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Abstract
In this work we investigate possibly existing tetraquarks using gauge configurations
with Nf = 2 + 1 + 1 Wilson twisted mass fermions at one lattice spacing. We also apply
different smearing techniques and set all quark masses equal to the charm quark mass
in order to save computation time.

First, we study the effective mass of a dynamic c̄cc̄c 4-quark-state and do not find a
clear signal of a bound state.
Based on studies of static-staic-light-light tetraquarks, we consider an heavy-heavy-
light-light approximation of the static limit using light quarks and heavy anti-quarks.
Computing the correlation functions of an heavy-heavy-light-light 4-quark operator, in
analogy to the dynamic c̄cc̄c 4-quark-state, leads to different masses for the isospin
states I = 0 and I = 1. With this result we assume to have found attractive and
repulsive channels for the two different states, which is suggested by the investigations
of static-static-light-light tetraquarks.
Additionally, we construct alternative heavy-heavy-light-light operators that might be
candidates for finding attractive channels by expressing static-static-light-light tetra-
quark operators in terms of heavy-heavy-light-light 4-quark-operators.
Computing the correlation functions for these constructed heavy-heavy-light-light oper-
ators we obtain slightly different masses, which might be a first indication of meson-
meson-interactions.
However, we find that these constructed heavy-heavy-light-light 4-quark-operators do
not represent the ground state but an overlap with excited states. Using different quark
flavours and masses for the computations, i.e., a higher mass for the charm anti-quarks
and a lower mass for the light quarks, the constructed heavy-heavy-light-light operators
might excite the ground state, which is suggested by the numerical results and simple
quantum mechanical considerations.





Kurzbeschreibung
Thema dieser Arbeit ist die Untersuchung möglicher Tetraquarkzustände basierend auf
Eichkonfigurationen mit Nf = 2 + 1 + 1 Wilson twisted mass Fermionen für einen festen
Gitterabstand. Wir verwenden außerdem verschiedene Smearing Techniken und setzen
alle Quark Massen gleich der charm Quark Masse um Rechenzeit zu sparen.

Zunächst berechnen wir die effektive Masse für einen dynamischen c̄cc̄c 4-Quark-Zustand
und finden kein eindeutiges Signal für einen gebundenen Zustand.
Basierend auf Untersuchungen von statisch-statisch-leichten-leichten Tetraquarks, be-
trachten wir eine Annäherung an den statischen Limes unter Verwendung von leichten
Quarks und schweren Anti-Quarks. Analog zu dem dynamischen c̄cc̄c 4-Quark-Zustand,
berechnen wir die Korrelationsfunktionen eines schweren-schweren-leichten-leichten
Operators in der Annäherung an den statischen Limes, die zu unterschiedlichen Massen
für die Isospin Zustände I = 0 und I = 1 führt. Aus diesem Ergebnis schließen wir, dass
wir attraktive und repulsive Kanäle gefunden haben, basierend auf den Untersuchungen
der statisch-statisch-leichten-leichten Tetraquarks.
Des Weiteren konstruieren wir alternative schwere-schwere-leichte-leichte Operatoren,
die mögliche Kandidaten für Zustände mit attraktiven Kanälen repräsentieren, in-
dem wir statisch-statisch-leichte-leichte Operatorn durch eine Linearkombination von
schweren-schweren-leichten-leichten Operatorn ausdrücken. Bei Berechnung der Kor-
relationsfunktionen dieser schweren-schweren-leichten-leichten Operatorn erhalten wir
kleine Massendifferenzen für die Isospin Zustände I = 0 und I = 1. Diese Beobachtung
kann eine erste Indikation für eine Meson-Meson-Wechselwirkung darstellen.
Jedoch finden wir, dass diese konstruierten schweren-schweren-leichten-leichten Oper-
atoren den Grundzustand nicht beschreiben, sondern viel mehr einen Überlapp mit
angeregten Zuständen darstellen. Bei Verwendung anderer Quark Flavour und Massen
für die Berechnungen, d.h. größere Massen für die schweren Anti-Quarks und geringere
Massen für die leichten Quarks, erwarten wir, dass die berechneten schweren-schweren-
leichten-leichten Operatoren den Grundzustand anregen, was durch die numerischen
Ergebnisse und einfache quantenmechanische Überlegungen motiviert werden kann.
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Chapter 1

Introduction and outline

An important field of Quantum Chromodynamics (QCD) is hadron spectroscopy. In this
field investigations of the decays and masses of hadrons, such as mesons and baryons,
are done.
In April 2014, the Z(4430) hadron which consists of cc̄dū-quarks was found at the LHCb
collaboration with a 13.9σ confidence level,[1]. However, there are several resonances
that have been measured in experiments, which are not well understood yet, such as the
nature of X(3872), Y (3940), Y (4260) or Y (4320) which seem to decay into charmonium
states, i.e., cc̄-mesons. With hadron spectroscopy physicists strive to understand these
exotic hadrons like tetraquarks, molecules of hadrons or hybrids and glueballs in order
to find answers to open questions of QCD.
With the PANDA experiment (anti Proton ANnihilation at DArmstadt) at the Gesell-
schaft für Schwerionenforschung (GSI), Germany, see [2], it will be possible to collect a
large amount of charmonium states in order to explore these exotic states of hadrons.

An effective tool of investigating phenomena of QCD is Lattice QCD (LQCD). Using
lattice computations it is possible to solve problems of QCD in the non-perturbative
low-energy region. Since computations of ordinary meson spectra in LQCD have been
very successful, tetraquarks and hybrids are also investigated with this technique.
On the one hand, the c̄cc̄c tetraquark has been investigated using covariant Bethe–
Salpeter equations in a coupled system. In [3] this tetraquark is predicted having a
rather strong binding energy, but with an uncertainty of the same magnitude.
On the other hand, investigations of static-static-light-light-states, i.e., BB meson-pairs,
have led to bound states, which are discussed in [4], [5]. Additionally, a coexisting
master thesis investigates BB̄ meson-pairs [6].

In this master thesis we discuss possibly existing tetraquarks consisting of four dynam-
ical, twisted-mass fermions at a fixed lattice spacing.
First, we discuss 4-quark-states in general. Afterwards, we investigate the specific case of
a 4-quark-state with four dynamical charm quarks and anti-quarks in order to compare
our result with the result found in [3]. We also relate a static-static-light-light tetraquark
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CHAPTER 1. INTRODUCTION AND OUTLINE

to an heavy-heavy-light-light 4-quark-state whose operator will be constructed in this
work.
In order to find tetraquark candidates, we compare the effective masses of heavy-heavy-
light-light 4-quark-states for different isospin quantum numbers I = 0 and I = 1. Since
different masses imply to have either an attractive or repulsive potential, we are able to
estimate which channels might have a bound state.
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Chapter 2

Technical framework

2.1 Notation

In this work, we use upper indices a, b, c for denoting colour indices, lower indices
A,B,C for spin indices, and upper indices (i), (j), (k), (l) for flavour indices. Thus, the
components of a fermion field are denoted by

ψ
a,(m)
A . (2.1.1)

In order to describe operators we use the following notation:
Q denotes a static quark, q a quark with finite mass, l a light quark and more specifically
we refer to an up, down or charm quark as u, d, or c respectively.

Furthermore, we refer to a static-static-light-light tetraquark as static-light tetraquark
and to heavy-heavy-light-light 4-quark-state as heavy-light 4-quark-state.

2.2 Dirac matrices

Throughout this work, we use the chiral representation of the Dirac matrices for our
calculations, i.e.,

γ0 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 γ1 =


0 0 0 −i
0 0 −i 0
0 +i 0 0

+i 0 0 0



γ2 =


0 0 0 −1
0 0 +1 0
0 +1 0 0
−1 0 0 0

 γ3 =


0 0 −i 0
0 0 0 −i

+i 0 0 0
0 +i 0 0



3



CHAPTER 2. TECHNICAL FRAMEWORK

γ5 = γ0γ1γ2γ3 =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1



2.3 Lattice setup

For our computations 100 different gauge link configurations of the ensemble A40.24
with the Iwasaki gauge action [7] generated by the European Twisted Mass Collaboration
(ETMC) with Nf = 2 + 1 + 1 flavours of twisted mass quarks and the parameters given
in table 2.1 have been used, cf. [8].

T × L3 β κ µl µσ µδ

48× 243 1.9 0.16327 0.004 0.15 0.19

Table 2.1: Parameters of the gauge configurations.

The light degenerate quark doublet (u, d) is described by the standard Wilson twisted
mass action [9]

Slight
[
χ(l), χ̄(l), U

]
= a4∑

x

χ̄(l)(x) (DW (m0) + iµγ5τ3)χ(l)(x), (2.3.1)

whereas the heavy sea quark doublet (c, s) is described by the twisted mass formulation
for non-degenerated quarks [10]

Ssea
heavy

[
χ(h), χ̄(h), U

]
= a4∑

x

χ̄(h)(x) (DW (m0) + iµσγ5τ1 + τ3µδ)χ(h)(x) (2.3.2)

with DW denoting the standard Wilson Dirac operator in both cases

DW (m0) = 1
2
(
γµ
(
∇µ +∇∗µ

)
− a∇∗µ∇µ

)
+m0 (2.3.3)

and χ(l) = (χ(u), χ(d)), χ(h) = (χ(c), χ(s)) denoting the fermion fields in the twisted mass
basis.
As discussed in [11],[12], in the valence sector we will use a similar action for degenerate
quarks as in eq. (2.3.1),

Svalence
heavy

[
χ(c), χ̄(c), U

]
= a4∑

x

χ̄(c)(x) (DW (m0) + iµγ5τ3)χ(c)(x) (2.3.4)

with degenerate twisted mass quark doublets χ(c) =
(
χ(c+), χ(c−)

)
.

In order to save computation time, we use the mass of charm-quarks for all our
computations with µc = 0.27678.

4
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2.4 Operators on the lattice

Since we use quarks in the twisted mass basis at maximal twist, we need to transform
the physical basis into the twisted mass basis. For a more detailed discussion of the
twisted mass formulation, see [4],[5],[11].

The transformation of ψ(c) from the physical basis into the fermion fields χ(c) in the
twisted mass basis is done in the following way:

ψ(c) =
(
ψc

+

ψc
−

)
χ(c) =

(
χc

+

χc
−

)

ψ → eiγ5τ3
ω
2 χ (2.4.1)

ψ̄ → χ̄eiγ5τ3
ω
2 (2.4.2)

with ω denoting the twist angle, which has been tuned to maximal twist, i.e., ω = π
2

and τ3 =
(

1
−1

)
.

Transforming an operator from the physical into the twisted mass basis yields to

ψ̄c
+
γ5ψ

c− → χ̄c
+
eiγ5

ω
2 γ5e

−iγ5
ω
2 χc

− (2.4.3)

= χ̄c
+
γ5χ

c− (2.4.4)

since the γ5-matrices commute with each other.

In general we consider operators of the type

ψ̄c
+
Γphy ψ

c− = χ̄c
+
Γtm χ

c− (2.4.5)

with the transformation of Γphy ∈ {1, γ0, γ5, γ0γ5, γj , γ0γj , γjγ5} given in table 2.2.

physical basis twisted mass basis
γ5 γ5
γ0γ5 −iγ0

1 1
γ0 −iγ0γ5
γj −iγjγ5
γ0γj γ0γj
γjγ5 −iγjγ5
γ0γjγ5 γ0γjγ5

Table 2.2: Transformation from the physical into the twisted mass basis.

