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Zusammenfassung

In dieser Arbeit werden zwei Strukturen (Diquark-Antidiquark und mesonisches Molekül) mit
Hilfe von Gitter-QCD Methoden für ein b̄b̄ud Tetraquark verglichen, für das bereits ein gebun-
dener Zustand mit den Quantenzahlen I(JP ) = 0(1+) postuliert wurde. Das Tetraquark wird
dabei in der statisch-leichten Näherung betrachtet. Das bedeutet, dass das b̄b̄ Paar als un-
endlich schwer (statisch) betrachtet wird, während die leichten u/d Quarks voll dynamisch
sind. Die beiden Strukturen zu vergleichen bedeutet konkret, zu untersuchen welche Struktur
(im Vergleich zur anderen) die bessere Beschreibung für den Grundzustand des Tetraquarks
liefert. Der erste Schritt zur Beantwortung dieser Fragestellung ist das Berechnen einer
2 × 2 Korrelationsmatrix aus den beiden Zuständen. Anschließend wird das verallgemein-
erte Eigenwertproblem (GEVP) gelöst und die relative Gewichtung der beiden Zustände aus
dem resultierenden (Grundzustands-) Eigenvektor extrahiert. Es stellt sich heraus, dass der
Diquark-Antidiquark Zustand für sehr kleine Abstände der schweren Quarks dominiert und
für größer werdende Abstände immer mehr an Bedeutung verliert, sodass hier schließlich nur
noch das mesonische Molekül beiträgt. Als Zwischenresultat wird ebenfalls das Potential der
statischen Antiquarks in Anwesenheit der leichten Quarks berechnet und analysiert.





Abstract

In this master thesis, lattice QCD methods are used to compare two structures (diquark-
antidiquark and mesonic molecule) for a b̄b̄ud tetraquark, for which a bound state with
quantum numbers I(JP ) = 0(1+) has already been predicted. The tetraquark is treated
in the static-light approximation. That means, that the b̄b̄ pair is assumed to be infinitely
heavy (static), while the light u/d quarks are treated fully relativistically. To be more precise,
comparing both structures means to investigate which structure is the better description for
the tetraquark ground state (compared to the other structure). The first step in answering
this question is the computation of a 2×2 correlation matrix from the both states. Afterwards
one has to solve the generalized eigenvalue problem (GEVP) and then the relative weight
for both states can be extracted from the resulting (ground state-) eigenvector. It turns out,
that the diquark-antidiquark state dominates for very small heavy quark separations, but it
becomes more and more negligible for larger separations, where the tetraquark can be seen
as pure mesonic molecule state. As an intermediate result also the potential of the static
antiquarks in the presence of the light quarks is computed and analyzed.
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1 Introduction

Apart from the hadron groups of mesons qq̄ and baryons qqq also exotic hadrons, e.g.
tetraquarks qqq̄q̄, are possible in theory. QCD allows the formation of such states, because
two quarks and two antiquarks can combine to a colour-singlet. Understanding exotic hadrons
or to prove their existence or non-existence in case of tetraquarks is a long standing problem
in particle physics.

1.1 Experimental tetraquark candidates

Observing exotic hadrons experimentally is much harder, than observing conventional mesons
and baryons. For example, tetraquark candidates are elusive systems, high in the spectrum,
which quickly decay to several non-exotic hadrons.

Several hadronic resonances, which are unconfirmed tetraquark candidates, are e.g. the light
scalar mesons σ, κ, f0(980) and a0(980) and the heavier charm-strange mesons D∗s0 and Ds1

[1, 2]. However, their quantum numbers and masses are not too different from what is ex-
pected in the qq̄ picture and thus, it is not possible to find definite proof of their tetraquark
nature.

The recently observed charmonium / bottomonium resonances Z±c and Z±b (among others
by the BELLE collaboration [3, 4, 5]) are more obvious tetraquark candidates. Its masses
and decay products give strong indications for hidden cc̄ or bb̄ pairs. But this alone can not
explain the electrical charge.

Figure 1.1: Sketch of the charged bottomonium resonance Zb(10610)+ and Zb(10650)+ [35].

Assuming a tetraquark structure, sketched in fig. 1.1 for the bottomonium resonance, solves
this problem. In this case, the presence of a light quark and a light antiquark (u → +2/3e
and d̄ → +1/3e) is responsible for the charge (Zb(...) ≡ bb̄ud̄). However, also for the Z±b
resonance, the tetra quark nature is disputable [6].

The discussed candidates, especially the charmonium resonance Z±c have already received
considerable experimental attention. Further measurements, aiming to learn more about the
decay channels together with theoretical investigations can potentially clarify the status of
these candidates in near future. The role of lattice QCD in this context is very important,
since it can provide quantitative predictions, directly based on the QCD lagrangian, i.e. from
first principles.
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1.2 Tetraquarks from lattice QCD

Studying tetraquarks theoretically by means of lattice QCD is important to confirm and in-
terpret corresponding experimental observations and as well to provide information in which
channels tetraquarks may be found.

