that

J1((u
b)T γ0γ2γ3d

c|Ω⟩) = −i((ub)T γ0γ2γ2dc|Ω⟩) (4.10)

In order to know how the initial state (ub)T γ0γ2γ3d
c|Ω⟩ transforms under J 2

1

one has to apply J1 again, this time acting on the new state (ub)T γ0γ2γ2d
c|Ω⟩.

Using the exact same algebra as before I obtain the following result:

J1((u
b)T γ0γ2γ2d

c|Ω⟩) = +i((ub)T γ0γ2γ3d
c|Ω⟩) (4.11)

Hence

J 2
1 ((u

b)T γ0γ2γ3d
c|Ω⟩) = J1

(
J1((u

b)T γ0γ2γ3d
c|Ω⟩)

)
= J1

(
−i((ub)T γ0γ2γ2dc|Ω⟩)

)
= −i

(
+i((ub)T γ0γ2γ3d

c|Ω⟩)
)

= +((ub)T γ0γ2γ3d
c|Ω⟩) (4.12)

The rotation around the y- and z-axis as well as the rotation of the operator
choosing k ∈ {1, 2, 3} in (4.7) is derived analogously, e.g. one finds that for
k = 3

J 2
2 ((u

b)T γ0γ2γ3d
c|Ω⟩) = +((ub)T γ0γ2γ3d

c|Ω⟩) (4.13)

J 2
3 ((u

b)T γ0γ2γ3d
c|Ω⟩) = 0 (4.14)

It is easy to see that from the above calculations and according to subsection 3.3
the operator given in (4.7) corresponds to a spin of the light quarks of 1 since
J 2((ub)T γ0γ2γkd

c|Ω⟩) = (J 2
1 +J 2

2 +J 2
3 )((u

b)T γ0γ2γkd
c|Ω⟩) = 2((ub)T γ0γ2γkd

c|Ω⟩),
with 2 = j(j + 1) for j = 1, holds for all k ∈ {1, 2, 3}.

4.2.3 Isospin

Since the Ωb-baryon consists of two strange quarks and one bottom quark, it
has an isospin of I = 0 and strangeness S = −2.
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5 COMPUTATIONAL SETUP

5 Computational Setup

5.1 The two point correlation function

It is shown in [1] that the mass of a b-baryon, interpreted as the difference
between the vacuum energy EΩ and the energy of the ground state E0 in the
sector described by the quantum numbers of the baryon, can be calculated from
the the limit at infinite temporal separation of the exponential decay of the two
point correlation function.

lim
t→∞

⟨Ω|O†(t)O(0)|Ω⟩ = |⟨Ω|O|0⟩|2e−(E0−EΩ)t (5.1)

It is common to look at the effective mass plateau described by (5.2) in order
to determine the mass of the baryon.

meff = log

(
⟨Ω|O†(t+ 1)O(0)|Ω⟩
⟨Ω|O†(t)O(0)|Ω⟩

)
(5.2)

Hence in order to calculate the mass of the Λb-baryon I need an expression for
⟨Ω|O†(t)O(0)|Ω⟩ which can be computed numerically on the lattice. It is shown
in [1] that with the help of (3.1) this correlation function is found to be

C(t) = ϵabcϵdef ⟨Uad(t, 0)Trspin
(
CΓ(∆−1

χu
)cfCΓ(∆−1

χd
)be

)
⟩ (5.3)

In this expression ∆−1
χu

and ∆−1
χu

stand for the propagators of the light quarks
in the twisted mass basis. These were calculated performing inversions of the
Dirac operator using point sources according to [1]. Furthermore ⟨...⟩ indicates
the weighted average over the gauge link configurations

∫
dUe−Seff [U ] where

Seff [U ] ∝ SG[U ]−log(det(γµDµ[U ]+m)). HereDµ[U ] stands for the discretized
Dirac operator. Uab = Uab(t0, t) stands for the Wilson line from one lattice
site at some initial time t0 to the same (spatial) site at some later time t. It
represents the heavy quark propagator which can be shown using Heavy Quark
Effective Theory (HQET) [5].

5.2 Smearing techniques

In order to get a good overlap of the trial state O|Ω⟩ signal with the ground
state |0⟩ I use standard smearing techniques as in [2]. The spatial links were
smeared using APE smearing with parameters NAPE = 40 and αAPE = 0.5. The
fermionic fields were smeared according to Gaussian smearing with a smearing
level NGauss = 90 and κGauss = 0.5. These are the parameters optimized in
previous similar computations (cf. [3, 10]). Finally I used HYP2 smearing for
the temporal links in order to reduce the self energy of the static quark and
therefore to reduce statistical errors.

5.3 Technical parameters

In this analysis I will use T/a × (L/a)3 = 48 × 243 gauge link configuration
produced by the European Twisted Mass Collaboration (ETMC). I used as

14



5 COMPUTATIONAL SETUP

mentioned before the Wilson twisted mass action for the fermionic action with
twisted masses µu/d = 0.004 corresponding to a pion mass of mπ = 336 MeV,
µs = 0.022 and κ = 0.160856 which corresponds to a maximal twist. I assumed
the sea quarks to be up and down quarks which as well corresponds to µsea =
0.004. I chose the tree-level Symanzik gauge action (cf. [9]) with a β = 3.9
which yields a lattice spacing of a = 0.079 fm for the computations of the gauge
link configurations.
More details on how to generate gauge link configurations can be found in [9].
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6 NUMERICAL RESULTS

6 Numerical Results

As already mentioned I obtained the following results in close collaboration with
my colleague. This is why some of the figures shown below can also be found
in his thesis (cf. [1]).
The results presented in this section were obtained using 23 to 24 gauge config-
urations. The states of interest were chosen to be two experimental measured
states, i.e. the Λb and Ωb-baryon, as well as one state in the following denoted
by bss γ0, which was not yet experimentally measured. The quantum numbers
are listed in table 1.
Due to the small statistics the comparisons of the errors with the results from
[3, 10] are based on estimations and have to be investigated in more detail in
future works. Because of the usage of Monte Carlo methods the error goes with
1/
√
N .