In the following we use the notation of the physical basis for the operators.
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Chapter 3

Theoretical backgrounds

3.1 Preliminaries

Let us consider a box of volume T×L3 in which we place two quarks and two anti-quarks.
This 4-quark-state can be characterised as either a

� 2-meson-state, which implies, that there is an attractive or repulsive potential
between the two mesons,

� tetraquark state, which indicates a bound state of four quarks.

In the following, we provide the mathematical framework for computing correlators
of meson- and 4-quark-states on the lattice and interpreting the results. The effective
mass can then be extracted from the correlation function.
First, we illustrate the different correlation functions for an ηc meson and a general
4-quark-state.
Then, we introduce and discuss different types of propagator diagrams, which correspond
to the correlator of a 4-quark-state. These diagrams show the different possibilities of
contracting two fermions.

Afterwards, we consider a 4-quark-state consisting of four dynamical quarks of finite
mass with different flavour indices in general. As specific cases, we consider on the one
hand two up and/or down quarks and two identical charm anti-quarks and on the other
hand four dynamical charm quarks.
In the first case we can relate the isospin quantum numbers I = 0 and I = 1 to different
compositions of diagram types.

3.2 Correlation functions

In order to calculate the effective mass of a meson or 4-quark-state we need to compute
the correlation function of creation operators acting on the vacuum state.

7
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C(t2 − t1) = 〈Ω| O†(t2)O(t1) |Ω〉 (3.2.1)

=
∑
n

〈Ω| O†(t2) |n〉 〈n| O(t1) |Ω〉 e−(En−EΩ)(t2−t1) (3.2.2)

with |Ω〉 denoting the vacuum state and EΩ denoting the energy of the vacuum state.
In the limit of t → ∞ we can extract the mass of the ground state E0, since higher
order terms of En vanish.

meff = ln
(

C(t)
C(t+ a)

)
(3.2.3)

m = lim
t→∞

meff (3.2.4)

In the following, we first discuss the more simple case of calculating the correlation
function of an ηc-meson. Afterwards, we calculate a general correlation function of a
4-quark-state.

3.2.1 ηc meson

An ηc meson consisting of a charm quark and anti-quark, is described by the following
creation operator acting on the vacuum state:

Oηc =
∑
~x

c̄(~x) γ5 c(~x) (3.2.5)

with ~x = (x, y, z, t)
In order to compute the effective mass, we need to consider the correlation function of
eq. (3.2.1)

C (t2 − t1) = 〈Ω| O†(t2)O(t1) |Ω〉 .

with O(t1) = ψ̄(m)γ5 ψ
(n) (~x1).

For the correlation function we obtain

C (t2 − t1) =
∑
~x1,~x2

〈Ω|
(
ψ̄(m)γ5ψ

(n)
)†

(~x2)
(
ψ̄(m)γ5ψ

(n)
)

(~x1) |Ω〉

=
∑
~x1,~x2

〈Ω|
(
ψ̄(n)γ0γ

†
5γ0ψ

(m)
)

(~x2)
(
ψ̄(m)γ5ψ

(n)
)

(~x1) |Ω〉

= −
〈∑
~x1,~x2

Tr
{
γ0γ
†
5γ0

(
D(m)

)−1
(~x2, ~x1) γ5

(
D(n)

)−1
(~x1, ~x2)

}〉

= −
〈∑
~x1,~x2

Tr
{
γ5γ0γ

†
5γ0

(
D(m)

)−1
(~x2, ~x1) γ5γ5

((
D(n)

)−1
(~x2, ~x1)

)†}〉
.

(3.2.6)

8
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By using the following relations

Tr
(
DD†

)
= Tr

(
D†D

)
ψ(n) (~x1) ψ̄(n) (~x2)→

(
D(n)

)−1
(~x1, ~x2) after integrating over all fermion fields

ψ̄ = ψ†γ0

γ5γ0 = −γ0γ5

and taking into account that each permutation of fermions generates a change of sign
we receive

C (t2 − t1) =
〈∑
~x1,~x2

Tr
{((

D(n)
)−1

(~x2, ~x1)
)† (

D(m)
)−1

(~x2, ~x1)
}〉

=
〈∑
~x1,~x2

(((
D(n)

)ab
AB

)−1
(~x2, ~x1)

)† ((
D(m)

)ab
AB

)−1
(~x2, ~x1))

〉

=
〈∑
~x2

φ∗ [b, B, ~x1]aA (~x2)φ [b, B, ~x1]aA (~x2)
〉

(3.2.7)

where the definition of point-like sources is used, i.e., defining 12 point sources that are
located at the same space-time-point ~x1

ξ [b, B, ~x1]cC (~x) = δbcδBCδ (~x− ~x1) . (3.2.8)

In order to compute the propagator, we need to solve the linear system

Dca
CA (~x, ~x2)φ [b, B, ~x1]aA (~x2) = ξ [b, B, ~x1]cC (~x) . (3.2.9)

The propagator from x1 to the space-time point x2 is now given by(
D−1

)ab
AB

(~x2, ~x1) = φ [b, B, ~x1]aA (~x2) . (3.2.10)

Note, that we do not have to sum over x1, since we can make use of translational
invariance. For a more detailed discussion of point sources, see [13],[12]

With eq. (3.2.7) we can compute the correlator of an ηc meson. The result will be
presented in ch. 4.1.

3.2.2 q̄qq̄q 4-quark-state

Now, we calculate the correlation function of a general 4-quark-state. Therefore, we
consider the following operator:

Oq̄
(m)q(n)q̄(m)q(n)

Γ1,Γ2
=
∑
~x

(
q̄

(m)
A (~x)(Γ 1)AB q

(n)
B (~x)

) (
q̄

(m)
C (~x)(Γ 2)CD q

(n)
D (~x)

)
(3.2.11)

9
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The 4-quark-state consists of four dynamical quarks which are all located at the same lat-
tice site ~x. The different quarks q and q̄ are combined in spin-space by a combination of
γ-matrices with 16 different possibilities of choosing Γ1,2 ∈ {1, γ0, γ5, γ0γ5, γj , γ0γj , γjγ5}
which will be discussed in more detail in ch. 6.3.

In terms of the propagator, we need to compute

C (t2 − t1) =
〈
O†Γ 1,Γ 3(t2) OΓ 2,Γ 4(t1)

〉
C (t2 − t1) =

∑
~x1,~x2

〈Ω|
(
(ψ̄(m))aA(Γ 1)AB(ψ(n))aB

)†
(~x2)

(
(ψ̄(m))eE(Γ 3)EF (ψ(n))eF

)†
(~x2)

·
(
(ψ̄(m))cC(Γ 2)CD(ψ(n))cD

)
(~x1)

(
(ψ̄(m))gG(Γ 4)GH(ψ(n))gH

)
(~x1) |Ω〉

=
∑
~x1,~x2

〈Ω|
(
(ψ̄(n))aB(γ0(Γ 1)†γ0)BA(ψ(m))aA

)
(~x2)

(
(ψ̄(n))eF (γ0(Γ 3)†γ0)FE(ψ(m))eE

)
(~x2)

·
(
(ψ̄(m))cC(Γ 2)CD(ψ(n))cD

)
(~x1)

(
(ψ̄(m))gG(Γ 4)GH(ψ(n))gH

)
(~x1) |Ω〉

(3.2.12)

The correlation function of a 4-quark state can be represented by different propagator
diagrams, which will be discussed in more detail in ch. 3.3.

C (t2 − t1) = C2meson(t2 − t1) + Ccrossed(t2 − t1) + Cdisconnected(t2 − t1).

Now, we only consider the terms with the two meson and the crossed correlators.

C2meson =
〈 ∑
~x1,~x2

(γ0(Γ 1)†γ0)BA(Γ 2)CD
(
(D(m))acAC

)−1
(~x2, ~x1)

(
(D(n))caDB

)−1
(~x1, ~x2)

· (γ0(Γ 3) † γ0)FE(Γ 4)GH
(
(D(m))egEG

)−1
(~x2, ~x1)

(
(D(n))geHF

)−1
(~x1, ~x2)

〉
=
〈∑
~x1,~x2

(γ0(Γ 1)†γ0)BA(Γ 2)CD
(
(D(m))acAC

)−1
(~x2, ~x1) (γ5)KB

((
(D(n))acKL

)−1
(~x2, ~x1)

)†
(γ5)DL

· (γ0(Γ 3)†γ0)FE(Γ 4)GH
(
(D(m))egEG

)−1
(~x2, ~x1) (γ5)FM

((
(D(n))egMN

)−1
(~x2, ~x1)

)†
(γ5)NH

〉
=
〈 ∑
~x1,~x2

(γ5γ0(Γ 1)†γ0)KA(Γ 2γ5)CL
((

(D(n))acKL
)−1

(~x2, ~x1)
)† (

(D(m))acAC
)−1

(~x2, ~x1)

· (γ5γ0(Γ 3)†γ0)ME(Γ 4γ5)GN
((

(D(n))egMN

)−1
(~x2, ~x1)

)† (
(D(m))egEG

)−1
(~x2, ~x1)

〉
=
〈∑
~x2

(γ5γ0(Γ 1)†γ0)KA(Γ 2γ5)CLφ∗ [c, L, x1, t1]aK (x2, t2)φ [c, C, x1, t1]aA (x2, t2)

· (γ5γ0(Γ 3)†γ0)ME(Γ 4γ5)GNφ∗ [g,N, x1, t1]eM (x2, t2)φ [g,G, x1, t1]eE (x2, t2)
〉
.

(3.2.13)
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CHAPTER 3. THEORETICAL BACKGROUNDS

Renaming L↔D, K↔B, N↔H, M↔F we find for the general two meson correlator of a
4-quark-state

C2meson =
〈∑
~x2

(γ5γ0(Γ 1)†γ0)BA(Γ 2γ5)CDφ∗ [c,D, ~x1]aB (~x2)φ [c, C, ~x1]aA (~x2)

· (γ5γ0(Γ 3)†γ0)FE(Γ 4γ5)GHφ∗ [g,H, ~x1]eF (~x2)φ [g,G, ~x1]eE (~x2)
〉
.

(3.2.14)

In the case of the c̄cc̄c 4-quark-state, we choose Γ 1, Γ 2, Γ 3, Γ 4 to be γ5.
Thus, we receive:

C2meson
c̄cc̄c =

〈∑
~x2

{
φ∗ [c, C, ~x1]aA (~x2)φ [c, C, ~x1]aA (~x2)

}2〉
. (3.2.15)

For the crossed term we contract the two fermion fields in a different way:

Ccrossed =
〈 ∑
~x1,~x2

(
(D(n))gaHB

)−1
(~x1, ~x2)(γ0(Γ 1)†γ0)BA

(
(D(m))acAC

)−1
(~x2, ~x1)(Γ 2)CD

·
(
(D(n))ceDF

)−1
(~x1, ~x2)(γ0(Γ 3)†γ0)FE

(
(D(m))egEG

)−1
(~x2, ~x1)(Γ 4)GH

〉
=
〈∑
~x1,~x2

(γ5)HL
((

(D(n))agKL
)−1

(~x2, ~x1)
)†

(γ5)BK (γ0(Γ 1)†γ0)BA
(
(D(m))acAC

)−1
(~x2, ~x1)(Γ 2)CD

· (γ5)DN
((

(D(n))ecMN

)−1
(~x2, ~x1)

)†
(γ5)MF (γ0(Γ 3)†γ0)FE

(
(D(m))egEG

)−1
(~x2, ~x1)(Γ 4)GH

〉
=
〈 ∑
~x1,~x2

((
(D(n))agKL

)−1
(~x2, ~x1)

)†
(γ5γ0(Γ 1)†γ0)KA

(
(D(m))acAC

)−1
(~x2, ~x1)(Γ 2γ5)CN

·
((

(D(n))ecMN

)−1
(~x2, ~x1)

)†
(γ5γ0(Γ 3)†γ0)ME

(
(D(m))egEG

)−1
(~x2, ~x1)(Γ 4γ5)GL

〉
=
〈∑
~x2

φ∗ [g, L, ~x1]aK (~x2) (γ5γ0(Γ 1)†γ0)KAφ [c, C, ~x1]aA (~x2) (Γ 2γ5)CN

· φ∗ [c,N, ~x1]eM (~x2) (γ5γ0(Γ 3)†γ0)MEφ [g,G, ~x1]eE (~x2) (Γ 4γ5)GL
〉

(3.2.16)

renaming L↔H, K↔B, N↔D, M↔F we obtain the general expression for the crossed
correlator of a 4-quark-state

Ccrossed =
〈∑
~x2

φ∗ [g,H, ~x1]aB (~x2) (γ5γ0(Γ 1)†γ0)BAφ [c, C, ~x1]aA (~x2) (Γ 2γ5)CD

· φ∗ [c,D, ~x1]eF (~x2) (γ5γ0(Γ 3)†γ0)FEφ [g,G, ~x1]eE (~x2) (Γ 4γ5)GH
〉
.