Due to the observations of B∗B̄ and B∗B̄∗ tetraquark candidates in experiments, it is desir-
able to investigate these systems also in theory. However, this is problematic because these
they couple to at least five decay channels. Therefore it is convenient to concentrate first on
the theoretically simpler BB systems. One can be optimistic, that after the observation of
BB̄ systems also BB tetraquarks may be observed in the near future in present day labora-
tories.

Furthermore, many technical difficulties concerning tetraquark studies can be avoided by
searching for bound states rather than for resonances. This is appropriate, if the two in-
volved antiquarks are sufficiently heavy (see Ref. [9] and the references therein). Considering
two heavy antiquarks on the lattice in turn reduces the technical complexity of the four quark
system, because they can be treated in leading order HQET, also known as static approxi-
mation, c.f. sec. 2.5. In this limit, the heavy quarks appear simply as static colour charges.
Because the static approximation is most appropriate if the heavy (anti-)quarks are bottom
(anti-)quarks, the term “static quark” can be seen as a synonym for the bottom quark from
now on.

In the following, previous studies on which my thesis is based are introduced. Within the
static-light approximation, the isospin, spin and parity dependent potential of a pair of B
mesons was computed [9]. This is the first step in the Born-Oppenheimer approximation,
which is used to find possibly existing tetraquark bound states. For a detailed introduction
to this strategy, see Refs. [7, 8].

Born-Oppenheimer approximation:

1) Compute potentials of two static antiquarks b̄b̄ in the presence of two lighter quarks
qq ∈ {ud, ss, cc} using lattice QCD.

2) Check, whether these potentials are sufficiently attractive to host a bound state by
solving a corresponding Schrödinger equation.

While there was no indication for a bound state for qq ∈ {ss, cc}, one bound state for the
b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+) was found. The computations have
been performed at three unphysically heavy pion masses, but the binding still survives after
extrapolating down to the physical value. After including heavy spin effects [10], the binding
energy of this state is EB = −59+38

−30 MeV.

More details about the work presented here, e.g. the hadron creation operators used for the
numerical computations together with its characterizing quantum numbers are discussed in
sec. 3.1.

It is worth to mention, that the bound b̄b̄ud tetraquark state has also been predicted by
other groups with the same quantum numbers, using a similar approach [11] and by a lattice
computation with four quarks of finite mass [12].
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1.3 Mesonic molecule vs. diquark-antidiquark

In this thesis, the previous studies about the bound b̄b̄ud tetraquark state with quantum
numbers I(JP ) = 0(1+) are extended. The goal is to investigate the internal structure of the
predicted bound state. To this end, the mesonic molecule structure (BB) and the diquark-
antidiquark structure (Dd) are compared to each other.

Figure 1.2: Sketch of the mesonic molecule structure and the diquark-antidiquark structure
[36].

In fig. 1.2, both structures are illustrated. The mesonic molecule can be understood as two
ordinary q̄q mesons, bound by residual strong forces, while in the diquark-antidiquark struc-
ture a diquark qq and an antidiquark q̄q̄ are strongly bound by a connecting flux tube of
gluons. In sec. 3.1, differences and similarities of both structures are discussed based on their
creation operators.

To analyze the internal tetraquark structure, we have to compute correlation matrices C(t; r),
containing both tetraquark structures for varying heavy quark separations r. Afterwards, the
generalized eigenvalue problem (GEVP) has to be solved, with the correlation matrices as an
input, c.f. sec. 2.6. From the resulting (ground state-) eigenvectors, the relative contributions
of the different structures to the tetraquark ground state can be extracted as a function of
the heavy antiquark separation. Moreover, the potential of the b̄b̄ pair in presence of light up
and down quarks can be extracted from the eigenvalues, which also result from the solution
of the GEVP, .

In the following, a short outline of this theses is given. The next chapter is about the theo-
retical foundations, e.g. key equations of lattice QCD and techniques to treat heavy quarks
on the lattice are explained. Then, it is shown how the correlation matrices are constructed,
based on the creation operators for the mesonic molecule and the diquark-antidiquark struc-
ture. Afterwards, the technical realization of the computation of the correlation matrix by
means of lattice simulations is addressed. Following this, the results of the numerical compu-
tations are presented and explained. Finally, the last chapter summarizes the main findings
of this theses and possible extensions for my work are proposed.
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2 Theory

Lattice QCD is a powerful tool for calculations in in the low-energy regime of QCD, where
perturbation theory is not applicable. In the following, key equations of lattice QCD, lattice
actions for the gluons and fermions as well as special techniques, necessary to treat heavy
quarks on the lattice are explained. Finally, the generalized eigenvalue problem and its use
in the context of comparing tetraquark structures are discussed. For a more detailed and
complete introduction to these topics, we want to refer to [33, 34] and / or to the references
named in the following sections.

2.1 Notation

The Grassmann valued quark fields carry spin- and colour indices. The first is always denoted
by a greek letter α, β, . . . and the second by a roman letter a, b, . . . Moreover, (f) indicates
the quark flavour. Of course, the quark field depends on the space-time x. In our convention,
quark fields of finite mass are denoted by Ψ and static quarks by Q. The static quarks are
always bottom quarks here and don’t need a flavour index.

