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Abstract
This work investigates parity and isospin mixing effects of Wilson twisted mass quarks in
mesonic spectral quantities. Based on gauge configurations with Nf = 2+1+1 flavors of
twisted mass quarks, different valence actions are applied to reduce symmetry breaking
effects. In total four different valence actions are chosen: Wilson and Wilson twisted
mass quarks, with and without the clover term.
When considering such a mixed action approach, tuning of the valence and sea quark
sector becomes of central importance. Demanding suitable matching conditions is manda-
tory for a consistent continuum limit, so that correct results are obtained.
Results for quantities as the pion, D meson and J/ψ are presented and discussed in all
four action setups, at the end of the work.

Kurzfassung
In dieser Arbeit werden Paritäts- und Isospin-Mischungseffekte, für Wilson twisted mass
Quarks, in ausgewählten Mesonen untersucht. Basierend auf Eichkonfigurationen mit
Nf = 2 + 1 + 1 flavors von Wilson twisted mass Quarks, werden im Valenzsektor un-
terschiedliche Wirkung eingesetzt um jene Effekte zu reduzieren, die durch gebrochene
Symmetrien auftreten. Insgesamt werden dazu vier verschiedene Valenzwirkungen un-
tersucht: Wilson und Wilson twisted mass Quarks, mit und ohne Cloverterm.
Bei einer Methode wie einem solchen mixed action setup ist das Anpassen von Valenz-
und See-Sektor von zentraler Wichtigkeit. Nur für präzise Übereinstimmungen beider
Setups, ist das Kontinuum Limit wohl definiert und erlaubt korrekte Aussagen.
Zum Abschluss werden die Ergebnisse von Observablen wie dem Pion, D Meson und
J/ψ, für alle untersuchten Wirkungen, präsentiert und diskutiert.
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1 Introduction
The standard model is a non-abelian gauge theory with the symmetry group SU(3) ×
SU(2)× U(1). Quantum chromodynamics (QCD) - the SU(3) component - is a theory
of the strong interaction between quarks and gluons, which is responsible for the forma-
tion of hadrons. Field theories in general are systems with an infinite number of degrees
of freedom. To avoid divergent results a regularization of the theory by an ultraviolet
cut-off is mandatory. For weak couplings - SU(2) and U(1) - the expansion of the path
integral in the coupling constant leads to the well-known Feynman diagrams, which are
then regularized order by order and allow precise results.
However, for strong couplings the growth of the coupling constant in the infrared requires
a non-perturbative approach in order to investigate low energy properties. In 1974 K.
Wilson [1] proposed lattice gauge theory as a regularization of QCD. In lattice QCD
the euclidean space-time is discretized on a hypercubic lattice, with lattice spacing a.
Quark fields are living on the lattice sites, and gauge fields on the links connecting sites.
The lattice spacing a acts as the earlier demanded ultraviolet cut-off, rendering a finite
quantum field theory. Continuum results are recovered by demanding an infinite number
of lattice sites, and sending the lattice spacing to zero.

The foundation of this work is the lattice QCD formulation with so-called twisted mass
fermions, an extension of the original proposed formulation by Wilson. Though it is a
rather recent approach, by today it is already well established. With the original purpose
to eliminate unphysical zero modes to gain a suitable (partially) quenched approxima-
tion, this formulation quickly turned out to be used much more extensive.
In 2001 Frezzotti and Rossi showed [2, 3], that scaling violations can be reduced to O(a2)
by a modification of the standard Wilson mass term of m −→ m + iµγ5τ3 and tuning
the theory to "maximal twist". In the continuum limit, a chiral rotation shows that this
modification is equivalent to conventional QCD. This property is often referred to as
"automatic O(a) improvement" and is a major advantage of the tmLQCD (twisted mass
Lattice QCD) formulation. Further advantages are that the twisted mass term also acts
as an infrared cutoff and simplifies mixing patterns in the renormalization procedure.
On the other hand, the major drawback of the twisted mass approach is an explicit
breaking of parity and isospin symmetry at finite lattice spacing, only restored when the
continuum limit is reached. Due to the automatic O(a) improvement this breaking is an
O(a2) effect, as simulations in a quenched approximation confirm [4, 5].

Hadron spectroscopy, adapting the Wilson twisted mass lattice discretization for the
quark fields, is highly affected by these explicitly broken symmetries. Hadrons are clas-
sified by quantum numbers, in particular isospin I, angular momentum J and parity P .
The study of a hadron thus requires a suitable creation operator O such that, acting on
the vacuum |Ω〉, O|Ω〉 has the same quantum numbers I(JP ) as the hadron of interest.
In case of broken symmetries for the tmLQCD formulation, these quantum numbers are
however only approximate quantum numbers, restored in the continuum.
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In the calculation of hadrons with two different parity states or isospins of Iz = 0 with
I = 0 or I = 1, a mixing pattern is always present. For a rigorous calculation of e.g.
hadron masses from different parity sectors this pattern gives rise to two times the orig-
inal needed correlation functions. This problem grows when considering several states
with the motivation of investigating the overlap of different operators.

Computations with Wilson twisted mass fermions, tuned to maximal twist, have shown
to yield precise results for pseudo scalar masses down to mPS ≈ 300 MeV, i.e. with
very low statistical fluctuations, e.g. for two mass-degenerate flavors of quarks [6]. This
makes pseudo scalar meson masses ideal for scale setting, or tuning of masses, as it will
be shown in section 3.2.
The study of scalar mesons is however, due to the mentioned broken parity symmetry,
more difficult than pseudo scalar mesons using a Wilson twisted mass lattice discretiza-
tion. Especially those states are a long term motivation of this work. The investigation of
possible tetraquark candidates in the light scalar [e.g. f0(500) JP = 0+, K∗0 (800) JP =
0+, f0(980) JP = 0+, a0(980) JP = 0+] and heavy scalar [e.g. D∗s0(2317) JP = 0+,
Ds1(2460) JP = 1+, or charmonium states X and Z] meson sector is of great current
interest. A prominent example for this interest is probably found in the PANDA (anti-
Proton ANnihilation at DArmstadt) program as part of FAIR (Facility for Accelerated
Ion Research) in Darmstadt. There, (among others topics) the spectroscopy of the char-
monium spectrum and D meson states are planned to be measured with an accuracy of
about 100 keV above, or close to threshold.

Instead of the twisted mass action one could think of using different lattice discretizations
to get rid of the disadvantage of an explicit broken parity and isospin symmetry, as for
example, using standard Wilson fermions, where parity and isospin are exact symmetries.
The major aspect of this work is indeed to investigate other action setups, different from
Wilson twisted mass fermions, with the purpose of improving the spectroscopy of mesonic
quantities. But, however, generating gauge field configurations is a HPC (High Perfor-
mance Cluster) expensive task, so that an intermediate step is adopted here. Instead of
generating gauge field configurations for all the action setups of interest, an approach of
mixed action setups is chosen. In this setup, the action of interest is only employed in
the valence quark sector, while in the sea quark sector gauge field configurations, with
Wilson twisted mass discretization, are kept throughout the work.
It is then mandatory to relate the valence and the sea quark sector, such that the validity
of the results is unharmed. This particular tuning process is rather time intensive com-
pared to other computations and was mainly performed, by relating pseudo scalar masses.