(3.2.17)

Again, in the case of the c̄cc̄c 4-quark-state, we choose Γ 1, Γ 2, Γ 3, Γ 4 to be γ5.
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CHAPTER 3. THEORETICAL BACKGROUNDS

Therefore we get:

Ccrossedc̄cc̄c =
〈∑
~x2

(
φ∗ [g,G, ~x1]aA (~x2)φ [c, C, ~x1]aA (~x2)φ∗ [c, C, ~x1]eE (~x2)φ [g,G, ~x1]eE (~x2)

)〉
(3.2.18)

The correlation function of a 4-quark-state will be discussed in ch. 4.2.

3.3 Diagrams and isospin

3.3.1 q̄qq̄q 4-quark-state

Let us consider the operator of a 4-quark-state given in eq. (3.2.11)

Oq̄
(m)q(n)q̄(m)q(n)

Γ1,Γ2
=
∑
~x

(
q̄

(m)
A (~x)(Γ 1)AB q

(n)
B (~x)

) (
q̄

(m)
C (~x)(Γ 2)CD q

(n)
D (~x)

)
.

As previously indicated, the corresponding correlator can be represented by different
types of propagator diagrams:

1: Two meson diagram

t

q̄ q q̄ q

q̄ q q̄ q

O†

O

2: Crossed diagram

t

q̄ q q̄ q

q̄ q q̄ q

O†

O

3: Disconnected diagrams

t

q̄ q q̄ q

q̄ q q̄ q

O†

O

t

q̄ q q̄ q

q̄ q q̄ q

O†

O

and other types of
disconnected diagrams

Figure 3.1: Possible diagrams describing a q̄qq̄q 4-quark-state.

Depending on the chosen flavours of the quarks and anti-quarks, either the two meson,
the crossed, the disconnected diagrams or a combination of those completely describe a
certain correlator. In the following we discuss the different cases neglecting any types of
disconnected diagrams.
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� Diagram 1 completely describes a correlator,
if C = 〈O†1(t) O1(0)〉 and
if the quarks have different flavours and the anti-quarks have different flavours, i.e.,
if q̄(i) 6= q̄(k)and q(j) 6= q(l).

t

q̄(i) q(j) q̄(k) q(l)

q̄(i) q(j) q̄(k) q(l)

O†

O

� Diagram 1 + 2 completely describe a correlator,
if C = 〈O†1(t) O1(0)〉 and
if both quarks or both anti-quarks have the same flavours, i.e.
if q̄(i) = q̄(k) or q(j) = q(l).

Note, that we assume to have identical combinations of γ-matrices.

t

q̄(i) q(j) q̄(k) q(l)

q̄(i) q(j) q̄(k) q(l)

O†

O

t

q̄(i) q(j) q̄(k) q(l)

q̄(i) q(j) q̄(k) q(l)

O†

O

� Diagram 2 completely describes a correlator,
if C = 〈O†1(t) O1(0)〉 and
if the quarks have different flavours and the anti-quarks have different flavours, i.e.,
if q̄(i) 6= q(j) and q̄(k) 6= q(l). In this case we need two different operators in the
correlation function
C21(t) = 〈O†2(t) O1(0)〉:

O(i),(j),(k),(l)
1 =

(
q̄
a,(i)
A (Γ1)AB q

a,(j)
B

) (
q̄
c,(k)
C (Γ2)CD q

c,(l)
D

)
(3.3.1)

O(i),(l),(k),(j)
2 =

(
q̄
a(i)
A (Γ3)AD q

a,(l)
D

) (
q̄
c,(k)
C (Γ4)CB q

c,(j)
B

)
(3.3.2)

13
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t

q̄(i) q(j) q̄(k) q(l)

q̄(i) q(l) q̄(k) q(j)

O†2

O1

Note, that O1 and O2 still have the same quantum numbers, i.e. isospin I, angular
momentum J and parity P .

3.3.2 Isospin of 4-quark-states with two heavy and two light quarks

Let us now consider the case for a 4-quark-state in which the two quarks have either
different or the same flavours, i.e., up and/or down, and the anti-quarks have the same.

Oq̄ l
(j)q̄ l(k)

Γ1,Γ2
=
∑
~x

(
q̄A(~x)(Γ1)AB l

(j)
B (~x)

) (
q̄C(~x)(Γ2)CD l

(k)
D (~x)

)
(3.3.3)

This constellation of quarks and anti-quarks requires both types of diagrams, the two
meson and crossed diagram. Since an up and down quark have a different isospin, the
coupling of both leads to either a singlet or triplet state. For obtaining I = 0 we need
l(j)l(k) = ud− du, whereas for I = 1 we can choose between l(j)l(k) ∈ {uu, dd, ud+ du}.
The different isospin quantum numbers result in different combinations of the two meson
and crossed diagram, we can either add or subtract both diagrams.

� Diagram 1 - 2 → isospin I = 0, singlet state (ud− du)

t

q̄ u q̄ d

+

q̄ u q̄ d

q̄ d q̄ u

−

q̄ d q̄ u

q̄ u q̄ d

−

q̄ d q̄ u

q̄ d q̄ u

q̄ u q̄ d

� Diagram 1 + 2 → isospin I = 1, triplet state (ud+ du) , uu, dd

t

q̄ u q̄ d

+

q̄ u q̄ d

q̄ d q̄ u

+

q̄ d q̄ u

q̄ u q̄ d

+

q̄ d q̄ u

q̄ d q̄ u

q̄ u q̄ d

Thus, if we want to compute a 4-quark-state with the isospin quantum number I = 0,
we need to subtract both diagrams and if we want to compute the isospin quantum

14
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number I = 1, we need to add both ones.
By computing the masses of 4-quark-states with different isospin quantum numbers, we
aim for not finding degenerated masses which is suggested by the studies of static-light
tetraquarks [4],[14]. Different masses imply to have either an attractive or repulsive
potential between the two mesons.

In ch. 5 we will discuss the result for the effective masses of these 4-quark-states.

3.3.3 c̄cc̄c tetraquark candidate

Let us now discuss the specific case of a 4-quark-state consisting of four charm-quarks:

Oc̄cc̄c =
∑
~x

(
c̄(~x) γ5 c(~x)

)(
c̄(~x) γ5 c(~x)

)
(3.3.4)

Again, we neglect the disconnected diagrams. Therefore, this correlator can be com-
pletely described by combining the two meson and the crossed diagram:

t

c̄ c c̄ c

c̄ c c̄ c

+

c̄ c c̄ c

c̄ c c̄ c

In this case, there is only the combination of adding both diagram types, since we have
charm quarks which do not have an isospin quantum number.
The result for the effective masses of the c̄cc̄c tetraquark candidate will be discussed in
ch. 4.2.

3.3.4 Expansion of diagrams in terms of energy eigenstates

In the next step we analyse how the different diagrams contribute to the effective mass
of a 4-quark-state.

Let C1 be the correlator representing the two meson diagram and C2 the correlator
representing the crossed diagram. Based on our definition of the isospin singlet and
triplet states in ch. 3.3.2, the two meson diagram and the crossed diagram for themselves
are a mixture of I = 0 and I = 1. Additionally, both correlators have an exponential
decay and asymptotically the same mass, since they both are adequate correlators and
the corresponding operators have the same quantum numbers.

C1(t) = A1 e
−mt + e−Mt t→∞= A1 e

−mt (3.3.5)

C2(t) = A2 e
−mt + e−Mt t→∞= A2 e

−mt. (3.3.6)

15



CHAPTER 3. THEORETICAL BACKGROUNDS

with m denoting the mass of the ground state and M the mass of higher order terms
describing excited states, i.e. m < M .
It holds, that A1 is positive definite and real, since the correlation function is of the
type

C1(t) =
〈
O1(t)†O1(t = 0)

〉
> 0, (3.3.7)

whereas A2 can be any complex number, since

C2(t) =
〈
O2(t)†O1(t = 0)

〉
, (3.3.8)

cf. (3.3.1),(3.3.2), does not necessarily need to be positive.
Constructing the combination of the two diagrams leads to

(C1 ± C2) (t) = (A1 ±A2) e−mt. (3.3.9)

From eq. (3.3.9) we can assume, that

(i) A2 ∈ R , because A1 +A2 ∈ R
(ii) |A2| ≤ A1, because A1 +A2 ≥ 0,

since it holds, that

(i) C = C1 + C2 > 0
(ii) C1 ∈ R, > 0
(iii) C ∈ R⇒ C2 ∈ R.

Now, we want to find a condition for obtaining different masses for (C1 ± C2) (t) using
eq. (3.3.5) and (3.3.6).

� For A2 = A1, we can obtain different masses for I = 0 and I = 1, since

C1 + C2 = 2A1 e
−mt

C1 − C2 = A1 e
−Mt.

� In the case of A2 = −A1 we obtain

C1 + C2 = A1 e
−Mt

C1 − C2 = 2A1 e
−mt.

� For |A2| < A1 there is a shift in the amplitude, which does not have any effect on the
resulting mass.
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If it holds, that C2 has the same mass as C1 in the leading term, i.e.,

C2(t) = ±
(
A1 e

−mt −B1 e
−Mt

)
with m ≤M (3.3.10)

then, C1 ± C2 leads to different masses.

Based on eq. (3.3.10) it can hold that C2 ≈ 0 and C2 � C1 if m ≈ M and A1 ≈ B1.
Then, by combining C1 and C2 the asymptotically dominating term can be eliminated.
Thus, the correlator has to be of the type of eq. (3.3.10) in order to get different masses.
To proof this assumption, we study the cases of I = 0 and I = 1 and plot the correlators
of the different quantum numbers logarithmically in order to see how the slope of the
two straight lines evolves in time. If there are different slopes, i.e., different masses, for
large time separations, then eq. (3.3.10) is true.

17
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3.4 Optimisation of smearing steps

When computing correlation functions in LQCD, different smearing techniques are used.
With these techniques a better approximation of the ground state can be achieved for
small time separations. For a more detailed discussion of smearing techniques, see [15].
In our computations, we use Gaussian and APE smearing. Since using these techniques
results in higher computation times and higher errorbars, we need to optimise the
number of smearing steps. An optimisation of the APE smearing was already done in
earlier investigations and led to a sufficient number of smearing steps of NAPE = 10.
Thus, we only need to optimise the number of smearing steps for Gaussian smearing.
In order to optimise the smearing steps, we consider the values of the effective masses
for the time separation t = 2 for an increasing number of smearing steps.
In the following we consider the ηc meson and the c̄cc̄c tetraquark candidate for
optimising the number of smearing steps.