Ψ(f)(x)α
a

Q(x)α
a

The gauge field also depends on the space-time x and furthermore on two colour indices
(matrix in colour-space) and on a Lorentz index µ, which labels the direction of the different
components in (euclidean) space-time.

Aµ(x)ab

Sometimes, the indices are omitted and matrix / vector notation is used instead.

We choose the chiral representation for the euclidean gamma matrices, c.f. sec. A.1. Finally,
we note that we use natural units (~ = c = 1) and the sum convention, whenever the same
Dirac- or colour index appears twice.

2.2 Key equations of lattice QCD

In lattice QCD, vacuum expectation values of physical observables are calculated as path
integrals.

〈O〉 =
1

Z

∫
D[Ψ, Ψ̄]D[U ]e−SF [Ψ,Ψ̄,U ]−SG[U ]O[Ψ, Ψ̄, U ] (2.1)

Z is called partition function and is also expressed as path integral.

Z =

∫
D[Ψ, Ψ̄]D[U ]e−SF [Ψ,Ψ̄,U ]−SG[U ]

The (euclidean) QCD action was split up into two parts here, the fermionic action and the
gauge action.

SQCD = SF [Ψ, Ψ̄, U ] + SG[U ]
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Both actions are discussed in sec. 2.3 and sec. 2.4.

The integration variables in such path integrals are all involved quark- and gluon fields at all
space-time points.

D[Ψ, Ψ̄] =
∏
n∈Λ

∏
f,α,c

dΨ(f)(n)α
c
dΨ̄(f)(n)α

c
, D[U ] =

∏
n∈Λ

4∏
µ=1

dUµ(n)

Λ = {n = (n, n4) | n ∈ Λ3, n4 = 0, 1, . . . , NT − 1}
Λ3 = {n | ni = 0, 1, . . . , N − 1}

The space-time lattice Λ was introduced at this point. The discretization is necessary to
make the path integral mathematically well defined and numerically computable. It reduces
the number of degrees of freedom in the path integral to a finite number. The lattice is also
important in the context of regularization of QCD or other quantum field theories (lattice
regularization).

The temporal and spacial extension of the lattice is given by the number of lattice points and
the lattice spacing a, which separates two neighboring lattice points.

T = NT · a L = N · a

By integrating out the Grassmann valued fermion fields, eq. 2.1 becomes

〈O〉 =
1

Z

∫
D[U ]

∏
f

det(Df [U ])e−SG[U ]O′[U ]

Z =

∫
D[U ]

∏
f

det(Df [U ])e−SG[U ]

O′[U ] denotes the observable after the integration, which typically consists of one or more
fermion propagators and gauge transporters, which connecting spatially separated quarks.
For each involved quark flavour f , also a corresponding fermion determinant Df [U ] results
from the integration.

The remaining integral over the gauge field is evaluated using a Monte-Carlo simulation. After
Nconf gauge field configurations {Ui} weighted by the factor Z−1

∏
f det(Df [U ])e−SG[U ] were

generated, the expectation value can be evaluated according to

〈O〉 ≈ 1

Nconf

Nconf∑
i=1

O′(Ui)

Observables, which are considered in this thesis, are hadron creation operators. Let O†(0) be
the interpolator, which creates a particle with certain quantum numbers at time 0 and let O(t)
be the adjoint to this, which annihilates it at time t. Then, we can compare the expectation
value 〈O(t)O†(0)〉, resulting from eq. 2.1 with the following alternative representation of it.

lim
T→∞

〈O(t)O†(0)〉T =
∑
n

〈0| Ô |n〉 〈n| Ô† |0〉 e−tEn

=
∑
n

∣∣∣〈n| Ô† |0〉∣∣∣2 e−tEn (2.2)
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Here, En denote energy levels relative to the vacuum.

With this, we know how to extract the ground state energy of the hadron after having
computed the expectation value of the observables. To this end, the expectation value, also
referred to as correlation function, has to be evaluated for large euclidean times t→∞.

C(t) ≡ lim
T→∞

〈O(t)O†(0)〉T =
∣∣∣〈p| Ô†p |0〉∣∣∣2 e−tEp +

∣∣∣〈p′| Ô†p |0〉∣∣∣2 e−tE′
p︸ ︷︷ ︸

→0

+ . . .

The states |p〉, |p′〉 and energies Ep, Ep′ refer to the ground state and an excited state of the
particle. All contributions, coming from higher energy levels vanish in the limit t → ∞ and
Ep can be extracted from the exponential decay of the correlation function.

meff(t) =
1

a
log
( C(t)

C(t+ a)

)
For large enough euclidean times, the effective mass is equal to the hadron ground state
energy.

meff(t)→ Ep for t→∞

2.3 Gauge field on the lattice

Before a discretized action for the gauge field can be written down, the relation between the
gauge field in the continuum Aµ(x) and the gauge link variables Uµ(n), n ∈ Λ, which live on
the lattice has to be established.