While in [10] a total amount of NW = 200 gauge configurations were used as
well as two ‘types’ of strange quarks (to improve the statistics), s+/s− (cf. [1]),
I used N = 23 gauge configurations for the Λb-baryon and N = 24 gauge con-
figurations for the other two states Ωb and bss γ0. I also used only one ‘type’
of strange quark, i.e. either s+ or s−. Therefore the ratio R of the relative
errors from this work and [10] should have the following values in order for both
methods, point source and timeslice method, to be equally good:

1. Λb: 23 gauge configurations used; R0 =
√

NW

N =
√

200
23 ≈ 2.95

2. Ωb: 24 gauge configurations used; R0 =
√

NW

N =
√

400
24 ≈ 4.08

3. bss γ0: 24 gauge configurations used; R0 =
√
2NW

N =
√
2 · 400

24 ≈ 5.77

Note that in contrast to the other two states the state bss γ0 was computed
only in positive time direction which makes the ratio of the errors greater by a
factor of

√
2.

To be better the errors should be smaller than that.

state Γ light quarks P Iz j

Λb γ5 ud− du + 0 0

Ωb γj ss + 0 1

bss γ0 γ0 ss − 0 0

Table 1: states of interest in this work; quantum numbers according to [3]

Figure 1 shows the correlation functions for the three investigated states. As
was shown in [10] the imaginary part of the correlator is zero. It can be seen that

16



6 NUMERICAL RESULTS

this is the case for each state, i.e. the imaginary part vanishes within the error.
This is a valuable cross check of the numerical computation. In the following I
will therefore set the imaginary part to zero.
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Figure 1: real and imaginary part of the two point correlation function for Λb,
Ωb and bss γ0

The corresponding effective masses can be found in figure 2. According to (5.1)
the mass can be determined only in the limit of infinite times. Therefore I
plotted the effective masses for the Λb as well as the Ωb-baryon twice: one
time with a smaller and one time with a greater temporal separation. When
comparing these masses with the masses m∗ obtained in [3] it can be seen that
there is a qualitative agreement (cf. table 2). Note that both masses derived
in this work are bigger than the ones obtained in previous work. Nevertheless
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6 NUMERICAL RESULTS

the statistical accuracy is by far not sufficient enough to identify effective mass
plateaus and needs to be improved for a more precise comparison.

state a ·m∗ a ·m m∗ −mB [MeV ] m−mB[MeV ]

Λb 0.5863± 0.0085 0.6069± 0.0415 461(24) 512(103)

Ωb 0.7482± 0.0034 0.7999± 0.0244 865(8) 994(60)

Table 2: comparison of the effective masses obtained in this work (m) and in
[3, 10] (m∗)
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Figure 2: effective mass plot for Λb and Ωb with mass fit for smaller (left) and
greater (right) temporal separation

An other cross check for the numerical results is the comparison of the cor-
responding correlation functions between this work (which were normed with
respect to the value of the correlator at T = 1) and [10]. This is given in figure
3. It can be seen that except for the bss γ0 state the correlation functions match
within the errors.
Figure 3 also shows the ratio of the errors obtained in this work and in [10]. At
a first glance it seems that in case of the Λb and bss γ0 the point source method
is as good as the timeslice source method. Surprisingly this seems not to be
true for the Ωb anymore. Naively one would think it would be just the other
way around: The error in the point source method occurs only due to the gauge
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6 NUMERICAL RESULTS

link fluctuations which are stronger suppressed in the timeslice method (note
that there is additional statistical noise in case of timeslice sources) . Since
these fluctuations are stronger suppressed by heavier quarks the error of the
Ωb should be smaller than the error of the Λb and hence the ratio R should be
better in case of the Ωb.
That the ratio in case of the Λb is better than for the Ωb might be due to the
different Γ structure of the creation operators and has to be investigated in more
detail in future works.
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Figure 3: left: comparison of the correlation function derived in this work and
in [10]; right: ratio of relative errors R for Λb and Ωb-baryon as well as the
bss γ0 state. The red line indicates the ratio R0 at which point source and
timeslice source method are equally good.
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7 SUMMARY AND OUTLOOK

7 Summary and Outlook

Surly the ratio of the errors have to be investigated in further analysis, i.e. using
more gauge configurations than was done in this work. Nevertheless the results
presented above are surprising in the sense that one would naively expect the
error of the Ωb to be better than the error of the Λb and not the other way
around. Since using the point source method the error only occur due to the
gauge link configuration and should be smaller the heavier the state.
Note that the statistics in this work were far to poor to allow a good deter-
mination of the particle mass. For more precise physical statements one could
consider, next to the use of far more gauge configurations, more particle cre-
ation operators which produce the same quantum numbers and therefore the
same state. Another possibility is to consider also a correlation matrix CΓ1,Γ2(t)
as was done in [10]. However the determination of the mass was not the main
goal of this thesis.
In contrast to the calculation of mesons where the error could be improved dras-
tically (cf. [11]) an improvement of the errors using the point source method
rather than the timeslice method in case of baryons could not be found. This
might be due to the fluctuations of the static quark, which is not present in the
meson.
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