3.4.1 ηc meson

The effective masses for a different number of smearing steps for the ηc meson is given
in the following figure:

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 10 20 30 40 50

m

e

�

f

o

r

t

=

2

smearing steps N

Figure 3.2: Optimisation of smearing steps using the values of the effective masses for
the first time separations of the ηc meson.

In figure 3.2 we find, that the effective mass is nearly constant within the error for
NGauss > 5. But we also see, that the error increases for a large number of smearing
steps. Therefore, it seems optimal to choose NGauss = 10− 20 smearing steps.
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3.4.2 c̄cc̄c 4-quark-state

For the effective masses of the 4-quark-state we obtain the following result:

2.8

3

3.2

3.4

3.6

3.8

4

0 10 20 30 40 50

m

e

�

f

o

r

t

=

2

smearing steps N

Figure 3.3: Optimisation of smearing steps using the values of the effective masses for
the first time separations of the 4-quark-states.

We see in figure 3.3, that the effective mass for a 4-quark-state is also nearly constant
for NGauss > 10. Since a larger number of smearing step results in higher errorbars and
also in increasing computation times, we choose NGauss = 15 for our computations.
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Chapter 4

Numerical results and analysis for the
c̄cc̄c tetraquark-candidate

4.1 Result for the ηc meson

Computing the effective mass of the correlator with the operator given in eq. (3.2.5)
and the quantum numbers I(JP ) = 0(0−)

Oηc =
∑
~x

c̄(~x) γ5 c(~x)

we obtain the following result:

1.5

2

2.5

3

3.5

4

0 5 10 15 20

m

e

�

[G
eV

]

t/a

ηc

PDG value

Figure 4.1: Effective mass of the ηc meson.
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TETRAQUARK-CANDIDATE

With our lattice computations of the correlation function using the operator given in
eq. (3.2.7) using 10 configurations we find a mass of

mηc = (3.1730± 0.012) GeV,

using a range of t/a = 14− 19 for a constant fit.
A mass of

mηc,PDG = (2.981± 0.001) GeV

is given in the Physical Data Book [16].
For our computations, the charm-quark mass is not perfectly tuned to the physical mass
of a charm-quark, since we are only interested in a qualitative investigation. Therefore,
our result is about 6% larger than the result given in the PDG.

4.2 Result for the c̄cc̄c tetraquark candidate

Computing the effective mass of the correlation function with the operator given in
eq. (3.3.4)

Oc̄cc̄c =
∑
~x

c̄(~x) γ5 c(~x) c̄(~x) γ5 c(~x)

and the quantum numbers I(JP ) = 0(0+), yields to the following figure:

4

5

6

7

8

9

0 5 10 15 20

m

e

�

[G
eV

]

t/a

no smearing c̄cc̄c

with smearing c̄cc̄c

2×ηc

2× ηc − δ[3]

Figure 4.2: Comparison of the masses of 2× ηc-meson and c̄cc̄c-tetraquark-candidate.

In figure 4.2 there are different masses shown. On the one hand the mass of two ηc
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TETRAQUARK-CANDIDATE

mesons with
m2×ηc ≈ (6.3460± 0.024) GeV

and on the other hand the masses of a c̄cc̄c state using smearing techniques.

msmea
c̄cc̄c = (6.5088± 0.0085)GeV.

We see, that the masses of the 4-quark-states lie slightly above the mass of two ηc
mesons.
The mass of a c̄cc̄c state given in [3] is predicted to have a binding energy δ of

δ[3] = (0.7± 0.5) GeV.

Since in [3] the physical quark mass was used for the computations, a straight for-
ward comparison is not sensible. To do so, we use the binding energy δ in order to
obtain an estimation of a possible c̄cc̄c state with the unphysical charm quark mass, i.e
mestimated
c̄cc̄c = 2×mηc − δ.

The c̄cc̄c 4-quark-state computed with the Bethe–Salpeter approach seems to form a
bound state, because of the lower lying mass, in contrast to the results we obtain with
our computations.
However, the effective mass of the correlator without using smearing techniques seems
to still decrease for large values of t and seems to have not yet reached a plateau. This
implies, that the ground state is not perfectly described. Considering the result we
obtain by using smearing techniques, it becomes even more clear, that there is in fact
an overlap between the trial state O |Ω〉 and excited states. This is indicated by the
lower mass for small time separations using smearing techniques.
Note, that even by using smearing techniques, it is possible to still have an overlap
with excited states, since we see that the mass of the c̄cc̄c 4-quark-state is larger than
2×mηc .
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Chapter 5

Approximation of the static limit

5.1 Review: Q̄qQ̄q tetraquark

Previous computations [14] showed, that there exists a tetraquark state consisting of
two static anti-quarks and two light quarks which is described by the operator

OQ̄ q(m)Q̄ q(m) = (CΓ 1)AB(Γ 2)CD
(
Q̄C(x1) q(m)

A (x1)
) (
Q̄D(x2) q(n)

B (x2)
)

(5.1.1)

choosing Γ 1 = γ5+γ0γ5, Γ 2 = 1, the charge conjugation C = γ0γ2 and q(m), q(n) ∈ {u, d}.
The quantum numbers of the static-light tetraquark state are I(JP ) = 0(0+).
In contrast to the previous discussed case of four charm quarks that are located at the
same lattice site, the two mesons are now located on different sites, because of the two
static quarks.
Note, that in the static limit we have another spin structure than in the dynamical case
due to different symmetries and quantum numbers. Since there is a degeneracy with
respect to the static spin, we can only combine the two light quarks in spin space with
each other.

5.2 The static limit of the c̄cc̄c tetraquark candidate

Since we did not find a clear signal for a bound state of the dynamical c̄cc̄c 4-quark-state,
we consider now a theoretical approximation of the static limit. Since in the static limit
there exists a bound state, we expect to be able to find attractive potentials by using
an approximation of the static limit for the c̄cc̄c 4-quark-state.
We assume to have two dynamic light quarks and two heavy anti-quarks, although we
use the charm quark mass for all the computations in order to save CPU time.
Using this model, we can compare the two isospin states I = 0 and I = 1, as discussed
in ch. 3.3, since we now have light quarks with isospin quantum numbers.
The operator we consider in the following is of the type

Oc̄ l(j)c̄ l(k)
γ5,γ5 = c̄A

(
γ5
)
AB

l
(j)
B c̄C

(
γ5
)
CD

l
(k)
D . (5.2.1)
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Figure 5.1: Comparison of the effective masses for I = 0 and I = 1 with the operator of
eq. (5.2.1) with and without smearing.

The masses we obtain using APE and Gaussian smearing for the two different isospin
states are indeed slightly different:

msmea
I=0 = (6.5088± 0.0085)GeV

msmea
I=1 = (6.4499± 0.0105)GeV.

Calculating the difference between the masses using the Jackknife method for the
calculation of errors [17], we find

msmea
I=1 −msmea

I=0 = (0.0588± 0.0041) GeV.

In figure 5.1 it is again indicated, that the operator without using smearing techniques
represents an overlap with excited states because of the same reason as mentioned in
ch. 4.2.
However, the operator of the correlation function using smearing techniques does not
perfectly excite the ground state, since for time separations in the range of t/a = 15−20
it is not clear, if a plateau is already reached.
For the difference of the masses using APE and Gaussian smearing we have a con-
fidence level of ≈ 14σ. Therefore, we can assume that the the mass of the I = 0 is
indeed about 60 MeV smaller than the mass of the I = 1 state. We also observe, that
the effective masses of the 4-quark-state using smearing techniques still lie above the
mass of two ηc mesons. In ch. 9 a possible interpretation of this observation will be given.
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As discussed in ch. 3.3.4, we now compare the slopes of theirs correlators.
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Figure 5.2: Logarithmic comparison of the correlator for I = 0 and I = 1 with the
operator of eq. (5.2.1) with and without smearing.

Comparing the results of the logarithmic correlator for I = 0 and I = 1 with and without
smearing, we see, that for small time separations the slopes, which correspond to the
masses, are similar. However, for increasing values of t, the slopes of the straight lines
differ due to higher order terms ∼ m−M . This is in accordance with our conclusion in
ch. 3.3.4.
Based on studies of the static-light tetraquark we know, that switching one quantum
number by keeping all the others the same, like switching the isospin from I = 0 to
I = 1, turns also an attractive potential into a repulsive and vice versa.
Thus, for the heavy-light operator we can have the following cases:

� The I = 0 state with the lower mass leads to an attractive and the I = 1 state with
the higher mass to a repulsive potential [4],

� The I = 0 state with the lower mass is less repulsive than the I = 1 state with the
higher mass,

� The I = 0 state with the lower mass is more attractive than the I = 1 state with the
higher mass.

Since we did not find a signal for of a bound state for a c̄ l(j)c̄ l(k) state, we construct an
operator, that might be a candidate for finding a tetraquark state in the static limit.
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Chapter 6

Representation of static-light operators
in terms of heavy-light operators

6.1 Relation between static-light and heavy-light states

Since we know that there exists a bound state of tetraquarks consisting of two static
and two light quarks, we try to express a static-light operator in terms of a heavy-light
operator, i.e., a 4-quark-operator consisting of two heavy anti-quarks, such as charm
quarks, and of two light quarks, such as up or down quarks:

OQ̄ q(m)Q̄ q(n) =
(
CΓ 1

)
AB

(
Γ 2
)
CD

(
Q̄C q

(m)
A

) (
Q̄D q

(n)
B

)
(6.1.1)

≈
∑

λ,Γ1,Γ2

λ

(
c̄A
(
Γ1
)
AB

l
(j)
B

)(
c̄C
(
Γ2
)
CD

l
(k)
D

)
(6.1.2)

The relation expressed in eq. (6.1.2) is known as Fierz identity. With this identity we are
able to express a product of bilinearforms of two spinors in terms of a linearcombination
with products of bilinearforms of spinors. More details are given in [18].

Note that

� we omit the spacial arguments,

� we choose upper indices 1, 2 of Γ in the static-light operator and lower indices 1, 2 in
the heavy-light operator,

� q(m), q(n), l(j), l(k) ∈ {u, d},

Thus, for the linear combination of the heavy-light 4-quark-state we consider the diagrams
according to ch. 3.3.2.
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6.2 Method of constructing the linear combination of the
heavy-light operators

In order to construct the linear combination of the heavy-light operator in eq. (6.1.2) we
consider a matrix multiplication of the type:

A ~x = ~y

where ~x, ~y ∈ (1×N) and A ∈ (N ×N).

Vector ~x consists of all spin-index combinations of the 4 quarks Q̄i, qj , Q̄k, ql with
i, j, k, l = 1, 2, 3, 4, whereas the components of ~y represent all possible static-light oper-
ators that describe a bound state.

Step 1
We can construct a matrix A, such that the components of the first row correspond to
the coefficients of the terms in the static-light operator:



−1 0 · · · +1
0 −1 · · · 0
... · · ·
...

+1 0 · · · −1


︸ ︷︷ ︸

Matrix A with coefficients
in the terms of

the first operator
O1,static in the first row



Q̄1 q1 Q̄1 q1

Q̄1 q1 Q̄1 q2
...
...

Q̄4 q4 Q̄4 q4


︸ ︷︷ ︸

~x: all combinations of spin
indices for the 4 quark flavours

=



O1,static

O2,static
...
...

ON,static


︸ ︷︷ ︸

~y: all possible operators
that form a bound state

or describe an attractive potential
in the static limit (eq.6.1.1)

(6.2.1)

with Ostatic = OQ̄ q(m)Q̄ q(n) = (CΓ 1)AB(Γ 2)CD
(
Q̄C q

(m)
A

) (
Q̄D q

(n)
B

)
and omitting the

flavour indices of q in eq. (6.2.1).