The so-called gauge transporter is the path-ordered exponential integral of the gauge field
Aµ along a curve Cxy connecting two points x and y.

G(x, y) = P exp
(
i

∫
Cxy

A · ds
)

The link variables are now defined as gauge transporter, which connects neighboring lattice
points. For such a short distance, one can approximate the curve Cxy.

Uµ(n) = G(n, n+ µ̂) = exp(iaAµ(n)) = 1 + iaAµ(n) +O(a2)

The most prominent lattice gauge action, expressed in terms of the link variables is called
Wilson gauge action. It reads

SG[U ] =
β

3

∑
n∈Λ

∑
µ<ν

Re tr[1− Uµν(n)] =
a4

2g2

∑
n∈Λ

∑
µ,ν

tr[Fµν(n)2] +O(a2) (2.3)

On the left side of this equation, the inverse coupling β = 6/g2 was introduced. Within the
definition of the Wilson gauge action, Uµν(n) is the so-called plaquette.

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)†

The plaquettes are the shortest, nontrivial closed loop on the lattice.
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In the limit a → 0, the Wilson gauge action is identical to the action in the continuum,
as it was already indicated on the right side of eq. 2.3. If a is finite, we have to deal with
discretization errors of O(a2).

Eq. 2.3 is not the only discretized variant of the continuum gauge action. There are also other
expressions for discretized lattice gauge actions, which also turn into the continuum action in
the continuum limit. Different variants for the lattice action usually differ in their discretiza-
tion errors. The gauge field configurations considered for the numerical computations in this
theses were generated using the tree-level Symanzik improved action [13].

2.4 Fermions on the lattice

Wilson-fermions are one possibility to implement fermions on the lattice. The corresponding
action reads

SF [Ψ, Ψ̄, U ] =
∑
f

a4
∑
n,m∈Λ

Ψ̄(f)(n)D(f)(n|m)Ψ(f)(m) (2.4)

with the Wilson Dirac operator

D(f)(n|m)αβ
ab

=
(
m(f) +

4

a

)
δαβδabδn,m −

1

2a

±4∑
µ=±1

(
1− γµ

)
αβ
Uµ(n)abδn+µ̂,m

This action results from the so-called naive discretization by adding a term, which solves the
doubling problem, i.e. removes unwanted poles from the fermion propagator. The discretiza-
tion errors are of O(a).

However, for my calculations a modification of the Wilson-fermions was used, the Wilson
twisted mass fermions. A detailed introduction to twisted mass lattice QCD can be found in
[14]. This section is meant to give a brief overview.

The Wilson twisted mass action for two mass degenerate light quark flavours (Nf = 2) reads

StwF [χ, χ̄, U ] = a4
∑
k,n∈Λ

χ̄(k)
(
D(k|n)12 +m12δk,n + iµγ5τ3δk,n

)
︸ ︷︷ ︸

D(k|n)tw

χ(n) (2.5)

Within the definition of the twisted basis Dirac operator D(k|n)tw, the massless (m = 0)
Wilson Dirac operator D(k|n) appears.

Along with spin- and colour indices, the spinors χ̄ and χ also carry a flavour index, i.e. we
note

χ =

(
χ(u)

χ(d)

)
The action 2.5 differs from eq. 2.4 for two mass degenerate flavours by adding the twisted
mass term iµγ5τ

3 to the Dirac operator. The real parameter µ is called twisted mass. This
term is trivial only in colour space, has a γ5 in Dirac space and the third Pauli matrix τ3 =
diag(1,−1) acts in flavour space.
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The fermion fields in the twisted basis χ are related to the fermions in (pseudo) physical basis
via the twist rotation.

Ψ = eiωγ5τ3/2χ, Ψ̄ = χ̄eiωγ5τ3/2 (2.6)

In Refs. [15, 16], it was shown that twisted mass formulation is equivalent to the standard
QCD in the continuum. On the lattice, we can profit from the automatic O(a) improvement,
if the twist angle is tuned to maximal twist ω = π/2.

Another advantage of this action is, that we don’t have to worry about exceptional configura-
tions, because the determinant of the twisted mass Dirac operator is real and strictly positive
for arbitrary gauge configurations, as long as µ 6= 0.

The price to pay is the breaking of parity and isospin symmetries on the lattice. However,
this breaking is only an O(a2) discretization effect (at maximal twist), i.e. the symmetries
are restored in the continuum. From this, it follows that isospin I is not a quantum number,
only Iz is conserved. Consequently, mixing between the continuum sectors (I = 0, Iz = 0)
and (I = 1, Iz = 0) can occur.

Further properties of the twisted mass formulation are discussed in sec. 3 and sec. 4.4, e.g.
the twisted mass quantum numbers and symmetries of the twisted basis propagator.

2.5 Heavy Quark Effective Theory (HQET)

Treating bottom (anti-)quarks fully dynamically on present days lattices is not possible, be-
cause their mass is larger than the realizable lattice cutoff. An effective theory for heavy
quarks has to be considered. This will lead us to the static approximation at the end of this
section.