In total four different lattice discretizations were investigated in this work. On one hand
the unitary setup of Wilson twisted mass valence quarks on Wilson twisted mass sea
quarks, functioning as a reference and tuning point. Further standard Wilson fermions
were employed in the valence sector, realized by setting the twisted mass parameter to
zero, i.e. µ = 0. Finally an additional expansion of the actions, by adding the clover
action to both of these valence actions, i.e. Wilson twisted mass + clover fermions and
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Wilson + clover fermions, were considered.
The choice of Wilson fermions in the valence quark sector is of rather obvious nature,
since, and this was already stated, parity and isospin are exact symmetries in this action
setup, i.e. eliminating parity and isospin mixing completely. The drawback is that Wil-
son fermions by itself suffer from O(a) contributions, that can be numerically too large.
By further application of the clover term to the action these O(a) contributions are as-
sumed to be eliminated precisely (a more detailed explanation will follow). As a O(a)
improved theory, with parity and isospin as exact symmetries, this action setup was
expected to be of comparable quality as the unitary setup, with twisted mass valence
quarks on twisted mass sea quarks.
In the last of the investigated mixed action setups, the clover term is added to the twisted
mass valence action. This approach however, may at first appear strange, considering
that the clover term in terms of the Symanzik improvement procedure was designed to
remove O(a) contributions from the standard Wilson action. It is expected [7], that the
effect of the clover term on the, already O(a) improved, Wilson twisted mass discretiza-
tion could lead to a further reduction of the remaining O(a2) contributions. With the
twisted mass formulation as a discretization that only suffers from O(a2n) contributions
in physical observables, such a reduction would be of great value in particular, but also
for ongoing hadron spectroscopy projects like [8, 9, 10].

Parts of this work have been presented on the 31st International Symposium on Lattice
Field Theory and were published [11].

1.1 Outline
In this thesis mixed action approaches with twisted mass sea quarks are investigated,
with respect to their impact on parity and isospin mixing contributions as well as their
application for spectroscopy.
In the following a brief outline of the sections in this work, including their particular
purposes will be given.

After this introductory section the theoretical background, relevant for this thesis, will
be summarized. A detailed discussion of technical aspects is not intended. However the
basic principles of Wilson twisted mass are introduced and the most important quantities
will be presented. The following part covers further aspects, like the extraction of meson
masses on the lattice.
Section three presents the numerical results produced in this work. The tuning process,
necessary for consistent results within all four setups is explained such as the setups in
more detail. Right after computed mesonic quantities, like effective masses are presented
and commented. Isospin breaking effects are briefly considered. In the last section a
summary of results of this thesis is given with an additional conclusion of the results
obtained.
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1.2 Notation
Throughout this work mostly a compact notation was chosen, where indices are dropped
in order to make the reading more convenient. However, for a better understanding in-
dices are brought up sometimes during this work to highlight some details. The structure
for a fermion field is then

χ
a,(m)
A . (1.1)

Lower case letters in the upper indices denote color indices, capital letters in the lower
indices denote spin indices. Flavor indices are also denoted by lower case letters in the
upper indices, but with an additional bracket.

Additional to the spatial L and temporal T extension of the lattice, the overall lattice
volume will be denoted L3 × T = Λ and the spatial volume L3 = Λ3.

The Pauli matrices are

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (1.2)

Dirac matrices are used in the chiral representation

γ0 =

(
0 −1
−1 0

)
, γj =

(
0 −iτj
iτj 0

)
, j ∈ {1, 2, 3}, (1.3)

γ5 = γ0γ1γ2γ3 =

(
1 0
0 −1

)
. (1.4)
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2 Theoretical Background
2.1 Basic principles
In this section an overview of those aspects of lattice QCD, relevant for this work, will be
given. For a more detailed introduction into the topic cf. e.g. [12, 13, 14, 15, 16, 17, 18].

2.1.1 Standard Wilson fermion action
Introducing the well known lattice formulation of Wilson fermions

SF[ψ, ψ̄, U ] = a4
∑
x∈Λ

ψ̄(x)DW (m)ψ(x), (2.1)

with only one flavor for simplicity.

DW (m) =
1

2

(
γµ
(
∇µ +∇∗µ

)
− ar∇µ∇∗µ

)
+m (2.2)

denotes the standard Wilson operator and ∇µ,∇∗µ are the gauge covariant forward and
backward derivative. m is the physical quark mass and parameter r is the Wilson pa-
rameter, set to 1 hereafter.
The purpose of the Wilson term −a∇µ∇∗µ is the removal of so-called doublers. Doublers
are lattice artifacts that are found after performing a Fourier transformation of the lattice
Dirac operator and occur as unwanted poles of the momentum space propagator in every
corner of the Brillouin zone. The Wilson term is designed to cancel every unwanted pole
in momentum space, except the momentum zero pole.

2.1.2 Wilson twisted mass lattice QCD
The Wilson twisted mass formulation of lattice QCD is a particular type of Wilson
fermions, where a twisted mass term is added to the standard, unimproved Wilson-Dirac
operator. For an introduction to the concept of the twisted mass discretization consider
the standard Wilson action (2.1) in the continuum for Nf = 2 degenerate quarks

SF[ψ, ψ̄, A] =

∫
d4x ψ̄(x) (γµDµ +m)ψ(x). (2.3)

Performing an axial rotation ω1

ψ(x) = e
i
2
ω1γ5τ3 χ(x), ψ̄(x) = χ̄(x) e

i
2
ω1γ5τ3 , (2.4)

leaves the form of the action invariant, but transforms the mass term m −→ meiω1γ5τ3 .
With an additional isovector rotation ω2

mq + iµqγ5τ3 = me
i
2
ω2γ5τ3 , (2.5)
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and demanding ω1 = ω2, the twisted mass QCD action is obtained

SF[χ, χ̄, A] =

∫
d4x χ̄(x) (γµDµ +mq + iµqγ5τ3)χ(x), (2.6)

where mq denotes the untwisted quark mass and µq the twisted mass. In the continuum
both formulations are equivalent, however, at finite lattice spacing this is not the case
due to an explicit breaking of axial symmetry by the Wilson term

SF[χ, χ̄, U ] = a4
∑
x

χ̄(x) (DW (m0) + iµqγ5τ3)χ(x). (2.7)

Making Wilson and Wilson twisted mass two different lattice regularizations.
For the discretized Wilson twisted mass action m0 is referred to as the bare untwisted
quark mass. Fermion fields were presented in the physical basis {ψ, ψ̄} and the twisted
basis {χ, χ̄}, respectively.

The twist angle ω1 in continuum theory relates the untwisted quark mass and the twisted
mass by

tanω1 =
µq
mq

, (2.8)

and is analogously defined in the renormalized theory. The twist angle implies the most
interesting feature of tmLQCD. For a twist angle of ω1 = π/2 the theory is referred to be
at maximal twist. For mtmLQCD (maximal tmLQCD) an automatic O(a) improvement
of physical observables as been shown [3].

The major drawback of the twisted mass formulation of LQCD comes with the twisted
mass term +iµγ5τ3. With γ5 acting in Dirac space and τ3 acting in flavor space, parity
and isospin symmetry are no longer exact symmetries in this lattice formulation. As a
consequence a mixing of parity partners, states with opposite parity, arises the necessity of
dense correlation matrices for a rigorous study of hadrons. The breaking of isospin/flavor
symmetry is responsible for a mass splitting in opposite degenerated isospin partners.
With twisted mass at maximal twist, these effects of symmetry breaking are O(a2) lattice
discretization errors [4, 5] and are going to be investigated in this thesis.

Maximal twist is also applied by realizing the physical quark mass (2.5) only by the
twisted mass, as (2.8) shows. This property is fulfilled when the bare untwisted quark
mass is tuned to its critical value, so that the untwisted quark mass vanishes

mq = m0 −mcrit. (2.9)
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For numerical calculations the Wilson twisted mass QCD action (2.7) will be referred to
as

SF[χ, χ̄, U ] =
∑
x∈Λ

(
χ̄(x)(1 + i2κaµqγ5τ3)χ(x) (2.10)

−κ
3∑

µ=0

[
χ̄(x)Uµ(x)(1− γµ)χ(x+ µ̂) + χ(x+ µ̂)Uµ(x)†(1 + γµ)χ(x)

])
, (2.11)

where a rescaled dimensionless fermion field is considered

χ −→
√

2κ

a3/2
χ, xµ −→ a xµ. (2.12)

The hopping parameter κ is an alternative way of labeling the bare untwisted quark mass
and becomes the input variable for numerical calculations

κ = (2am0 + 8)−1. (2.13)

For the generation of gauge link configurations the following Nf = 2+1+1 twisted mass
lattice discretizations were chosen. The lattice action for the light degenerate quark
doublet (u, d) is given by [2], corresponding to the introduced formulation of twisted
mass LQCD