Step 2
The next step is constructing a matrix B equivalently to matrix A, but with heavy-light-
operators.
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

0 +1 · · · −1
+1 0 · · · 0
... · · ·
...
0 0 · · · −1


︸ ︷︷ ︸

Matrix B with coefficients
in the terms of

the first operator O1,light
in the first row



c̄1 l1 c̄1 l1

c̄1 l1 c̄1 l2
...
...

c̄4 l4 c̄4 l4


=



O1,light

O2,light
...
...
ON


︸ ︷︷ ︸

all possible heavy-light
4-quark-operators

(6.2.2)

with Olight = Oc̄ l(j)c̄ l(k) = c̄A(Γ1)AB l
(j)
B c̄C(Γ2)CD l

(k)
D and omitting the flavour indices

of l in eq. (6.2.2).

Step 3
Now, we can combine the matrices A and B to find all the coefficients of λi of eq.
(6.1.2).

B−1A



1
0
0
0
...


︸ ︷︷ ︸
O1,static

=



+1
0
0
−1
...


︸ ︷︷ ︸

coefficients λj

of eq. 6.1.2

(6.2.3)

As a result of step 3, we have found a linear combination of possible heavy-light
tetraquark operators that describe the static-light tetraquark operator of eq. (6.1.1). In
the following we analyse this linear combination in order to find either an attractive or
repulsive potential.

6.3 Physical Interpretation

Static-light-state

In the static limit, we have a degeneracy with respect to the static spin. Thus, for a
given combination of Γ 1 we can have 16 possibilities of choosing Γ 2, which result in the
potentials of the tetraquark states. However, there are eight combinations of γ-matrices
that lead to a vanishing correlator. This can be seen by looking at the correlation
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function and inserting the static propagator:

〈Ω|
(
OQ̄qQ̄q(t)

)†
OQ̄qQ̄q (0) |Ω〉 (6.3.1)

with

OQ̄ q(m)Q̄ q(n)(t) =
(
CΓ 1(t)

)
AB

(
Γ 2
)
CD

Q̄aC(~x) q(m)a
A (~x) Q̄bD(~y) q(n)b

B (~y) (6.3.2)

(OQ̄ q(n)Q̄ q(m))†(t) =
((
γ0CΓ 1(t)γ0

)
AB

)∗ (
Γ 2
)
CD

q̄
(n)b
B (~y) QbC(~y) q̄(m)a

A (~x) QaD(~x).

(6.3.3)

Using the relation

QA(t, ~x))Q̄B(0, ~x) ∼
(1 + γ0

2

)
U(t, ~x, 0, ~x) (6.3.4)

we get an expression

〈Ω| (OQ̄qQ̄q)† (t) OQ̄qQ̄q (0) |Ω〉 ∼ Tr
(
Γ 2 1 + γ0

2 Γ 2 1 + γ0
2

)
. (6.3.5)

Based on eq. (6.3.5), we see that the combinations

Γ 2 ∈ {1, γ0, γ1γ5, γ2γ5, γ3γ5, γ0γ1γ5, γ0γ2γ5, γ0γ3γ5}

lead to a non-vanishing correlator.

Heavy-light-state

By constructing linear combinations of γ-matrices for the static quarks Q̄, we are able
to eliminate half of the terms of the linear combination for the heavy-light operators in
eq. (6.1.2).
The combinations we use are the following:

Γ 2 ∈ {γ0 ± 1, γ1γ5 ± γ0γ1γ5, γ2γ5 ± γ0γ2γ5, γ3γ5 ± γ0γ3γ5}

Considering the heavy-light operators, we can obtain the mesons* given in table 6.1.

*Remember, that we use charm-quarks for the computations and only assume in the theoretical
model to have different quarks.
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Meson JPC Γ mass
ηc 0−+ γ5, γ0γ5 2981.0 ± 1.1 MeV
J/Ψ 1−− γ0γj , γj 3096.916 ±0.01MeV
hc 1+− γ0γ5γj 3525.41 ± 0.16 MeV
χc0 0++ 1 3414.75 ± 0.31 MeV
χc1 1++ γ5γj 3510.66 ± 0.07 MeV

experimentally0+− γ0 not yet observed

Table 6.1: Quantum numbers of c̄c states.

Suggested by the investigations of the static-light tetraquarks, we choose
Γ 2 = γ2γ5 + γ0γ2γ5 = (γ5 + γ0γ5) C and find:

Γ 1 = C(γ5 + γ0γ5)
Γ 2 = (γ5 + γ0γ5)C

λ Γ1 Γ2 meson meson
+0.5 γ5 γ5 ηc ηc
+0.5 γ5 γ0γ5 ηc ηc
+0.5 γ0γ5 γ5 ηc ηc
+0.5 γ0γ5 γ0γ5 ηc ηc
+0.5 γ1 γ1 J/ψ J/ψ
+0.5 γ1 γ0γ1 J/ψ J/ψ
+0.5 γ2 γ2 J/ψ J/ψ
+0.5 γ2 γ0γ2 J/ψ J/ψ
+0.5 γ3 γ3 J/ψ J/ψ
+0.5 γ3 γ0γ3 J/ψ J/ψ
+0.5 γ0γ1 γ1 J/ψ J/ψ
+0.5 γ0γ1 γ0γ1 J/ψ J/ψ
+0.5 γ0γ2 γ2 J/ψ J/ψ
+0.5 γ0γ2 γ0γ2 J/ψ J/ψ
+0.5 γ0γ3 γ3 J/ψ J/ψ
+0.5 γ0γ3 γ0γ3 J/ψ J/ψ

Table 6.2: Terms of the linear combination describing the static-light operator of
eq. (6.1.1).

In table 6.2 all different terms of the linear combination of eq. (6.1.2) are listed.
In the first four rows of table 6.2 we find the ηc mesons. Note, that J/Ψ mesons do also
contribute to the linear combination, even if they are heavier than ηc mesons. Due to
the fact, that the interaction between two mesons can be repulsive, the lightest state
does not necessarily need to consist of the lightest mesons.
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Result for the linear combination of the heavy-light operator

The 16 terms of table 6.2 represent the linear combination that describes the bound
state of the static-light tetraquark operator of eq. (6.1.1), i.e.,

OQ̄ q
(m)Q̄ q(n)

1 = Q̄ (γ5 + γ0γ5) CQ̄ q(m)C (γ5 + γ0γ5) q(n) (6.3.6)

≈ Oc̄ l(j)c̄ l(k)
1 (6.3.7)

= 0.5 · (c̄ γ5 l
(j)) (c̄ γ5 l

(k)) + 0.5 · (c̄ γ5 l
(j)) (c̄ γ0γ5 l

(k))

+ 0.5 · (c̄ γ0γ5 l
(j)) (c̄ γ5 l

(k)) + ...

= 0.5 · c̄ (γ5 + γ0γ5) l(j) c̄(γ5 + γ0γ5) l(k)

+ 0.5 ·
3∑
j=1

c̄ (γj + γ0γj) l(j) c̄ (γj + γ0γj) l(k) (6.3.8)

Depending on the chosen flavours of q(m) and q(n) we obtain a certain isospin for the
static-light tetraquark:

q(m)q(n) =
{
I = 0, for q(m)q(n) ∈ {ud− du}
I = 1, for q(m)q(n) ∈ {uu, dd, ud+ du}

(6.3.9)

Note, that this condition holds equivalently for l(j) and l(k).

As an example, we show the result of an alternative static-light operator choosing
Γ 1 = C (γ5 − γ0γ5) and Γ 2 = (γ5 + γ0γ5) C:
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Γ 1 = C(γ5 − γ0γ5)
Γ 2 = (γ5 + γ0γ5)C

λ Γ1 Γ2 meson meson
+0.5 1 1 χc0 χc0
+0.5 1 γ0 χc0
+0.5 γ0 1 χc0
+0.5 γ0 γ0
+0.5 γ1γ5 γ1γ5 χc1 χc1
+0.5 γ1γ5 γ0γ1γ5 χc1 hc
+0.5 γ2γ5 γ2γ5 χc1 χc1
+0.5 γ2γ5 γ0γ2γ5 χc1 hc
+0.5 γ3γ5 γ3γ5 χc1 χc1
+0.5 γ3γ5 γ0γ3γ5 χc1 hc
+0.5 γ0γ1γ5 γ1γ5 hc χc1
+0.5 γ0γ1γ5 γ0γ1γ5 hc hc
+0.5 γ0γ2γ5 γ2γ5 hc χc1
+0.5 γ0γ2γ5 γ0γ2γ5 hc hc
+0.5 γ0γ3γ5 γ3γ5 hc χc1
+0.5 γ0γ3γ5 γ0γ3γ5 hc hc

Table 6.3: Example of choosing an alternative static-light operator with Γ 1 = C(γ5−γ0γ5)
and Γ 2 = (γ5+γ0γ5)C, which leads to another linear combination of heavy-light operators.

In table 6.3 we find, that there are no ηc mesons in the linear combination of the
heavy-light operator for the alternative choice of the static-light operator.
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Chapter 7

Representation of a heavy-light operator
in terms of static-light operators

In order to get a better understanding of the forces between two ηc mesons, let us now
express this heavy-light operator in terms of static-light operators.
Thus, we are now interested in finding a static-light operator, that eliminates all terms
with γ-combinations describing the J/ψ meson.

In addition to the previously discussed static-light operator with Γ 1 = C(γ5 + γ0γ5) and
Γ 2 = (γ5 + γ0γ5)C, we take into account three other similar operators. The results are
listed in the following table:
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Combination 1
Oγ1+γ0γ1 Oγ2+γ0γ2 Oγ3+γ0γ3 Oγ5+γ0γ5

Γ 1 C(γ1 + γ0γ1) C(γ2 + γ0γ2) C(γ3 + γ0γ3) C(γ5 + γ0γ5)
Γ 2 (γ1 + γ0γ1)C (γ2 + γ0γ2)C (γ3 + γ0γ3)C (γ5 + γ0γ5)C

λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2
+0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5
+0.5 γ5 γ0 γ5 +0.5 γ5 γ0γ5 +0.5 γ5 γ0γ5 +0.5 γ5 γ0γ5
+0.5 γ0γ5 γ5 +0.5 γ0γ5 γ5 +0.5 γ0γ5 γ5 +0.5 γ0 γ5 γ5
+0.5 γ0γ5 γ0γ5 +0.5 γ0γ5 γ0γ5 +0.5 γ0γ5 γ0γ5 +0.5 γ0γ5 γ0γ5
+0.5 γ1 γ1 −0.5 γ1 γ1 −0.5 γ1 γ1 +0.5 γ1 γ1
+0.5 γ1 γ0γ1 −0.5 γ1 γ0γ1 −0.5 γ1 γ0γ1 +0.5 γ1 γ0γ1
−0.5 γ2 γ2 +0.5 γ2 γ2 −0.5 γ2 γ2 +0.5 γ2 γ2
−0.5 γ2 γ0γ2 +0.5 γ2 γ0γ2 −0.5 γ2 γ0γ2 +0.5 γ2 γ0γ2
−0.5 γ3 γ3 −0.5 γ3 γ3 +0.5 γ3 γ3 +0.5 γ3 γ3
−0.5 γ3 γ0γ3 −0.5 γ3 γ0γ3 +0.5 γ3 γ0γ3 +0.5 γ3 γ0γ3
+0.5 γ0γ1 γ1 −0.5 γ0γ1 γ1 −0.5 γ0γ1 γ1 +0.5 γ0γ1 γ1
+0.5 γ0γ1 γ0γ1 −0.5 γ0γ1 γ0γ1 −0.5 γ0γ1 γ0γ1 +0.5 γ0γ1 γ0γ1
−0.5 γ0γ2 γ2 +0.5 γ0γ2 γ2 −0.5 γ0γ2 γ2 +0.5 γ0γ2 γ2
−0.5 γ0γ2 γ0γ2 +0.5 γ0γ2 γ0γ2 −0.5 γ0γ2 γ0γ2 +0.5 γ0γ2 γ0γ2
−0.5 γ0γ3 γ3 −0.5 γ0γ3 γ3 +0.5 γ0γ3 γ3 +0.5 γ0 γ3 γ3
−0.5 γ0γ3 γ0γ3 −0.5 γ0γ3 γ0γ3 +0.5 γ0γ3 γ0γ3 +0.5 γ0γ3 γ0γ3

Table 7.1: Different static-light operators in terms of heavy-light operators.