In HQET, the central idea is to scale out the trivial contribution to hadron masses, when
heavy quarks are involved, which is the mass of the heavy valence quark mh itself. This
would result in an considerable reduction of the energy scale of the problem. Using the
Foldy-Wouthuysen transformation leads to an expansion of the action for the heavy flavours
in terms of 1/mh [33].

q̄(γµDµ +mh)q → Ψ̄h

(
mh +D0

)
Ψh︸ ︷︷ ︸

Lstath

+ O(1/mh)

D0 denotes the time component of the covariant derivative Dµ = ∂µ + iAµ. The spinors q, q̄
describing the relativistic quarks on the left side of the equation were replaced by projected,
non-relativistic spinors Ψh, Ψ̄h, which obey

P+Ψh = Ψh, Ψ̄hP+ = Ψ̄h, P+ =
1 + γ0

2

In this work, we treat the heavy antiquarks in leading order HQET, i.e. we neglect effects
O(1/mh). For the bottom antiquark, this approximation is appropriate. In this case, propa-
gation is only possible in time direction, but not in space. This is why this approximation is
called static approximation. This scenario would be exact, if the quark was infinitely heavy,
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i.e. mh →∞.

The analogue of the static action on the lattice is called Eichten-Hill action und is defined as
follows [17].

Sh = a4 1

1 + aδmh

∑
n∈Λ

Ψ̄h(n)
(
δmh + ∇̃0

)
Ψh(n)

where ∇̃0 denotes the covariant derivative in time direction.

∇̃0Ψh(n) ≡ 1

a
[Ψh(n)− U †0(n− 0̂)Ψh(n− 0̂)]

The heavy quark propagator GQ(x, y), which obeys

(δmh + ∇̃0)GQ(x, y) = δ(x− y)P+

reads (aδm̂h = ln(1 + aδmh)) [18, 19]

GQ(x, y) = Θ(x0 − y0) δ(~x− ~y) exp(−δm̂h(x0 − y0)) U(~x, x0; ~y, y0) (
1 + γ0

2
) (2.7)

From this it can be seen, that (infinitely) heavy quarks appear simply as colour source.

Eq. 2.7 describes the propagation of a static quark. Analogous to this, the static antiquark
propagator can be derived und both results can be summarized in one equation using the
theta function.

GQ(x, y) = δ(~x− ~y)U(x, y)︸ ︷︷ ︸
HY P2

(
Θ(y0 − x0) (

1− γ0

2
) exp(−δm̂h(y0 − x0)) (2.8)

+Θ(x0 − y0) (
1 + γ0

2
) exp(−δm̂h(x0 − y0))

)
U(x, y) denotes the path ordered product of links along the straight line from x to y. The
static propagators enter the correlation functions with HYP2 smeared link variables. This
has been found to be useful in improving the signal to noise ratio in static-light correlation
functions. In Ref. [9], a comparison of lattice potentials with and without the use of HYP2
smearing in the static quark propagators can be found. Strictly speaking, the static quark
propagator in eq. 2.8 is not any more the propagator corresponding to the Eichten-Hill action,
because this is only defined with ordinary (unsmeared) link variables. The corresponding
action is called HYP2 static action in this case.

2.6 Generalized eigenvalue problem (GEVP)

Again, this section is meant as short overview. For a more detailed discussion of the GEVP,
the reader is refered to [20].

The generalized eigenvalue problem is defined as follows.

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0), n = 0, . . . , N − 1, t > t0
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The correlation matrix C(t)

Cij(t) = 〈Oi(t)O†j(0)〉 =
∑
n

〈0| Ôi |n〉 〈n| Ô†j |0〉 e
−tEn , i, j = 1, . . . , N

has to be computed by means of lattice QCD and enters the GEVP as an input. The di-
mension N of the correlation matrix is the number of the different considered states. In this
thesis, two different tetraquark structures (carrying the same quantum numbers) are consid-
ered. After having solved the GEVP, two different output values λn(t, t0) and vn(t, t0) are
available to us.

The eigenvalues λn(t, t0) allow to determine the ground state energy as well as excited states
(n = 0, . . . , N − 1) according to

En = lim
t→∞

Eeff
n (t, t0), Eeff

n (t, t0) ≡ 1

a
log

λn(t, t0)

λn(t+ a, t0)

It is known, that the convergence of the effective mass to a specific energy levels is better, if
no other energy level is close to the desired one.