Slight[χ
(l), χ̄(l), U ] = a4

∑
x

χ̄(l)(x) (DW (m0) + iµγ5τ3)χ(l)(x), (2.14)

with the quark fields χ(l) =
(
χ(u), χ(d)

)
. The twist transformation, relating physical and

twisted quark fields in the continuum, is given according to (2.4) by

ψ(l) = eiωlγ5τ3/2χ(l), ψ̄(l) = χ̄(l)eiωlγ5τ3/2. (2.15)

While for the heavy sea quark doublet non-degenerate quarks (c, s), with a different
action according to a proposal by [19] are used

Sheavy[χ(h), χ̄(h), U ] = a4
∑
x

χ̄(h)(x) (DW (m0) + iµσγ5τ3 + µδτ1)χ(h)(x), (2.16)

where the quark fields denote χ(h) =
(
χ(c), χ(s)

)
. This method is based on the flavor

off-diagonal splitting +µδτ1 and changes also the twist transformation

ψ(h) = eiωhγ5τ1/2χ(h), ψ̄(h) = χ̄(h)eiωhγ5τ1/2. (2.17)

By performing an isovector and axial rotation on (2.16) in the continuum the standard
action (2.3) can be achieved with an additional +µδτ3 (τ1 −→ τ3 due to the vector
transformation)

SF[ψ, ψ̄, A] =

∫
d4x ψ̄(x) (γµDµ +m+ µδτ3)ψ(x). (2.18)
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The mass of the heavy doublet (c, s) is then described by the split in µδ: mc = m + µδ
and ms = m− µδ.

In the valence sector of the action a single degenerate quark action, similar to (2.14),
will be used. It has been seen [20], that for the unitary approach reliable results were
difficult to extract in the charm sector, due to a mixing of strange and charm quarks.
This problem can be avoided by employing a twisted mass discretization, different from
the sea, in the valence sector

Sdeg[χ(l,c,s), χ̄(l,c,s), U ] = a4
∑
x

χ̄(l,c,s)(x) (DW (m0) + iµγ5τ3)χ(l,c,s)(x). (2.19)

Similar to the light degenerate quark doublet χ(l) =
(
χ(u), χ(d)

)
, strange and charm

quarks are described by degenerate twisted mass doublets χ(c) =
(
χ(c+), χ(c−)

)
, χ(s) =(

χ(s+), χ(s−)
)
. The degenerate valence doublets allow then two realizations of charm

and strange quarks, which differ in the sign of the twisted mass term ±iµc,sγ5τ3.
This mixed action setup has not only the advantage that a flavor mixing is absent, but
also that the valence quarks stay as close to the sea quarks as possible, i.e. the critical
mass is identical in the sea and valence sector. Due to the present similarity to the
unitary setup this setup will be referred to as unitary setup in the following.

2.1.3 Gauge Action
In the gauge sector the Iwasaki gauge action [21]

SG[U ] =
β

3

∑
x

(
b0
∑
µ<ν

{
1− ReTr

(
U1×1
µν (x)

)}
+ b1

∑
µ,ν

{
1− ReTr

(
U1×2
µν (x)

)})
, (2.20)

is adopted, where β = 6/g2
0, g0 being the bare gauge coupling and b0 = 1 − 8b1 as

required for continuum limit normalization, b1 = −1/12 (standard Wilson gauge action
for b1 = 0). U1×1

µν (x) is the plaquette, in the following also referred to as Uµν(x); and
U1×2
µν (x) is a rectangular Wilson loop in the µ-ν-plane.

2.1.4 Mixed action setup
One major aspect of this work is the analysis of lattice discretization errors under use
of various lattice actions. Instead of employing different discretizations by generating
gauge field configurations a much cheaper option is chosen here: By keeping Wilson
twisted mass fermions in the sea and varying only the valence quark action it is possible
to achieve early results for observables of interest

Dsea 6= Dvalence, mphys.
sea 6= mphys.

valence, (2.21)

where D denotes the Dirac operator. Such an approach is called a mixed action setup. To
secure validity within such an approach it is mandatory to relate computed observables



2 Theoretical Background 9

with unitary results, guaranteeing an identical continuum limit convergence of the mixed
action setup.

2.1.5 Sea quarks
The sea quark sector describes virtual quark pairs created and annihilated by the gluon
field. They appear after Grassmann integration as determinant of the present Dirac
operator

〈O〉 =
1

Z

∫
d[χ, χ̄]d[U ] Oe−Seff =

1

Z

∫
[dU ] det

(
Dsea(msea)

)
Oe−SG , (2.22)

and are highly nontrivial to calculate, since the fermion determinant is a functional of
the gauge field (e.g. quenched approximations, where these determinants are ignored to
simplify the problem).
In a Feynman diagram language sea quark contributions can be referred to as internal
closed loops within the hadron, cf. figure 1.

For the sea quark action the Wilson twisted mass discretization presented in section 2.1.2
is adapted. This will not change throughout the work.

2.1.6 Valence quarks
In theory, valence quarks are referred to as those quarks appearing in quark propagators
and are so responsible for the quantum numbers of the hadron described

Dvalence(mvalence)
−1. (2.23)

Referring again to the picture of Feynman diagrams, the valence quark sector can anal-
ogously be imagined as the quarks denoted by external and internal lines converging in
vertices of the diagram, cf. figure 1.

x1 x0

Figure 1: Example of quark lines contributing in mesonic propagators.

As already stated, in contrary to the sea quark action different valence quark actions will
be used throughout this work, this corresponds to the computation of quark propagators
with valence quark properties. This particular topic will be further discussed in section
3.2.
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2.1.7 Symanzik improvement
In a later state of the work the Symanzik improvement programme [22] will be applied
on the valence action in order to reduce lattice discretization effects.

For the standard Wilson action, Sheikoleslami and Wohlert have shown that by adding
just one extra term to the action an O(a) on-shell improvement can be achieved. This
term is of the same dimension as the leading correction and needs to be multiplied with
an appropriate factor, such that next order discretization errors are precisely canceled.
By doing so the Wilson action becomes O(a) improved.
In order to cancel contributions of leading correction writing down the effective lattice
action in the form

Seff =

∫
d4x

(
L(0)(x) + aL(1)(x) +O(a2)

)
(2.24)

shows, that therefore an additional term of dimension 5 will be needed. Requiring identi-
cal symmetries to the original action L(0)(x) for the additional term the leading correction
term L(1)(x) can be written as a linear combination L(1) =

∑5
j=1 cjL

(1)
j of five dimension-

5 operators.
Application of the Dirac formula allows to omit two of the five operators. Two of the
remaining three operators can then be found in the original action and are taken into
account by a redefinition of the bare parameters m and g0. Hence, a single operator is
sufficient for the desired O(a) improvement:

Sclover[χ
(l), χ̄(l), U ] = cswa

5
∑
x∈Λ

∑
µ<ν

χ̄(l)(x)
1

2
σµνFµν(x)χ(l)(x), (2.25)

where σµν = i[γµ, γν ]/2 and

Fµν(x) =
i

8a2
(Qµν(x)−Qνµ(x)) (2.26)

is the discretized field strength tensor with

Qµν(x) ≡ Uµν(x) + Uν−µ(x) + U−µ−ν(x) + U−νµ(x) (2.27)

denoting the sum over plaquettes in the µ-ν-plane attached to x, cf. figure 2. Due to the
form of Qµν and its resemblance with a clover leaf, the action in (2.25) is also referred
to as clover term.

csw denotes the above mentioned coefficient, known as Sheikholeslami-Wohlert coefficient,
which has to be chosen in a suitable way to provide a rigorous elimination of lattice
discretization errors.
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x

µ

ν

Figure 2: Visualization of the clover leaf structure Qµν in the µ-ν-plane.

2.2 Effective meson masses on the lattice
This chapter describes how the effective meson masses have been calculated in this work.
The procedure for spectroscopy of hadron masses begins with the calculation of quark
propagators on given gauge configurations. These are used to calculate correlation func-
tions. A specific structure of gamma matrices is then further applied in the correlation
function to compute hadronic states with specific quantum numbers. In the limit of large
temporal separation quantities like the mass of the hadron can then be extracted from
the correlation function.