Using the results of table 7.1, we can construct an operator equivalently to eq. (6.3.8):

OQ̄ q
(m)Q̄ q(n)

2 =
3∑
j=1

Q̄ (γj + γ0γj) CQ̄ q(m)C (γj + γ0γj) q(n) (7.0.1)

≈ Oc̄ l(j)c̄ l(k)
2

= 3 · c̄ (γ5 + γ0γ5) l(j) c̄ (γ5 + γ0γ5) l(k)

−
3∑
j=1

c̄ (γj + γ0γj) l(j) c̄ (γj + γ0γj) l(k) (7.0.2)

Note that, the static-light operators with γj + γ0γj matrices do not describe a bound
state, but they can have an attractive potential depending on the chosen isospin quantum
number, cf. table 7.10 and 7.11.
Again, we need to distinguish between the flavours q(m), q(n), l(j) and l(k) and get the
same condition as in eq. (6.3.9).

Now, with a linear combination of the four static-light operators we obtain heavy-light
operators consisting of ηc mesons.

1
2 · (O

γ1+γ0γ1 +Oγ2+γ0γ2 +Oγ3+γ0γ3 +Oγ5+γ0γ5). (7.0.3)
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Combination 1
1
2(Oγ1+γ0γ1 +Oγ2+γ0γ2

+Oγ3+γ0γ3 +Oγ5+γ0γ5)
λ Γ1 Γ2 meson meson
1 γ5 γ5 ηc ηc
1 γ5 γ0γ5 ηc ηc
1 γ0γ5 γ5 ηc ηc
1 γ0γ5 γ0γ5 ηc ηc

Table 7.2: Linear combination of four static-light operators that describe heavy-light
operators with only ηc mesons.

Since we were using only 8 out of 16 possible combinations of γ-matrices for the static
quarks in the static-light operator, terms with γ0γ5 in table 7.2 are not being eliminated.
For the construction of the c̄cc̄c operator of eq. (3.3.4) as a linear combination of static-
light operators equivalent to the first row of table 7.2, we need to consider 12 other
static-light operators. In the following we ignore the fact that two of the four Dirac
components of the static quarks vanish, i.e.,

Q̄ =̂ Q̄
1 + γ0

2 = Q̄


1

1
0

0

 . (7.0.4)

This means, that the relation between a static-light and heavy-light operator is actually a
more general relation, which is also valid for heavy quarks Q with finite mass. Therefore,
we also consider static-light operators, that actually lead to a vanishing correlator.
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Combination 2
Oγ1−γ0γ1 Oγ2−γ0γ2 Oγ3−γ0γ3 Oγ5−γ0γ5

Γ 1 C(γ1 − γ0γ1) C(γ2 − γ0γ2) C(γ3 − γ0γ3) C(γ5 − γ0γ5)
Γ 2 (γ1 − γ0γ1)C (γ2 − γ0γ2)C (γ3 − γ0γ3)C (γ5 − γ0γ5)C

λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2
+0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5
−0.5 γ5 γ0 γ5 −0.5 γ5 γ0 γ5 −0.5 γ5 γ0 γ5 −0.5 γ5 γ0 γ5
−0.5 γ0 γ5 γ5 −0.5 γ0 γ5 γ5 −0.5 γ0 γ5 γ5 −0.5 γ0 γ5 γ5
+0.5 γ0 γ5 γ0 γ5 +0.5 γ0 γ5 γ0 γ5 +0.5 γ0 γ5 γ0 γ5 +0.5 γ0 γ5 γ0 γ5
+0.5 γ1 γ1 −0.5 γ1 γ1 −0.5 γ1 γ1 +0.5 γ1 γ1
−0.5 γ1 γ0 γ1 +0.5 γ1 γ0 γ1 +0.5 γ1 γ0 γ1 −0.5 γ1 γ0 γ1
−0.5 γ2 γ2 +0.5 γ2 γ2 −0.5 γ2 γ2 +0.5 γ2 γ2
+0.5 γ2 γ0 γ2 −0.5 γ2 γ0 γ2 +0.5 γ2 γ0 γ2 −0.5 γ2 γ0 γ2
−0.5 γ3 γ3 −0.5 γ3 γ3 +0.5 γ3 γ3 +0.5 γ3 γ3
+0.5 γ3 γ0 γ3 +0.5 γ3 γ0 γ3 −0.5 γ3 γ0 γ3 −0.5 γ3 γ0 γ3
−0.5 γ0 γ1 γ1 +0.5 γ0 γ1 γ1 +0.5 γ0 γ1 γ1 −0.5 γ0 γ1 γ1
+0.5 γ0 γ1 γ0 γ1 −0.5 γ0 γ1 γ0 γ1 −0.5 γ0 γ1 γ0 γ1 +0.5 γ0 γ1 γ0 γ1
+0.5 γ0 γ2 γ2 −0.5 γ0 γ2 γ2 +0.5 γ0 γ2 γ2 −0.5 γ0 γ2 γ2
−0.5 γ0 γ2 γ0 γ2 +0.5 γ0 γ2 γ0 γ2 −0.5 γ0 γ2 γ0 γ2 +0.5 γ0 γ2 γ0 γ2
+0.5 γ0 γ3 γ3 +0.5 γ0 γ3 γ3 −0.5 γ0 γ3 γ3 −0.5 γ0 γ3 γ3
−0.5 γ0 γ3 γ0 γ3 −0.5 γ0 γ3 γ0 γ3 +0.5 γ0 γ3 γ0 γ3 +0.5 γ0 γ3 γ0 γ3

Table 7.3: Different static-light operators in terms of heavy-light operators.

Combination 2
1
2(Oγ1−γ0γ1 +Oγ2−γ0γ2

+Oγ3−γ0γ3 +Oγ5−γ0γ5)
λ Γ1 Γ2

+1 γ5 γ5
−1 γ5 γ0 γ5
−1 γ0 γ5 γ5
+1 γ0 γ5 γ0 γ5

Table 7.4: Linear combination of four static-light operators that describe heavy-light
operators with only ηc mesons.
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Combination 3

O(γ1+γ0γ1)γ5 O(γ2+γ0γ2)γ5 O(−γ3−γ0γ3)γ5 O(1+γ0)

Γ 1 C(γ1 + γ0γ1)γ5 C(γ2 + γ0γ2)γ5 C(−γ3 − γ0γ3)γ5 C(1 + γ0)
Γ 2 −γ5(γ1 − γ0γ1)C −γ5(γ2 − γ0γ2)C γ5(γ3 − γ0γ3)C (1 + γ0)C

λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2
+0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5
−0.5 γ5 γ0 γ5 −0.5 γ5 γ0 γ5 −0.5 γ5 γ0 γ5 −0.5 γ5 γ0 γ5
+0.5 γ0 γ5 γ5 +0.5 γ0 γ5 γ5 +0.5 γ0 γ5 γ5 +0.5 γ0 γ5 γ5
−0.5 γ0 γ5 γ0 γ5 −0.5 γ0 γ5 γ0 γ5 −0.5 γ0 γ5 γ0 γ5 −0.5 γ0 γ5 γ0 γ5
−0.5 γ1 γ1 +0.5 γ1 γ1 +0.5 γ1 γ1 −0.5 γ1 γ1
+0.5 γ1 γ0 γ1 −0.5 γ1 γ0 γ1 −0.5 γ1 γ0 γ1 +0.5 γ1 γ0 γ1
+0.5 γ2 γ2 −0.5 γ2 γ2 +0.5 γ2 γ2 −0.5 γ2 γ2
−0.5 γ2 γ0 γ2 +0.5 γ2 γ0 γ2 −0.5 γ2 γ0 γ2 +0.5 γ2 γ0 γ2
+0.5 γ3 γ3 +0.5 γ3 γ3 −0.5 γ3 γ3 −0.5 γ3 γ3
−0.5 γ3 γ0 γ3 −0.5 γ3 γ0 γ3 +0.5 γ3 γ0 γ3 +0.5 γ3 γ0 γ3
−0.5 γ0 γ1 γ1 +0.5 γ0 γ1 γ1 +0.5 γ0 γ1 γ1 −0.5 γ0 γ1 γ1
+0.5 γ0 γ1 γ0 γ1 −0.5 γ0 γ1 γ0 γ1 −0.5 γ0 γ1 γ0 γ1 +0.5 γ0 γ1 γ0 γ1
+0.5 γ0 γ2 γ2 −0.5 γ0 γ2 γ2 +0.5 γ0 γ2 γ2 −0.5 γ0 γ2 γ2
−0.5 γ0 γ2 γ0 γ2 +0.5 γ0 γ2 γ0 γ2 −0.5 γ0 γ2 γ0 γ2 +0.5 γ0 γ2 γ0 γ2
+0.5 γ0 γ3 γ3 +0.5 γ0 γ3 γ3 −0.5 γ0 γ3 γ3 −0.5 γ0 γ3 γ3
−0.5 γ0 γ3 γ0 γ3 −0.5 γ0 γ3 γ0 γ3 +0.5 γ0 γ3 γ0 γ3 +0.5 γ0 γ3 γ0 γ3

Table 7.5: Different static-light operators in terms of heavy-light operators.