Eeff
n (t, t0) = En +O(e−∆Ent), ∆En = min

m 6=n
|Em − En|

The eigenvectors vn(t, t0) provide information about the internal structure of the four-quark
system. Since we are interested in the structure of the tetraquark ground state, v0(t, t0) is
most important to us. Related to my work, the eigenvector entries are the coefficients in the
expansion of the b̄b̄ud tetraquark state in terms of the BB and Dd states.

|b̄b̄ud〉 ≈
∑
j

vj0(t, t0)O†j |0〉 , j ∈ {BB,Dd} (2.9)

Here, “≈” denotes the expansion in the “OBB ODd” subspace. Of course, only structures
which are contained in the computed correlation matrix can contribute to the state in eq.
2.9. Thus, the entries in the eigenvectors should not be understood as definite contributions,
but rather as the relative weight compared only to the other considered structures.
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3 Entries of the correlation matrix

This section is about the creation operators for the mesonic molecule (BB) and the diquark-
antidiquark (Dd) tetraquark structures, which are used in the numerical calculations and
the resulting correlation functions. Deriving the correlation functions based on the creation
operators is straightforward and thus, for the sake of clarity only final results for this cal-
culations are shown and possible intermediate steps, c.f. sec. A.2 for example, are omitted.
Moreover, the connection to previous studies of the BB systems is established in this context,
which have led to the prediction of a bound b̄b̄ud tetraquark state with quantum numbers
I(JP ) = 0(1+).

3.1 Diagonal entries

By definition, the correlation matrix

Cij(t) = 〈Oi(t)O†j(0)〉, i, j ∈ {BB,Dd} (3.1)

is hermitian and thus, the diagonal entries 〈OBB(t)O†BB(0)〉 and 〈ODd(t)O†Dd(0)〉 are real
and from eq. 2.2 we also know, that they are positive.

Mesonic molecule

First, the mesonic molecule (BB) creation operator and its quantum numbers are discussed.
It reads (C = γ0γ2 is the charge conjugation matrix)

OBB(t) = (CΓ)αβ (CΓ̃)γδ (Q̄ γ
a
(~r1, t) Ψ

(f)
α
a

(~r1, t)) (Q̄ δ
b
(~r2, t) Ψ

(f ′)
β
b

(~r2, t))

This interpolator describes a pair of (static-light) B mesons, which are spatially separated by
r = |~r2−~r1|. To be more precise, only the position of the static antiquarks is fixed, while the
light quarks form a cloud around them. Without loss of generality, the z-axis is chosen to be
the axis of separation for the heavy quarks. The BB states can be labeled by five different
quantum numbers [9].

• Isospin I ∈ {0, 1} and its z-component Iz ∈ {−1, 0, 1}.

• Absolute value of the z-component of the light quark spin |jz| ∈ {0, 1}. Since heavy
quark spin effects are absent in leading order HQET, it is sufficient to consider only the
relativistic spin as label.

• Eigenvalue of the parity operator P ∈ {+,−}.

• Reflections across the x-axis, Px ∈ {+,−}.

The isospin quantum numbers I, Iz depend on the flavour combination.

• Ψ(f)Ψ(f ′) = (ud− du)/
√

2 with I = 0.

• Ψ(f)Ψ(f ′) = uu with I = 1, Iz = 1.

• Ψ(f)Ψ(f ′) = dd with I = 1, Iz = −1.

• Ψ(f)Ψ(f ′) = (ud+ du)/
√

2 with I = 1, Iz = 0.
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The remaining three quantum numbers |jz|,P,Px depend on the choice for the spin matrix
Γ. The quantum numbers for the BB systems are collected in tab. A.2. The trial states in
twisted basis χ are related to the trial states in physical basis Ψ via the twist rotation, c.f.
eq. 2.6.

OBB(t) = (CΓ)αβ (CΓ̃)γδ (Q̄ γ
a
(~r1, t) (e±i

ω
2
γ5)αµ χ

(f)
µ
a

(~r1, t)) (Q̄ δ
b
(~r2, t) (e∓i

ω
2
γ5)βν χ

(f ′)
ν
b

(~r2, t))

= (e±i
ω
2
γ5)µα (CΓ)αβ (e∓i

ω
2
γ5)βν︸ ︷︷ ︸

(CΓtm)

(CΓ̃)γδ (Q̄ γ
a
(~r1, t) χ

(f)
µ
a

(~r1, t)) (Q̄ δ
b
(~r2, t) χ

(f ′)
ν
b

(~r2, t))

We see, that transforming the light quark propagators in the physical basis into the quark
propagators in the twisted basis is effectively done by redefining the spin matrices according
to

(e+iω
2
γ5)(CΓ)(e−i

ω
2
γ5) = CΓ

(+−)
tm

(e−i
ω
2
γ5)(CΓ)(e+iω

2
γ5) = CΓ

(−+)
tm

The right hand side of these two equations defines the spin-matrices in the twisted basis,

Γ
(+−)
tm and Γ

(−+)
tm . As shown above, the twisted basis spin matrices Γtm depend on the flavour

combination in the creation operator. In this thesis, only correlation functions with the
(ud− du)/

√
2 flavour combination are computed. Therefore, the twist rotation matrices will

always differ in their sign and knowledge about Γ++
tm or Γ−−tm is not necessary.

In tab. A.3, the quantum numbers are collected again for χ(f)χ(f ′) = ud ± du, where

P(tm) ≡ P × [u ↔ d] and P(tm)
x ≡ Px × [u ↔ d] denote the twisted mass counterparts

of parity and reflection across the x-axis.