2.2.1 The correlation function
The key ingedrient for the calculation of hadron masses is the structure of the hadron
correlation function. For a mesonic state with the general form

C(t1 − t0) = 〈Ω|O†1(t1)O0(t0) |Ω〉 , (2.28)

where |Ω〉 denotes the vacuum. O(x) is a meson interpolator

Oj(t) =
1√
Λ3

∑
x∈Λ3

ψ̄(m)(x) Γj ψ
(n)(x). (2.29)

Γj is a product of gamma matrices and has to be chosen with respect to the quantum
numbers of the state to be computed. The sum over all lattice sites is necessary for zero
momentum projection, i.e. O(t) = O(p = 0, t). The factor 1/

√
Λ3 will be omitted in the

following.

At zero momentum the analysis of the correlation functions corresponds to an energy
equal to the mass of the hadron. Only this allows the Γ’s to act as parity projectors,
making separate examinations for positive and negative parity contributions possible.
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Reordering the fermion fields, with respect to their Grassmann nature, and applying
Wick’s theorem, i.e. relating the fermionic two-point function with the inverse of the
Dirac operator, one rewrites (2.28) into

C(t1 − t0) = −tr

(∑
x0,x1

D(n)(x0, x1)−1γ0Γ†1γ0D
(m)(x1, x0)−1Γ0

)
, (2.30)

where D(m)(x1, x0)−1 is the inverse Dirac operator. Also referred to as quark propagator,
since it propagates a quark of flavor (m) from space-time point x0 to x1.
Very helpful is the use of the so-called γ5-hermiticity property

C(t1 − t0) = −tr

(∑
x0,x1

(
D(n)(x1, x0)−1

)†
γ5γ0Γ†1γ0D

(m)(x1, x0)−1Γ0γ5

)
. (2.31)

Eliminating the need of two separate calculations for the quark propagators when con-
sidering identical flavors, and practically giving the backwards running quark propagator
for free.
Note that for tmLQCD γ5-hermiticity comes along with an additional change of the
flavor D(u)(x0, x1)−1 = γ5

(
D(d)(x1, x0)−1

)†
γ5, simplifying the calculation of opposite

degenerated flavors, e.g. the pion χ̄(u)γ5χ
(d).

2.2.2 Quark propagators
From the previous section it is clear, that inverting the Dirac operator introduced in
(2.19) is mandatory to evaluate correlation functions. However, the quark propagator
presented in (2.31) is not calculated. There the entries of D(m)(x1, x0)−1 build up the
connection between every color and Dirac indices of every lattice site. The matrix it-
self so consists easily of O(1013) complex entries, and is only calculated if possible. As
a consequence not only the practical problem to store the complete propagator matrix
arises, but also can be found, that the information inside is this huge matrix is correlated.

One possibility of what can be calculated instead is a single column of the full propagator,
i.e. by fixing the lattice site. To do so one has to solve the linear system

Dab
AB(x2, x1)φn[ã, Ã, x0]bB(x1) = ξn[ã, Ã, x0]aA(x2) (2.32)

for φ, using ξ to fix the site. These spinors are referred to as sink and source of the quark
propagator. For this particular example so-called point sources are used, where n denotes
the number of the source and [ã, Ã, x0] denotes the fixed lattice site. In the following this
notation will be used to distinguish between the actual indices and space time point of
the source ξ (here a, A and x2) and the lattice site on which the source is located (here
ã, Ã and x0). The notation of the fixed lattice site inside the brackets [ã, Ã, x0] is not
strict. This means that the number and order of the indices can vary, as it will be the case
in the following section, where only the Dirac indices and the timeslice will be fixed [Ã, t̃].
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With color and Dirac indices fixed for this particular source type there are in total 12
sources necessary for the inversion of the quark propagator. In general several different
methods for the source placement are available, here it gives a propagator for a fixed
color and Dirac index, from x0 to an arbitrary x1.

φn[ã, Ã, x0]bB(x1) = Dbã
BÃ

(x1, x0)−1. (2.33)

This strategy is of course only applicable, if the particular type of sink, constructed be
the sources, can be used to express the requested correlation function.

Γ(x1)

D(x1, x0)−1

γ5

(
D(x1, x0)−1

)†
γ5

Γ(x0)

Figure 3: Visualization of the quark propagator connecting source and sink.

2.2.3 Spin diluted timeslice sources and the one-end trick
With a great reduction of the noise-to-signal ratio over other stochastic methods (cf. e.g.
[23]) spin diluted timeslice sources in combination with the one-end trick (cf. e.g. [24])
are applied throughout this work. There the stochastic noise vanishes entirely on one
end of the correlator.
Beginning with the introduction of random spin diluted timeslice sources

ξn[Ã, t̃]aA(x) = δA,Ãδ(t− t̃)
(
± 1√

2
± i√

2

)
, (2.34)

3×Λ3 random complex numbers are generated and copied to four sources n, where they
appear in different Dirac components. As a consequence four separate inversions are
needed on every gauge configuration for the chosen timeslice, to calculate the complete
number of Dirac indices.
A different choice for the stochastic noise is possible as well, as long as〈(

ξn[Ã, t̃]aA(x)
)†
ξn[B̃, t̃]bB(y)

〉
= δa,bδA,ÃδB,B̃δ(x0 − t̃)δ(y0 − t̃)δ(x− y) (2.35)

is fulfilled. The brackets in 〈ξ†ξ〉 denote the average of an infinite number of samples.



14 2 Theoretical Background

In a subsequent step the actual inversion of the lattice Dirac operator for the given sample
source has to be performed, i.e. solving Dφ = ξ for φ

φn[Ã, t̃]bB(x1) =
∑
x0

Dba
BA(x1, x0)−1ξn[Ã, t̃]aA(x0). (2.36)

This is very CPU time expensive, especially for light quark masses. The operations were
performed by using an iterative solver (here: conjugated gradient method) implemented
in the tmLQCD package. For a more detailed discussion of the technical realization con-
sider [25, 26].

After the inversion of the Dirac operator the meson correlation function is computed
according to (2.31).
Without the use of spin diluted sources one quickly finds a limitation to a certain Γ
structure, taking into account that spinors are used for the quark propagation

C(t1 − t0) = −

〈∑
x1

φn[Ã, t̃]aA(x1)†ΓABφn[B̃, t̃]bB(x1)

〉
(2.37)

= −

〈 ∑
x0,x1,x2

(
ξn[Ã, t̃]cC(x0)

)† (
Dca
CA(x1, x0)−1

)†
ΓAB

Dbd
BD(x1, x2)−1ξn[B̃, t̃]dD(x2)

〉
(2.38)

= −tr

(∑
x0,x1

(
D(x1, x0)−1

)†
ΓD(x1, x0)−1

)
. (2.39)

This provides the requested correlation function (2.31) only for Γ = γ5γ0Γ†1γ0 and under
a restriction of the corresponding Γ0 = γ5.