Combination 3
1
2(O(γ1+γ0γ1)γ5 +O(γ2+γ0γ2)γ5

+O(−γ3−γ0γ3)γ5 +O(1+γ0))
λ Γ1 Γ2

+1 γ5 γ5
−1 γ5 γ0 γ5
+1 γ0 γ5 γ5
−1 γ0 γ5 γ0 γ5

Table 7.6: Linear combination of four static-light operators that describe heavy-light
operators with only ηc mesons.
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Combination 4

O(γ1−γ0γ1)γ5 O(γ2−γ0γ2)γ5 O(−γ3+γ0γ3)γ5 O1−γ0

Γ 1 C(γ1 − γ0γ1)γ5 C(γ2 − γ0γ2)γ5 C(−γ3 + γ0γ3)γ5 C(1− γ0)
Γ 2 −γ5(γ1 + γ0γ1)C −γ5(γ2 + γ0γ2)C γ5(γ3 + γ0γ3)C (1− γ0)C

λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2 λ Γ1 Γ2
+0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5 +0.5 γ5 γ5
+0.5 γ5 γ0 γ5 +0.5 γ5 γ0 γ5 +0.5 γ5 γ0 γ5 +0.5 γ5 γ0 γ5
−0.5 γ0 γ5 γ5 −0.5 γ0 γ5 γ5 −0.5 γ0 γ5 γ5 −0.5 γ0 γ5 γ5
−0.5 γ0 γ5 γ0 γ5 −0.5 γ0 γ5 γ0 γ5 −0.5 γ0 γ5 γ0 γ5 −0.5 γ0 γ5 γ0 γ5
−0.5 γ1 γ1 +0.5 γ1 γ1 +0.5 γ1 γ1 −0.5 γ1 γ1
−0.5 γ1 γ0 γ1 +0.5 γ1 γ0 γ1 +0.5 γ1 γ0 γ1 −0.5 γ1 γ0 γ1
+0.5 γ2 γ2 −0.5 γ2 γ2 +0.5 γ2 γ2 −0.5 γ2 γ2
+0.5 γ2 γ0 γ2 −0.5 γ2 γ0 γ2 +0.5 γ2 γ0 γ2 −0.5 γ2 γ0 γ2
+0.5 γ3 γ3 +0.5 γ3 γ3 −0.5 γ3 γ3 −0.5 γ3 γ3
+0.5 γ3 γ0 γ3 +0.5 γ3 γ0 γ3 −0.5 γ3 γ0 γ3 −0.5 γ3 γ0 γ3
+0.5 γ0 γ1 γ1 −0.5 γ0 γ1 γ1 −0.5 γ0 γ1 γ1 +0.5 γ0 γ1 γ1
+0.5 γ0 γ1 γ0 γ1 −0.5 γ0 γ1 γ0 γ1 −0.5 γ0 γ1 γ0 γ1 +0.5 γ0 γ1 γ0 γ1
−0.5 γ0 γ2 γ2 +0.5 γ0 γ2 γ2 −0.5 γ0 γ2 γ2 +0.5 γ0 γ2 γ2
−0.5 γ0 γ2 γ0 γ2 +0.5 γ0 γ2 γ0 γ2 −0.5 γ0 γ2 γ0 γ2 +0.5 γ0 γ2 γ0 γ2
−0.5 γ0 γ3 γ3 −0.5 γ0 γ3 γ3 +0.5 γ0 γ3 γ3 +0.5 γ0 γ3 γ3
−0.5 γ0 γ3 γ0 γ3 −0.5 γ0 γ3 γ0 γ3 +0.5 γ0 γ3 γ0 γ3 +0.5 γ0 γ3 γ0 γ3

Table 7.7: Different static-light operators in terms of heavy-light operators.

Combination 4
1
2(O(γ1−γ0γ1)γ5 +O(γ2−γ0γ2)γ5

+O(−γ3+γ0γ3)γ5 +O(1−γ0))
λ Γ 1 Γ 2

+1 γ5 γ5
+1 γ5 γ0 γ5
−1 γ0 γ5 γ5
−1 γ0 γ5 γ0 γ5

Table 7.8: Linear combination of four static-light operators that describe heavy-light
operators with only ηc mesons.
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If we now add all 16 static-light operators Oj with
Oj ∈ {Oγ1+γ0γ1 ,Oγ2+γ0γ2 ,Oγ3+γ0γ3 ,Oγ5+γ0γ5 ,Oγ1−γ0γ1 ,Oγ2−γ0γ2 ,

Oγ3−γ0γ3 ,Oγ5−γ0γ5 ,O(γ1+γ0γ1)γ5 ,O(γ2+γ0γ2)γ5 ,O(−γ3−γ0γ3)γ5 ,

O(1+γ0),O(γ1−γ0γ1)γ5 ,O(γ2−γ0γ2)γ5 ,O(−γ3+γ0γ3)γ5 ,O1−γ0}
and multiply it by a normalization factor, we get the expected result:

1
8

16∑
j=1
Oj

λ Γ1 Γ2
+1 γ5 γ5

Table 7.9: c̄cc̄c operator represented by 16 static-light operators.

The following tables are excerpts of an overview of all quantum numbers for different
combinations of Γ 1 that have been computed for the studies of the static-light tetraquark.
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Γ
(ud±du)
X tb P(tm), P(tm)

x , sec. Γ
(ud±du)
X ppb P, Px type

jz = 0, I = 0

1 γ
(−)
5 − iγ(+)

0 +, −, a (+γ5 + γ0γ5)(−) −, + att SS
2 γ0γ

(−)
3 − iγ3γ

(+)
5 −, +, b (+γ0γ3 + γ3)(−) +, − rep SS

jz = 0, I = 1, Iz = 0

3 γ0γ
(+)
3 − iγ3γ

(−)
5 −, −, c (+γ0γ3 + γ3)(+) −, − att SS

4 γ
(+)
5 − iγ(−)

0 +, +, d (+γ5 + γ0γ5)(+) +, + rep SS
jz = 1, I = 0

5 γ0γ
(−)
1/2 − iγ1/2γ

(+)
5 −, −/+, e/f (+γ0γ1/2 + γ1/2)(−) +, +/− rep SS

jz = 1, I = 1, Iz = 0

6 γ0γ
(+)
1/2 − iγ1/2γ

(−)
5 −, +/−, f/e (+γ0γ1/2 + γ1/2)(+) −, +/− att SS

Table 7.10: Twisted and (pseudo) physical quantum numbers for ud± du. Taken from
M.Wagner, to be published.

Γ
(uu
dd

)
X tb P(tm)P(tm)

x , sec. Γ
(uu
dd

)
X ppb P, Px type

jz = 0, I = 1, Iz = ±
7 γ3 ± iγ0γ3γ5 +, i +γ3 + γ0γ3 −, − att SS
8 γ0γ5 ± i +, i +γ0γ5 + γ5 +, + rep SS

jz = 1, I = 1, Iz = ±
9 γ1/2 ± iγ0γ1/2γ5 −/+, k/l +γ1/2 + γ0γ1/2 −, +/− att SS

Table 7.11: Twisted and (pseudo) physical quantum numbers for uu and dd. Taken
from M. Wagner, to be published.

In order to understand the heavy-light operator Oc̄ l(j)c̄ l(k)
γ5,γ5 we analyse the static-light

operators in the linear combination of table 7.9. Looking at table 7.10 and 7.11 we see
which static-light operator defined by the γ-combinations in coloum 4 correspond to an
attractive or repulsive potential.
Based on the representation of the c̄cc̄c tetraquark candidate in the static limit, we find
that this operator is actually a superposition of attractive and repulsive potentials for
either I = 0 or I = 1. Switching the isospin from I = 0 to I = 1 results in turning an
attractive potential into a repulsive and vice versa as shown in table 7.10 and 7.11.

44



Chapter 8

Numerical results and analysis for heavy-
light 4-quark-states

As summarised in ch. 5.1, we expect to obtain different masses for the correlation
functions with isospin states I = 0 and I = 1 in the static limit using the constructed
heavy-light operators Oc̄ l(j)c̄ l(k)

1 and Oc̄ l(j)c̄ l(k)
2 .

The results of the effective masses are given in the following sections.

8.1 Heavy-light operator Oc̄ l(j)c̄ l(k)

1

Computing the correlator of the operator given in eq. (6.3.8)

Oc̄ l(j)c̄ l(k)
1 = 0.5 · c̄ (γ5 + γ0γ5) l(j) c̄(γ5 + γ0γ5) l(k)

+ 0.5 ·
3∑
j=1

c̄ (γj + γ0γj) l(j) c̄ (γj + γ0γj) l(k)

we obtain the following result for the effective masses:
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Figure 8.1: Effective masses for the isospin states I = 0 and I = 1 of the heavy-light
operator in eq. (6.3.8) with and without smearing.

For the different isospin states using smearing techniques we obtain the following masses

msmea
I=0 = (6.5754± 0.0146) GeV

msmea
I=1 = (6.5897± 0.0156) GeV.

Calculating the differences between the masses as in ch. 5 we obtain

msmea
I=1 −msmea

I=0 = (0.0143± 0.0017) GeV.

In figure 8.1 we find again, that the operator without smearing does not represent the
ground state because of the higher masses for small values of t.
We also find that for large values of t/a a clear plateau seems not to be reached.

However, we find a mass difference of about 14 MeV with a confidence level of ≈ 8σ.
Even if this mass difference is smaller than the mass difference obtained in ch. 5.2, this
might be a first indication for having an attractive and repulsive channel. Looking
at table 7.10 we also find that in the static limit the isospin state I = 0 leads to an
attractive channel for combining the light quarks with γ5 + γ0γ5, cf. row number 1.
This is in accordance with our result of the effective masses which indicates that the
isospin state I = 0 might be an attractive channel.
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8.2 Heavy-light operator Oc̄ l(j)c̄ l(k)

2

Computing the correlation function of the operator given in eq. (7.0.2)

Oc̄ l(j)c̄ l(k)
2 = c̄ (γ5 + γ0γ5) l(j) c̄ (γ5 + γ0γ5) l(k)

− 1
3

3∑
j=1

c̄ (γj + γ0γj) l(j) c̄ (γj + γ0γj) l(k)

yield to the following effective masses:
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Figure 8.2: Results for the isospin states I = 0 and I = 1 of heavy-light operator in
eq. (7.0.2) with and without smearing.

For the masses we find the following result:

msmea
I=0 = (6.4779± 0.0197) GeV

msmea
I=1 = (6.4724± 0.0167) GeV

Again, calculating the difference of the two masses leads to

msmea
I=0 −msmea

I=1 = (0.0054± 0.0039) GeV.

Since we do not find a clear plateau for large values of t/a and the uncertainty of the
difference of the masses is of the same magnitude as the difference itself, we do not
observe a clear indication of different masses for the two isospin states. However, we find
a lower mass for the isospin state I = 1, which is also in accordance with the attractive
channels given in row 3 and 6 of table 7.10.

47



CHAPTER 8. NUMERICAL RESULTS AND ANALYSIS FOR HEAVY-LIGHT 4-QUARK-STATES

8.3 Conclusion of ch. 8.1 and 8.2

In figure 8.1 and 8.2 we see, that the operators do not represent a ground state, but
rather a mixture with excited states. This is indicated by the still decreasing masses for
large time separations, which imply, that the higher order terms in eq. (3.2.2) do not
vanish.

Computing the effective masses for the different isospin states I = 0 and I = 1 of
the constructed operator Oc̄ l(j)c̄ l(k)

1 we find a slight difference of about 14 MeV with a
confidence level of ≈ 8σ. The lower mass correspond to the isospin state I = 0 which is
in accordance with the result obtained in the static limit, cf. row 1 in table 7.10.

By computing the correlator with the constructed operator Oc̄ l(j)c̄ l(k)
2 we obtain an

uncertainty of the difference of the masses for I = 0 and I = 1 of the same magnitude
as the difference itself. Thus, we do not observe a clear signal for two different masses.
However, it is indicated that we obtain a smaller mass for the isospin state I = 1 which
is again in accordance with computations in the static limit, cf. row 3 and 6 in table
7.10.
Even if we do not find a significant evidence for different masses, this might be a first
indication and need to be investigated in more detail.
Although, the operators Oc̄ l(j)c̄ l(k)

1 and Oc̄ l(j)c̄ l(k)
2 do not approximate the ground state

for the c̄cc̄c 4-quark-state, they might be good candidates for finding a signal of bound
states in the static limit, when using the masses of up and down quarks for the com-
putations. By using different quark masses, we expect to find different masses for the
quantum numbers I = 0 and I = 1.