Also in [9], it was shown that the BB states are not fully characterized by their quantum
numbers. One can also express the BB systems in terms of individual B mesons. The rela-
tion between the physical basis spin structure and the static-light meson content can be seen
in tab. A.1. In this notation, S denotes a B meson with quantum numbers JP = 0− (B± or
B0) or JP = 1− (B∗) [2]. These mesons are degenerate in the static limit. P− corresponds
to B∗0 with JP = 0+ or B∗1 with JP = 1+ [21, 22].

After having computed the isospin, spin and parity (and meson content) dependent lattice
potentials of the B meson pairs, it is possible to determine if a bound state arises, using
the Born-Oppenheimer perspective, c.f. sec. 1.2. The result of this studies is, that there is
strong indication for binding in the spin/isospin singlet, which is the multiplet A in tab. A.3,
with Γ = (1 + γ0)γ5 (pb) and flavour structure (ud − du)/

√
2. The corresponding potential

has twice the mass of the S meson as asymptotic value. This is in accordance with tab. A.1,
where the cancellation of P− mesons can be explained.

In Refs. [8, 35], the quantum numbers of the predicted tetraquark bound state are discussed.
Isospin I = 0 comes from the flavour combination (ud−du)/

√
2, the heavy quark spin jb = 1

is responsible for total spin J = 1 and the parity P = + is the product of the parity quantum
numbers of the two B mesons, which are both negative.
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The main goal of this thesis is to investigate the internal structure of this possibly existing
tetraquark. To this end, we have to compute correlation functions for different structures
with the above discussed quantum numbers, corresponding to the (ud − du)/

√
2 flavour

combination and Γ = (1+γ0)γ5 (pb). Tab. 3.1 shows the relation between Γ and Γtm for this
choice (at maximal twist ω = π/2).

Γ Γ
(+−)
tm

(−+)
tm

γ5 +γ5 +γ5

γ0γ5 −iγ0 +iγ0

Table 3.1: Relation between Γ in physical basis and the corresponding Γtm in twisted basis.
See also tab. A.3

Deriving the correlation function for the mesonic molecule structure based on the creation
operator is straightforward. The first step is to integrate out the fermions in the path integral,
eq. 2.1. This results in the static quark propagators (c.f. eq. 2.8) and light quark propagators,
denoted by G(u/d)(~r1, t1|~r2, t2). The static approximation simplifies this calculation at this
point, because further Wick contractions, that would appear and propagate the heavy quarks
also in space vanish. The remaining integration over the gauge field is denoted by 〈...〉.

〈0| OBB(t)O†BB(0) |0〉 |I=0 ∝ (3.2)

+ (CΓ+−
tm )αβ (γ0(CΓ+−

tm )†γ0)µν

〈[U(~r1, 0;~r1, t)ca G
(u)(~r1, t|~r1, 0)αν

ac
] [U(~r2, 0;~r2, t)db G

(d)(~r2, t|~r2, 0)βµ
bd

]︸ ︷︷ ︸
C

(1)
11

〉

+ (CΓ+−
tm )αβ (γ0(CΓ−+

tm )†γ0)µν

〈[U(~r1, 0;~r1, t)ca G
(u)(~r1, t|~r2, 0)αµ

ad
U(~r2, 0;~r2, t)db G

(d)(~r2, t|~r1, 0)βν
bc

]︸ ︷︷ ︸
C

(2)
11

〉

+ (CΓ−+
tm )αβ (γ0(CΓ+−

tm )†γ0)µν

〈[U(~r1, 0;~r1, t)ca G
(d)(~r1, t|~r2, 0)αµ

ad
U(~r2, 0;~r2, t)db G

(u)(~r2, t|~r1, 0)βν
bc

]︸ ︷︷ ︸
C

(3)
11

〉

+ (CΓ−+
tm )αβ (γ0(CΓ−+

tm )†γ0)µν

〈[U(~r1, 0;~r1, t)ca G
(d)(~r1, t|~r1, 0)αν

ac
] [U(~r2, 0;~r2, t)db G

(u)(~r2, t|~r2, 0)βµ
bd

]︸ ︷︷ ︸
C

(4)
11

〉

We write “∝” because an overall factor K was neglected for better readability.

K =
exp(−2δm̂ht)

2
tr{(1− γ0

2
)(CΓ̃)(

1− γ0

2
)(γ0(CΓ̃)†γ0)}

Due to the isospin combination (ud−du)/
√

2, four contributions (diagrams) to the correlation
function arise. Their diagrammatic representations are shown in fig. 3.1. The horizontal axis
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represents the heavy quark separation r and the time t is developing in vertical direction. The
large, black circles represent static antiquarks. Their propagation (only in time direction)
is shown as a black thick line. Light quarks and light quark propagators are represented by
coloured circles and coloured lines, where the different colours distinguish between the light

quark flavours (up/down). The diagrams for C
(1)
11 and C

(4)
11 can be found on the left hand side

in fig. 3.1. The diagrams for C
(2)
11 and C

(3)
11 on the right hand side are called cross diagrams

because the light quarks swap their positions. Diagrams C
(1)
11 /C

(4)
11 and C

(2)
11 /C

(3)
11 are exactly

the same, but with interchanged quark flavours.