Using the concept of spin dilution a second Γ can be implemented in (2.37)

C(t1 − t0) = − (Γ0γ5)FE

〈∑
x1

φn[E, t0]aA(x1)†
(
γ5γ0Γ†1γ0

)
AB

φn[F, t0]bB(x1)

〉
(2.40)

= − (Γ0γ5)FE〈 ∑
x0,x1,x2

(ξn[E, t0]cC(x0))†
(
Dca
CA(x1, x0)−1

)† (
γ5γ0Γ†1γ0

)
AB

Dbd
BD(x1, x2)−1ξn[F, t0]dD(x2)

〉
(2.41)

= −
∑
x0,x1

(Γ0γ5)FE
(
Dca
EA(x1, x0)−1

)†
(γ5γ0Γ1γ0)ABD

bd
BF (x1, x0)−1. (2.42)

As it can be seen, the correlation function (2.31) is successfully rebuilt in the case of spin
diluted timeslice sources.
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2.2.4 Calculation of effective meson masses
The correlation function can then be used to extract the corresponding meson mass.
Adopting the limit T → ∞ the correlation function, written in the basis of eigenstates
of the hamiltonian Ĥ, quickly reduces to

C(t1 − t0) = 〈Ω|O†1(t1)O0(t0) |Ω〉 (2.43)

=
∑
k

〈Ω|O1(t1)†|k〉〈k|O0(t0)|Ω〉e−(Ek−EΩ)∆t, (2.44)

with |Ω〉 as vacuum state and EΩ as vacuum energy.
It can be seen that low lying states at large temporal separation have a dominating
contribution. The effective mass can be extracted by taking

meff = ln

(
C(t)

C(t+ a)

)
(2.45)

In the limit t → ∞ only ground state contributions will remain, giving the mass of the
particular state

mmeson = lim
t→∞

ln

(
C(t)

C(t+ a)

)
= E1 − EΩ. (2.46)

However, this work is concerned with the investigation of excited states. As already
mentioned due to parity symmetry breaking positive parity partners suffer from mixing
contributions from negative partners and vice versa. To study such states the calculation
of correlation matrices is necessary

Cjk(t) = 〈Ω|O†j(t)Ok(0) |Ω〉 . (2.47)

Cjk is a N × N matrix that describes N different states, where for Wilson twisted
mass the parity mixing contributions between operators are located on their off-diagonal
elements. Effective masses of all N states have to be extracted in one single operation,
i.e. by solving the generalized eigenvalue problem

Cjk(t)v
(n)
k (t, t0) = Cjk(t0)v

(n)
k (t, t0)λ(n)(t, t0), n = 1, ..., N t > t0, (2.48)

(cf. e.g. [27]). Similar to the previous case the effective mass is obtained by analyzing
exponentials of the eigenvalues

m
(n)
eff (t, t0) = ln

(
λ(n)(t, t0)

λ(n)(t+ a, t0)

)
. (2.49)

In the limit t→∞ the effective mass will again yield the mass of the n-th state observed.
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To assign the observed masses to the interpolators, an evaluation of the squared absolute
value of the eigenvector components |v(n)

k |
2 is additionally needed. Especially for more

complex problems with several interpolators, only the functional behavior of |v(n)
k |

2 in
temporal separation reveals contributions to the observed masses from the n different
states.

Considering a finite temporal lattice site T , meson propagation in t is symmetric in T −t.
This can be found in a proportionality of the eigenvalues λ(n)(t, t0) ∼ e−Ent + e−En(T−t),
so that with (2.49) and

λ(n)(t, t0)

λ(n)(t+ a, t0)
=

e−Ent + e−En(T−t)

e−En(t+a) + e−En(T−(t+a))
(2.50)

a cosh dependence in the effective mass plateau can be found. Due to that all effective
mass plateaus will be shown for t/a < T/2a− 1.
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3 Numerical results
3.1 Simulation setup
All results are based on gauge configurations generated by the ETM (European Twisted
Mass) collaboration, with Iwasaki gauge action (2.20) and Nf = 2 + 1 + 1 flavors of
twisted mass quarks (2.14), (2.16).

The fermionic and gauge sector of the action were presented in section 2.1.2.
Details to the Ensemble that was used are found in table 1.

Ensemble β (L/a)3 × (T/a) κ aµ aµσ aµδ

A40.32 1.9 323 × 64 0.16327 0.004 0.15 0.19

Table 1: Summary of the ensemble parameters.

This corresponds to a lattice spacing a ≈ 0.086 fm and a pion mass mπ ≈ 320 MeV.
For more details, consider [28]. All computations in this work have been performed on
≈100 gauge link configurations.

3.2 Tuning of the valence sector
3.2.1 Wilson twisted mass valence quarks
Following the introduction of section 2.1.2 this action setup is not a unitary setup, but
the closest mixed action setup to it, hence it will be referred to as unitary approach in
the following. This setup is commonly used in the ETM collaboration, e.g. for the com-
putation of the spectrum of meson masses, cf. [9, 10]. As a consequence of the lattice
discretization errors in the Wilson twisted mass approach the spectroscopy of several
meson masses become more complicated.
This works main purpose is the investigation of three lattice discretizations different from
the unitary approach (cf. the following sections) with the expectation of finding an action
setup, that may provide more suitable conditions for the spectroscopy of meson masses.
In the most ideal case the advantages of both actions from the sea and the valence would
be found to be combined for the computation.
This valence sector will so mainly serve as a reference point for every calculated ob-
servable and so help to analyze the effectiveness of the chosen strategy to reduce lattice
discretization effects.

In the valence sector the critical hopping parameter is identical to the sea with κcrit =
(2amcrit+8)−1 = 0.16327 and also is the light quark mass aµl = 0.004. The corresponding
strange and charm masses are aµs = 0.02322 and aµc = 0.27678, such that the K and
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D meson mass within the mixed action setup with structure s̄+d and c̄+d, correspond
to the unitary K and D meson mass [20], i.e. using (2.19) for computation of valence
quarks.
The complete lattice action can be written as

Stm valence[χ, χ̄, U ] = Sdeg[χ, χ̄, U ] + SG[U ]. (3.1)

3.2.2 Wilson valence quarks
Since the standard Wilson action is by itself not improved, and thus suffers from O(a)
discretization effects, results obtained in this mixed action setup are not expected to be
qualitatively on the level of the other setups. Nevertheless as an intermediate step, before
improving the Wilson fermions with the use of the clover term, numerical results will be
presented here and serve later as an additional reference for the Wilson clover results.

To computeWilson valence quarks on the twisted mass sea, the degenerate Wilson twisted
mass lattice action (2.19) will be used as valence action. By setting the twisted mass term
to zero, i.e. aµ = 0, the Dirac operator is identical to the standard Wilson operator and
the twist transformations, which related the physical quark fields to the twisted quark
fields, can be omitted, since quark fields will directly be used in the physical basis, i.e.
χ(f) → ψ(f).

When using a Wilson valence action, advantages are encountered during the computa-
tion of correlation matrices. Since parity and isospin symmetries are exact for a Wilson
action, no parity and isospin discretization errors are expected at all. Parity partner are
thus free from off-diagonal elements, i.e. Cjk = 0 for j 6= k while calculating a correlation
matrix. This feature might be of considerable advantage when one wants to calculate
correlation matrices which rely on sizable HPC resources.

Without the need for a parameter ensuring maximal twist the hopping parameter will
determine quark masses in the Wilson valence sector. The light and charm hopping
parameter κl = 0.162214 and κc = 0.13582 have been tuned such that the pion and D
meson mass, with structure ūd and c̄d, are approximately the same as for Wilson twisted
mass valence quarks, cf. 3.2.1.
The complete lattice action can be written as

SWilson valence[ψ, ψ̄, U ] = Sµ=0
deg [ψ, ψ̄, U ] + SG[U ]. (3.2)
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3.2.3 Wilson + clover valence quarks
Here a similar procedure as in the previous setup is adopted. By now adding the clover
action (2.25) to the standard Wilson valence action (2.19), where aµ = 0, lattice dis-
cretization errors of O(a) can be canceled. The Sheikoleslami Wohlert coefficient csw is
chosen according to a perturbative expansion [29]

csw(g0) = 1 + c
(1)
sw

g2
0

〈Uµν〉
+O(g4

0). (3.3)

csw(0) = 1 being the tree-level value for all gauge actions.
There the coefficient c(1)

sw was determined for several ensembles, for an ensemble as used
in this work it was found that c(1)

sw = 0.113(3). Together with an average plaquette value
of 〈Uµν〉 = 0.575079 we find for our setup

csw = 1.62051. (3.4)

Tuning of the light and charm hopping parameter is done analogously to the previous
setup. Note the reduction in the absolute value of the hopping parameter due to the
addition of the clover term. It is found κl = 0.13832 and κc = 0.12286.
The complete lattice action can be written as

SWilson+clover valence[ψ, ψ̄, U ] = Sµ=0
deg [ψ, ψ̄, U ] + Sclover[ψ, ψ̄, U ] + SG[U ]. (3.5)

3.2.4 Wilson twisted mass + clover valence quarks
In the last considered mixed action setup the clover action is added to the Wilson twisted
mass action as present in 3.2.1. This approach may at first appear odd, since we know
that Wilson twisted mass is already automatic O(a) improved at maximal twist by it-
self, and the clover improvement was initially designed for a standard Wilson action in
order to cancel O(a) errors. But it is implied in [7], that adding the clover term to a
maximal twisted Wilson twisted mass action could result in an improved O(a2) behav-
ior (O(a2) contributions may not vanish, but are supposed to be reduced compared to
Wilson twisted mass).