Using the operator Oc̄ l(j)c̄ l(k)
γ5,γ5 for computing the effective mass we find a significant

difference of ≈ 60 MeV, cf. ch. 5.2. Thus, we assume that this operator excites the
ground state in the non-static regime.
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Chapter 9

Comparison of heavy-light operators and
simple model of interpretation

9.1 Comparison of numerical results for Oc̄ l(j)c̄ l(k)

γ5,γ5
, Oc̄ l(j)c̄ l(k)

1
and Oc̄ l(j)c̄ l(k)

2

Comparing the effective masses of the heavy-light operator of eq. (5.2.1)

Oc̄ l(j)c̄ l(k)
γ5,γ5 = c̄A

(
γ5
)
AB

l
(j)
B c̄C

(
γ5
)
CD

l
(k)
D .

with the effective masses of the heavy-light operator given in eq. (6.3.8)

Oc̄ l(j)c̄ l(k)
1 = 0.5·c̄ (γ5+γ0γ5) l(j) c̄(γ5+γ0γ5) l(k)+0.5·

3∑
j=1

c̄ (γj+γ0γj) l(j) c̄ (γj+γ0γj) l(k),

and in eq. (7.0.2)

Oc̄ l(j)c̄ l(k)
2 = c̄ (γ5 + γ0γ5) l(j) c̄ (γ5 + γ0γ5) l(k) − 1

3

3∑
j=1

c̄ (γj + γ0γj) l(j) c̄ (γj + γ0γj) l(k)

using APE and Gaussian smearing leads to the following figures:
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Figure 9.1: Comparing the effective masses of the correlators using the operators of
eq. (5.2.1) and of eq. (6.3.8) using smearing techniques.
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Figure 9.2: Comparing the effective masses of the correlators using the operators of
eq. (5.2.1) and of eq. (7.0.2) using smearing techniques.
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In figure 9.1 and 9.2 we see, that the heavy-light operator Oc̄ l(j)c̄ l(k)
γ5,γ5 consisting of only

ηc mesons leads to a better overlap with the ground state than the heavy-light operators
Oc̄ l(j)c̄ l(k)

1 and Oc̄ l(j)c̄ l(k)
2 which do also include J/Ψ mesons because of the lower mass.

The operators Oc̄ l(j)c̄ l(k)
1 and Oc̄ l(j)c̄ l(k)

2 do not yield to conclusive results, because for
t 5 20 the effective masses seem not to have reached a plateau yet.

9.2 Concept for analysing the results obtained in ch. 9.1

In order to illustrate some basic concepts about the contribution of the ground state
and excited states to the effective mass let us consider the Hamiltonian Htotal of our
states in a simple quantum mechanical model.
In general it holds, that

Htotal = Hfree +Hint

with Hfree denoting the Hamiltonian without any interaction and Hint denoting the
contribution of an interaction.
More precisely, we define

Hfree =
(
m

M

)
in the basis of

(
“2× ηc”
“2× J/Ψ”

)
(9.2.1)

Hint =
(

+∆
−ε

)
in the basis of

(
“2× ηc + 2× J/Ψ”
“2× ηc − 2× J/Ψ”

)
(9.2.2)

In our case the Hamiltonian Hfree denotes the Hamiltonian of the two-meson-state with
m = 2×mηc and M = 2×mJ/Ψ , i.e. the Hamiltonian for two non-interacting mesons.
Hint however denotes the Hamiltonian of the meson-meson interaction. Analogously
to the constructed operators of eq. (6.3.8) and (7.0.1) , we can have either the state of
2× ηc + 2× J/Ψ or the state of 2× ηc − 2× J/Ψ with the masses ∆ and ε respectively.
There are different signs for the two states, indicating an attractive and repulsive
potential.

In order to obtain an expression for the Hamiltonian Htotal, we need to transform the
basis of Hint into the basis of Hfree with the following transformation matrix:

(
1 1
1 −1

)(
“2× ηc”
“2× J/Ψ”

)
=
(
“2× ηc + 2× J/Ψ”
“2× ηc − 2× J/Ψ”

)
(9.2.3)
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Thus, we obtain

Hint = 1√
2

(
1 1
1 −1

)(
+∆

−ε

)
1√
2

(
1 1
1 −1

)
(9.2.4)

= 1
2

(
∆− ε ∆+ ε

∆+ ε ∆− ε

)
(9.2.5)

= 1
2

(
∆− ε 0

0 ∆− ε

)
+ 1

2

(
0 ∆+ ε

∆+ ε 0

)
(9.2.6)

= Hint,shift +Hint, split (9.2.7)

For the Hamiltonian Htotal we obtain

Htotal = Hfree +Hint =
(
m+ ∆−ε

2
∆+ε

2
∆+ε

2 M + ∆−ε
2

)
(9.2.8)

=
(
m′ δ

δ M ′

)

=
(
m′ 0
0 M ′

)
+
(

0 δ

δ 0

)
(9.2.9)

= Hfree +Hint,shift +Hint, split (9.2.10)

with m′ = m+ ∆−ε
2 and M ′ = M + ∆−ε

2 and δ = ∆+ε
2 .

Note, that the interaction term Hint of the Hamiltonian Htotal is now represented in the
same basis as Hfree.

Now, we need to find the eigenvalues and eigenvectors of the Hamiltonian Htotal.

0 = det(Htotal − 1λ) = (m′ − λ)(M ′ − λ)− δ2 (9.2.11)

Solving eq. (9.2.11) leads to

λ1/2 = m′ +M ′

2 ±

√(
m′ −M ′

2

)2
+ δ2 (9.2.12)

= m+M

2 + (∆− ε)±

√(
m−M

2

)2
+ δ2 (9.2.13)

Now, we need to consider two cases:

� Case 1: δ � |m′ −M ′|
With a taylor expansion for δ � |m′ −M ′|, i.e., a large difference of the masses and a
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small binding energy δ, we find the eigenvalues

λ1/2 = m′ +M ′

2 ± m′ −M ′

2 ·
(

1 + 2δ2

(m′ −M ′)2

)

= m+M

2 + (∆− ε)± m−M
2 ·

(
1 + 2(∆+ ε)2

(m−M)2

)
. (9.2.14)

Assuming δ = ∆+ ε� (m−M), we obtain the eigenvectors

x1 =
(

1
0

)
“2× ηc”

x2 =
(

0
1

)
“2× J/Ψ”.

With δ ≈ 0 we obtain(
m′ 0
0 M ′

)(
1
0

)
= m′

(
1
0

)
=
(
m+ ∆− ε

2

)(1
0

)
(9.2.15)

(
m′ 0
0 M ′

)(
0
1

)
= M ′

(
0
1

)
=
(
M + ∆− ε

2

)(0
1

)
. (9.2.16)

With eq. (9.2.15) and (9.2.16) we find, that our eigenstate is either in the basis of
2× ηc with the eigenvalue m′ or 2× J/Ψ with the eigenvalue M ′, i.e., a state of two
non-interacting mesons.

� Case 2: |m′ −M ′| � δ

With a taylor expansion for |m′ −M ′| � δ we obtain

λ1/2 = m+M

2 + (∆− ε)± δ ·
(

1 + (m−M)2

8δ2

)
(9.2.17)

and the corresponding eigenvectors

x1 = 1√
2

(
1
1

)
“2× ηc + 2× J/Ψ”

x2 = 1√
2

(
1
−1

)
“2× ηc − 2× J/Ψ”.

Assuming m′ −M ′ ≈ 0→ m′ ≈M ′ we obtain(
m′ δ

δ M ′

)
1√
2

(
1
1

)
= 1√

2
(m′ + δ)

(
1
1

)
= 1√

2
(m+∆)

(
1
1

)
(9.2.18)
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(
m′ δ

δ M ′

)
1√
2

(
1
−1

)
= 1√

2
(m′ − δ)

(
1
−1

)
= 1√

2
(m− ε)

(
1
−1

)
. (9.2.19)

Eq. (9.2.18) and (9.2.19) show, that we have either an eigenstates in the basis of
2×ηc+2×J/Ψ or 2×ηc−2×J/Ψ with the eigenvalues m+∆ and m− ε respectively.

9.3 Conclusion of ch. 9.1 and 9.2

Based on the previous considerations, we have

� Case 1: m−M � δ → state of either 2× ηc or 2× J/Ψ

� Case 2: m−M � δ → state of either 2× ηc + 2× J/Ψ or 2× ηc − 2× J/Ψ

Depending on the case that we are considering, we have either a small δ or a small
difference of the masses m−M .
In the first case, we have an eigenstate of ηc or J/Ψ mesons with a small interaction
δ ≈ 0. In the second case, the eigenstates are a superposition of two ηc and two J/Ψ
mesons.
Note, that the term ∆ − ε 6= 0 due to the interaction leads to a shift of the energy
levels. This shift might have been observed by the plots in figure 5.1,9.1 and 9.2 by the
difference of the mass of two ηc mesons and the c̄cc̄c 4-quark-states. Thus, we do not
obtain exactly the mass of two ηc mesons.

Hfree Hint,shift Hint,split

E
m2×J/Ψ

m2×ηc

∆−ε=⇒ interaction=⇒

Figure 9.3: Visualisation of energy shift.
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With the results of figure 9.1 and 9.2 we find, that

� the quark flavours and masses used describe the regime of δ � |m′ −M ′|*, which is
indicated by [14],

� the operator Oc̄ l(j)c̄ l(k)
γ5,γ5 consisting of ηc mesons leads to a better excitation of the

ground state than the operators Oc̄ l(j)c̄ l(k)
1 and Oc̄ l(j)c̄ l(k)

2 consisting of ηc and J/Ψ
mesons.

Since the operators Oc̄ l(j)c̄ l(k)
1 and Oc̄ l(j)c̄ l(k)

2 do not lead to conclusive results, we can
also assume, that

� the mass of the charm quarks might not be heavy enough for approximating static
quarks,

� we need the mass of an up or down quark for the light quarks.

*If the operators would describe the case of |m′ −M ′| � δ, then we would have obtained the
opposite result. The operators Oc̄ l

(j)c̄ l(k)
1 and Oc̄ l

(j)c̄ l(k)
2 would have led to smaller masses than the

operator Oc̄ l
(j)c̄ l(k)

γ5,γ5 .
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Chapter 10

Summary and outlook

In this work we investigated effective masses by computing correlation functions of
different 4-quark operators using lattice QCD. For the computations we used the twisted
mass formulation and different smearing techniques. To save CPU time we set all quark
masses equal to the charm quark mass.

First, we analysed the dynamic c̄cc̄c tetraquark-candidate. However, we did not find a
clear signal for a bound state in contrast to the result based given in [3].

Previous investigations of static-light 4-quark-states led to attractive interactions between
two mesons and even bound tetraquark states [14]. Thus, we considered an heavy-light
approximation of the static limit. In this approximation two heavy charm anti-quarks
and two light quarks, i.e., up or down, were used.

Computing the correlation function of the heavy-light operator Oc̄ l(j)c̄ l(k)
γ5,γ5 , corresponding

to the dynamic c̄cc̄c tetraquark-candidate, led to a significant difference of the masses
for the isospin states I = 0 and I = 1. In analogy to the investigations of static-light
4-quark-states, we assume to have found attractive and repulsive channels.

Additionally, we expressed static-light operators in terms of heavy-light operators and
computed the corresponding correlation functions of the constructed heavy-light operat-
ors Oc̄ l(j)c̄ l(k)

1 and Oc̄ l(j)c̄ l(k)
2 . For these operators slightly different masses were obtained

for the isospin states I = 0 and I = 1, which give a first indication of interactions.
However the numerical results and a simple quantum mechanical model showed, that
the operator Oc̄ l(j)c̄ l(k)

γ5,γ5 describes the ground state in the non-static regime, whereas the
operators Oc̄ l(j)c̄ l(k)

1 and Oc̄ l(j)c̄ l(k)
2 might excite the ground state in the static limit.

In order to improve our investigations and to verify our assumptions, it will be necessary
to use different quark masses for the computations, i.e., the masses of an up or down
quark and a higher mass for the anti-quarks instead of using 4 charm-quark masses and
to increase the statistical accuracy. Then, we might be able to find attractive channels
or even bound states for the constructed heavy-light operators Oc̄ l(j)c̄ l(k)

1 and Oc̄ l(j)c̄ l(k)
2 .
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