The csw coefficient (3.4) is kept for this setup. However, by adding the clover term to
our Wilson twisted mass action, maximal twist realized as previously is not guaranteed
to be still valid. Instead we find that the theory is not at maximal twist anymore and so
an additional retuning of parameters is required here.

To restore maximal twist the method of setting mPCAC to zero was applied. The PCAC
(partially conserved axial current) mass is by renormalization constants related to the
untwisted quark mass. Evaluating a vanishing PCAC mass for a large enough temporal
separation is hence in agreement with a bare untwisted quark mass at its critical value,
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i.e. the theory at maximal twist. The tuning has been performed by adjusting κ such
that the PCAC mass vanishes in the light quark sector,

mPCAC =

∑
x〈∂0A

a
0(x)P a(0)〉

2
∑

x〈P a(x)P (0)〉
, a = 1, 2, (3.6)

where

Aaµ(x) =
1

2
χ̄(l)(x)γµγ5τ

aχ(l)(x), P a(x) =
1

2
χ̄(l)(x)γ5τ

aχ(l)(x), (3.7)

are the axial vector current and the pseudo scalar density, respectively.

Figure 4 shows the tuning process of amPCAC for this particular csw. The considered slope
in 1/2κ was set to 1.0 by default and as it can be seen, applied with great agreement to
the situation. With a value of

amPCAC = −1.23 · 10−4 ± 1.15 · 10−4 (3.8)

the PCAC mass was determined in a demanded range of |mPCAC|/µ ≤ 0.1 (where
µ = 0.004), a criterion commonly used for the tuning to maximal twist, e.g. [28].
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Figure 4: Tuning of amPCAC for csw = 1.62051. (left) amPCAC as a function of temporal
seperation; (right) amPCAC as function of 1/2κ. The slope for amPCAC in 1/2κ
is 1.0 in this case.

Maximal twist was found to be restored for a critical hopping parameter of κ = 0.138867.
After applying the clover term to the Wilson twisted mass action and retuning to max-
imal twist, unitary results are not immediately restored. Instead further tuning in the
quark mass parameter µ are necessary to adjust the masses in a rather small range. Here
a slight shift of the dependency between pseudo scalar masses and quark masses can be
observed. mPS in the light quark sector becomes heavier while the pseudo scalar mass
in the heavy quark sector becomes lighter, than in a setup without clover term. For a
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more detailed study regarding this behavior consider [5]. So tuning of quark masses for
the light and charm quark mass develops in different directions in aµ, cf. figure 5.
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Figure 5: Tuning of the quark mass parameter µ with a constant κ = 0.138867 for the
light (left) and charm (right) quark mass with linear behavior in the pseudo
scalar mass squared. Notice the opposite directory of the shift between the
unitary and the tuned µ in the light and heavy sector.

The light and charm quark masses aµl = 0.003685 and aµc = 0.291968 approximately
restore the pion and the D meson mass as given in the unitary setup.
The complete lattice action can be written as

Stm+clover valence[χ, χ̄, U ] = Sdeg[χ, χ̄, U ] + Sclover[χ, χ̄, U ] + SG[U ]. (3.9)

To summarize all tuning parameters for the four different mixed action approaches, pre-
sented throughout this section, an overview of the tuned hopping parameters and quark
masses can be found in table 2.

Wilson twisted mass Standard Wilson
without clover with clover without clover with clover

κcrit 0.16327 0.138867
aµl 0.0040 0.003685 κl 0.162214 0.13832
aµc 0.27678 0.291968 κc 0.13582 0.12286

Table 2: Input parameters for both Wilson twisted mass and Wilson valence quarks, with
and without a clover term where csw = 1.62051.



22 3 Numerical results

3.3 Effective meson masses
The results presented here are produced by application of the one-end trick as explained
in section 2.2.3. For each stochastic timeslice source the timeslice was chosen randomly
for every gauge field configuration.
Inversion of the Dirac propagator was performed with a precision of ε2 = 10−18, referring
to a stopping criterium for the iterative solver, where the squared norm of the residual
propagator has to fulfill a precision of ||r||2 < ε2.

In order to extract mass values for the computed mesons χ2 minimizing fits of a constant
are performed to the corresponding mass plateaus. As a criterion on the quality of the
fit χ2/dof . 2.0 is required. Fitting intervals [tmin/a, tmax/a] are chosen for tmax/a ≤ 25,
see (2.50), briefly below the symmetric point. Pseudo scalar masses, with rather nice
plateaus, are usually fitted in a range of [tmin/a, tmax/a] = [15, 25].
tmax/a for scalar masses is chosen as a cut off for effective masses on ascendent temporal
separations, that suffer from too much noise.

Table 3 summarizes the mesonic states and the corresponding operators that are used
for the following calculations.

Meson Operator JP

π±, π0,con χ̄(u)γ5χ
(d), χ̄(u)χ(u) + χ̄(d)χ(d) 0−, 0−

D, D∗0 χ̄(c+)γ5χ
(d), χ̄(c+)χ(d) 0−, 0+

J/ψ, hc χ̄(c+)γjγ5χ
(c−), χ̄(c+)γjχ

(c−) 1−, 1+

χ̄(c−)γjχ
(c−), χ̄(c−)γjγ5χ

(c−) 1−, 1+

Table 3: Mesonic states and their quantum numbers that were calculated within this
work. The operators are presented for twisted mass fields with two degenerate
quarks, j ∈ {1, 2, 3}.

3.3.1 Light quark mass tuning
Tuning of the light quark masses may have been the most time-consuming part of the
whole work, considering the very CPU-time expensive operations of Dirac operator in-
versions. In figure 6 the time that was needed to find a solution with the conjugated
gradient method is shown. Every dot represents the inversion of a single source, where for
one gauge field configuration four sources are needed to be inverted, due to the one-end
trick.
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Figure 6: CPU-time for the inversion of a light quark mass Dirac operator over the
number of iterations needed to find a minimum with the conjugated gradient
method for identical precision in all setups.

In figure 7, the tuning results of the pion mass is presented, for three of the four mixed
action setups. Twisted mass results show excellent mass plateaus for the pion, with mi-
nor fluctuations after addition of the clover term.
However, light quark masses in the Wilson valence action show already an increase in
the statistical noise for t � a, even if the errors are still small. After addition of the
clover term to the action the picture gets worse. It was found that for Wilson+clover
valence quarks the mass plateau can not be determined via the same procedure as in the
previous cases. Large noise contributions already at small temporal separations make
it close to impossible to get a clear picture of a plateau. This behavior shows up when
approaching the light quark mass for an increasing hopping parameter κ. Where there
are still smooth plateaus for a pion mass around 2amπ± and above, and increasing error
in the plateau value for a decreasing pion mass already suggests a change for the worse
of the studied case. Below 2amPS the picture changes drastically, so that a plateau can
not be found.
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Reason for this behavior can be concluded from the critical hopping parameter κcrit of the
Wilson twisted mass + clover valence action. As can be seen from table 2 the absolute
value of κl = 0.13832 for Wilson + clover has to be chosen noticeable close to the value
for which the theory with clover term is at maximal twist, i.e. κcrit = 0.138867. So the
Wilson + clover valence action approximately corresponds to the theory at maximal twist
with µ = 0. Omitting the mass-like contributions coming from the application of the
clover term this would in principle mean to compute pion masses below the unitary value.
The situation is similar for the setup without the clover term, where κcrit = 0.16327 and
κl = 0.162214, but the hopping parameter for light quark masses is separated enough
from the critical value, such that still mass plateaus can be computed.
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Figure 7: Effective masses for the pion in all mixed action setups. The pion mass amπ±

was demanded to be identical within errors.

The corresponding light hopping parameter for the Wilson action setup with clover term
is then determined by an extrapolation of the pion mass in 1/2κ, with use of the clear
mass plateaus values above, cf. figure 8.
The following purpose of the tuned light quark mass is to tune the charm quark mass
parameters such that the corresponding D meson masses is consistent within all mixed
action setups. Since the mass of the D meson is mostly composed of charm quark
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contributions, displacements of the pion mass affect the D mass value only in a very
mild way, hopefully suppressing the effects coming from the inability to produce a clear
mass plateau for Wilson+clover. Figure 9 shows agreement within errors for the D meson
mass in several charm quark masses with an altered light quark mass of 1.3mπ± in the
setup with Wilson valence quarks. This argument is obviously valid independent of the
action of choice.
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3.3.2 Calculation of effective D, D∗0 masses
After tuning the light quark mass parameter to unitary results it is possible to determine
the charm quark mass for every setup, using a similar procedure. Instead of using pseudo
scalar mass results for the charm quark the D meson was chosen, with an already tuned
light quark component, to determine the charm quark parameter.
The mass of the parity partner D∗0 -which resulted from every setup individually, i.e.
no additional tuning is necessary- allowed then a first study of the discretization effects.
Effective masses of the D and D∗0 meson are shown in figure 10.

Relating to (2.47) the operators used are Oj ∈ {χ̄(c+)γ5χ
(d), χ̄(c+)χ(d)} for both Wilson

twisted mass valence quarks, and Oj ∈ {ψ̄(c)γ5ψ
(d), ψ̄(c)ψ(d)} for Wilson valence quarks.

This way operators generate the D and D∗0 meson with respective quantum numbers of
JP = 0− and JP = 0+, when applied to the vacuum.
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Figure 10: Effective masses of theD andD∗0 meson, obtained in four mixed action setups,
as a function of temporal separation t/a.

The mass of the low lying parity partner is identical within the setups by construction
and thus not of interest regarding further interpretations of the acquired results. The
quality of the plateau value is similar within all the setups except for the Wilson+clover
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setup, with a slightly worse picture.

For the excited D∗0 state one can observed that Wilson twisted mass valence quarks,
regardless of a present clover term, yield plateau values in a similar error range, which
is not the case for the plateau values of both Wilson valence quarks. There the addi-
tion of the clover term apparently even worsens the picture. In contrast to the Wilson
twisted mass valence quarks the clover term even shortens the temporal separation of
the effective mass plateau, an additional effect that is a reason for the worse plateau value.
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Figure 11: Squared absolute eigenvector components for the D and D∗0 meson for Wilson
twisted mass valence quarks, with and without clover term. Column line
graphs show the behavior for states of equal parity.

The squared absolute eigenvector components |v(n)
j |2 of the generalized eigenvalue prob-

lem (2.48) as function of temporal separation t/a are shown in figure 11. For Wilson
valence quarks no eigenvector components are shown. With parity as an exact symme-
try in this action setup no off-diagnoal elements are present in the correlation matrix,
eliminating parity mixing between the low lying and excited state entirely.
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It is observed that for the P = − state indeed a reduction of parity mixing between the
P = − and P = + state from around . 10% down to < 5% is present. On the other
hand, no further significant improvement for the parity mixing of the P = + state has
been observed.

3.3.3 Calculation of effective J/ψ, hc masses

Spectroscopy of the effective masses of the J/ψ meson and its parity partner hc are done
in a complete analogous way to the previous section.
The flavor neutral ηc and its parity partner χc0 are not studied, since even for twisted
mass fermions no parity mixing is present for these operators.

The operators used are Oj ∈ {χ̄(c+)γkγ5χ
(c−), χ̄(c+)γkχ

(c−)} for both Wilson twisted
mass valence quarks, and Oj ∈ {ψ̄(c)γkψ

(c), ψ̄(c)γkγ5ψ
(c)} for Wilson valence quarks,

with k ∈ {1, 2, 3}, generating the quantum numbers of JP = 1− and JP = 1+, when
applied to the vacuum.
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Figure 12: Effective masses of the J/ψ and hc meson, obtained in four mixed action
setups, as a function of temporal separation t/a.
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Figure 12 shows the effective mass plots for all mixed action setups, where a similar
behavior as for the already observed D and D∗0 can be noted. Pseudo vector mass fits
remain to give a very clear picture of the state. With a noticeable difference of the abso-
lute mass value for Wilson valence quarks the unimproved O(a) theory stands out from
the others. This may be an indication for the O(a)-improvement in the other setups.
However, in case of Wilson valence quarks (with and without additional clover term) the
initial criterion of χ2/dof . 2.0 is not possible to be fulfilled.
A benefit in terms of a decrease in the statistical error for vector states is not observed
after the addition of the clover term. It appears that every action setup produces a
similar width in the temporal separation of the plateau, so that no more worsening in
the width for Wilson valence quarks remains present. The error range of the plateau
value fit is now approximately equal within three of the four setups, only Wilson valence
quarks with clover term remain somewhat above.
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In case of the vector mesons J/ψ and hc the appearance of the squared absolute eigenvec-
tor components in the Wilson twisted mass setup is noticeably affected by the addition
of the clover term. For Wilson twisted mass valence quarks an overlap to the opposite
parity partner for small temporal separations can be observed. This effect decreases with
an increasing temporal separation and flattens down to a small contribution of parity
mixing effects, even vanishing effects for the pseudo scalar state.
Strangely it appears that the addition of the clover term has even a negative effect on
the parity mixing contributions of the ground state mass. There no overlap dependence
for small temporal separations is observed anymore, but the mixing contributions remain
constant at < 10%.

The pseudo vector state on the other hand seems to improve around the same order as
previously the P = − state for the D meson did after addition of the clover term.
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3.4 Mass splitting
As already stated, earlier in this work, besides the explicit breaking of parity symmetry
the Wilson twisted mass formulation of lattice QCD also suffers from an explicit breaking
of isospin symmetry. Effects of this broken symmetry are for example a splitting in masses
between charged and connected neutral pions. This effect is expected to be the largest
in the splitting of the lightest charged and uncharged pseudo scalar meson.

3.4.1 Light pseudo scalar sector
In this section a rather qualititative presentation of isospin breaking effects for the Wil-
son twisted mass lattice discretization is given in the light pseudo scalar sector.

In figure 14 the effective masses of the charged and connected neutral pseudo scalar me-
son with Wilson twisted mass and Wilson twisted mass + clover valence quarks is given.
The operators used are Oj ∈ {χ̄(u)γ5χ

(d), χ̄(u)χ(u) + χ̄(d)χ(d)} generating the respective
quantum numbers of JP = 0− and JP = 0− when applied to the vacuum.
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Figure 14: Pion mass splitting as consequence of broken isospin symmetry for Wilson
twisted mass valence quarks without and with clover term. (Each plot contains
two individual mass plateaus, not to be mistaken with the solution for the
generalized eigenvalue problem).

Expressing the pion mass splitting as numerical value

∆(mπ)2 ≡
∣∣m2

π± −m2
π0,con.

∣∣ , (3.10)

where "con." denotes the fact, that disconnected diagrams are omitted. Those are tech-
nically difficult to compute and are vanishing once the continuum is reached. The pion
mass splitting can be precisely determined for both action setups to

a2∆(mtm
π )2 = 0.0311(37), a2∆(mtm+clover

π )2 = 0.0282(23). (3.11)
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Within errors the coefficient of the light pseudo scalar mass splitting is thus unchanged
to the original unitary setup.
This observation is in contrast with a similar quenched investigation [5], where a benefi-
cial effect in reducing cutoff effects related to isospin breaking is observed.

The obtained results for the expected reduction of isospin breaking effects are at this
point of negligible magnitude. This implies a not present reduction of the O(a2) lattice
discretization effects after the application of the clover term to the Wilson twisted mass
action.
Regarding the rather inconclusive results of the study so far a further, more critical anal-
ysis on the correct application of the clover term, or more precisely on the correct choice
of the Sheikoleslami Wohlert coefficient csw may be desirable. The tuning process (cf.
section 3.2) is however a rather time consuming task, requiring a precise determination
of input parameters to ensure validity of the computed observables.
With the purpose of a quick review on the impact of the clover term, requiring only
minimal tuning efforts, an analysis of the pion mass splitting in a range of Sheikoleslami
Wohlert coefficients csw is shown in figure 15.
Demanding only a PCAC mass of O(10−3) the previously precise determined value (3.8),
with a criterion of |mPCAC|/µ ≤ 0.1, is obviously exceeded. Additionally a further tuning
of the light quark mass was omitted, keeping aµ = 0.004 constant in this section. Since
both π± and π0,con are computed with the same light quark mass it is expected, that the
difference is rather independent of µ.
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Figure 15: Pion mass splitting of Wilson twisted mass + clover valence quarks for several
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What is observed is, that for none of the arbitrary csw coefficients a pion mass splitting
∆(mπ)2 as large as for the unitary setup or for csw = 1.62051 was found, i.e. every arbi-
trary csw coefficient had a significant reduction of the isospin breaking as a consequence.

3.4.2 Heavy sector
Extending the observation of the charged/neutral mass splitting to the heavy quark sec-
tor, further observations were made.

The operators used are Oj ∈ {χ̄(c+)γkγ5χ
(c−), χ̄(c+)γkχ

(c−)} for the neutral states and
Oj ∈ { χ̄(c−)γkχ

(c−), χ̄(c−)γkγ5χ
(c−)} for the charged states.
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Figure 16: Effective masses of the charged and neutral J/ψ and hc meson, obtained for
Wilson twisted mass valence quarks, as a function of temporal separation t/a.

Considering that the isospin breaking effects are small in the heavy quark sector, com-
pared to the light quark sector, a great reduction of isospin breaking effects for the pseudo
vector state J/ψ could be found. The masses of the charged and neutral J/ψ are nearly
identical for the coefficient csw = 1.62051, where for the excited state a similar, but more
cautious statement can be made, due to the large noise in both setups.
Similar effects for the D meson were not obtained.
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4 Summary, Conclusion and Outlook
In this work, results for mixed action setups of lattice QCD with Nf = 2+1+1 maximal
twisted Wilson twisted mass sea quarks at a fixed value of the lattice spacing were pre-
sented. With a ≈ 0.086 fm the corresponding pseudo scalar mass was of about 320 MeV.
The main purpose was to find a mixed action setup more suited for mass spectroscopy,
than the unitary setup with Wilson twisted mass fermions. This was performed with a
focus on simple quantities from the light scalar and heavy scalar quark sector. With a
single lattice spacing the expected reduction of discretization effects was studied with
the use of observables, that suffer from symmetry breaking effects.

4.1 Summary
In order to investigate mixed action setups the tuning, where sea and valence quarks
are matched with suitable conditions, is of central importance. Only by doing so the
continuum limit of observables is identical for all setups, making a comparison of the
discretization errors possible. Employing Wilson twisted mass quarks in the sea, the
mixed actions were generated with Wilson twisted mass quarks, standard Wilson quarks
and an extension of both these actions by addition of the clover term.

With a rather simple concept of the clover action Sclover the main difficulty is the deter-
mination of the csw coefficient. For the computations in this work a value computed by
a perturbative expansion [29] was chosen, suiting to the used ensemble.

The tuning process of both Wilson valence quark actions was then quite similar. With a
fixed aµ = 0 only one parameter remained for the adjustment. Where the Wilson valence
action was in comparison quickly tuned, due to an accelerated inversion of the Dirac op-
erator, a noticeable increase in the statistical noise of the pseudo scalar mass raised first
suspicions concerning this action setup. The addition of the clover term to the Wilson
valence caused a further increase in the inversion time and resulted in the inability of
a clear computation of the pseudo scalar mass amPS. This behavior is probably caused
due to a further decrease in the pseudo scalar mass, after mass-like contributions coming
from the clover term where added, effectively forcing computations close to the critical
value and so below the unitary pseudo scalar mass.

Assuming an identical csw coefficient for the Wilson twisted mass valence action, the
tuning process for this setup was more complicated due to the existence of two input pa-
rameters. At first the critical value for the bare untwisted quark mass had to be found,
restoring theory at maximal twist and ensuring a reduction to O(a2) lattice discretiza-
tion effects. After restoring maximal twist a slight shift in pseudo scalar masses could
be observed, rising necessity of an additional tuning in the twisted mass parameter to
restore unitary results. For tuning of the quark mass µ the linear behavior of am2

PS in
aµ lead to quick results.
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Completing the tuning process comparable computations of observables were available,
for all action setups. In section 3.3 effective mass computations for the D(JP = 0−),
D∗0(JP = 0+), J/ψ(JP = 1−) and hc(JP = 1+) as function of the temporal separation
t/a, as well as their composition in terms of squared absolute eigenvector components
were presented.
Results obtained for the masses of the D mesons are in all four mixed action setups
in agreement within errors. Application of Wilson valence quarks, with parity as ex-
act symmetry of this lattice formulation, was expected to produce drastically improved
results for the mass plateaus of scalar states, in comparison to Wilson twisted mass at
maximal twist. Instead of a mass plateau comparable to the low lying pseudo scalar
state, the statistical noise resulted in a plateau similar to the unitary setup. Addition of
the clover term to the unimproved action, even worsened the results. For Wilson twisted
mass quark however the clover term effectively left the unitary results unchanged, but
increased the temporal separation of the mass plateau. Analyzing the squared absolute
eigenvector components, an indication for a reduction of parity mixing effects was ob-
served.
Computations for the vector meson J/ψ and its parity partner hc, showed comparable
results. Both Wilson twisted mass action setups, as well as the clover improved Wilson
action provided comparable masses for the J/ψ. The scalar mass for Wilson twisted
mass quarks was unchanged by the addition of the clover action. Unimproved Wilson
quarks showed a noticeable difference in the pseudo scalar mass value, which could come
from remaining O(a) effects.
Comparison of the squared eigenvector components between Wilson twisted mass and
Wilson twisted mass + clover valence quarks indicated a corruption of the parity mixing
for the pseudo scalar state. This was a quite surprising effect, which is not yet completely
understood and requires further analysis. Mixing contributions for the scalar state how-
ever implied a reduction in the parity mixing of the same order as for the D meson.

In the last section, a brief investigation of isospin breaking effects in the light scalar sector,
after application of the clover term to the Wilson twisted mass action, was intended.
Similar to parity breaking effects the addition of the clover term was expected to reduce
isospin breaking effects, asO(a2) lattice discretization effects, as well. What was observed
is that no reduction is present for the coefficient of csw = 1.62051. Instead it was observed,
that every other arbitrary csw coefficient does in fact reduce the pion mass splitting.
In the heavy quark sector great reductions in the mass splitting for the pseudo scalar
J/ψ were observed, though these results were not present for the D meson.
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4.2 Conclusion & Outlook
In this work three different mixed action setups were studied and compared to a unitary
setup with twisted mass fermions. Regarding an improvement for mass spectroscopy the
following can be stated:

• Wilson fermions in the valence action suffer from O(a) lattice discretization effects
and are so not favored for computations.

• Application of the clover term to the Wilson valence action is supposed to improve
the theory, but the encountered inability to compute the pion mass makes this
setup extremely questionable.

• Results obtained from twisted mass valence fermions with clover term are still in-
conclusive. No crucial change after the application of the clover term was observed,
despite the fact of an expensive tuning.

An interesting aspect, which has not been investigated here is the use of different lat-
tice spacings. Without the need of observables, that imply a reduction of discretization
effects, an expected accelerated continuum convergence could been studied there.

So far the unitary approach with Wilson twisted mass valence quarks appears to be the
most suitable setup for mass spectroscopy, compared to the others.
However, an increased impact in the reduction of isospin breaking effects were observed
for different csw. Although a reduction of isospin breaking effects does not necessarily
imply a present reduction in parity effects, a minimum in ∆(mπ)2, or reducing it to zero,
would let the corresponding csw become an attractive candidate for further investigations.
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