Figure 3.1: Diagrams C
(1)
11 /C

(4)
11 (lhs) and C

(2)
11 /C

(3)
11 (rhs).

The spin matrix Γ̃, which combines the heavy quarks, has to be chosen such that the trace

{(1− γ0

2
)(CΓ̃)(

1− γ0

2
)(γ0(CΓ̃)†γ0)}

is unequal zero. This is only possible for Γ̃ = {(1 + γ0)γ5, (1 + γ0)γj}, j = 1, 2, 3. Since the
trace over the heavy spin matrices is just a constant number for appropriate choices, the po-
tentials are completely independent of the heavy quark spin effects, which is understandable
in the context of leading order HQET.

Although from the numerical point of view one can not distinguish between Γ̃ = (1 + γ0)γ5

and Γ̃ = (1 + γ0)γj , j = 1, 2, 3, the first of these two options can be ruled out. As mentioned
above, we know that the heavy quark spin is jb = 1 for the bound state.

For Γ̃ = (1 + γ0)γ5, we find

(CΓ̃)T = −(CΓ̃)

while for Γ̃ = (1 + γ0)γj , j = 1, 2, 3, we obtain

(CΓ̃)T = +(CΓ̃)

Only the symmetrical spin alignment can lead to jb = 1.
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Diquark-Antidiquark

The creation operator for the diquark-antidiquark (Dd) state in twisted basis reads

ODd(t) =(CΓtm)αβ (CΓ̃)γδ

(
χ

(f)
α
a

(~z, t) χ
(f ′)
β
b

(~z, t) εabc

)
(
εcde Q̄ γ

f
(~r1, t) U(~r1, t;~z, t)fd Q̄ δ

g
(~r2, t) U(~r2, t;~z, t)ge

)

On the first view, it becomes clear that the BB and Dd creation operators differ in their colour
structures and in the positioning of the light quarks (c.f. fig. 3.1 and fig. 3.2). Their spin struc-
ture is however identical. This operator describes a (static) spatially extended antidiquark,
expected to be in a colour triplet [3] in case of a bound tetraquark state, which combines with
a relativistic diquark at position ~z in a colour antitriplet [3̄] to a colour-singlet. Position ~z is
always chosen such, that it is exactly in the middle of the connecting line of the static quarks.

In this structure, the heavy antiquarks Q̄(~r1, t) / Q̄(~r2, t) are connected to the spatially sepa-
rated light diquark via gauge transporters U(~r1, t;~z, t) / U(~r2, t;~z, t). In this case, increasing
the heavy quark separation obviously means to separate colour charge and to enlarge the
connecting product of links. According to the discussion in sec. 1.3, this corresponds to ex-
tending the flux tube of gluons, which connects the diquark and the antidiquark. From the
point of view of formation of tetraquark states, this is clearly unfavorable compared to the
mesonic molecule state. It is expected, that the overlap of the diquark-antidiquark operator
with the tetraquark ground state gets worse for growing heavy quarks separations.

In comparison to the mesonic molecule correlation function, the flavour-combination, corre-
sponding to I = 0 can be problematic in this case.

1√
2

(
χ

(u)
α
a

(~z, t) (CΓ+−
tw )αβ χ

(d)
β
b

(~z, t) εabc − χ
(d)
α
a

(~z, t) (CΓ−+
tw )αβ χ

(u)
β
b

(~z, t) εabc

)
=

1√
2
χ

(u)
α
a

(~z, t)
(

(CΓ+−
tw )αβ − (CΓ−+

tw )Tαβ

)
χ

(d)
β
b

(~z, t) εabc (3.3)

From this lines, we learn that for the diquark-antidiquark operator chosen here, I = 0 is not
possible for arbitrary spin matrices Γ, corresponding to specific quantum numbers. Only Γ,
obeying the relation (CΓ−+

tw )T 6= (CΓ+−
tw ) are allowed, otherwise the operator would vanish.

Γ = (1 + γ0)γ5 is a suitable choice, because here we have (CΓ−+
tw )T = −(CΓ+−

tw ). With this,
eq. 3.3 becomes

√
2 χ

(u)
α
a

(~z, t) (CΓ+−
tw )αβ χ

(d)
β
b

(~z, t) εabc

For a suitable Γ, the I = 0 correlation function for die diquark-antidiquark reads (propor-
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tionality factor 4K)

〈0| ODd(t)O†Dd(0) |0〉 ∝ (3.4)

+ (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν 〈[M (u)(~z, ~r1)αν
aa

] [M (d)(~z, ~r2)βµ
bb

]︸ ︷︷ ︸
C

(1)
22

〉

− (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν 〈[M (u)(~z, ~r1)αν
ab
M (d)(~z, ~r2)βµ

ba
]︸ ︷︷ ︸

C
(2)
22

〉

− (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν 〈[M (u)(~z, ~r2)αν
ab
M (d)(~z, ~r1)βµ

ba
]︸ ︷︷ ︸

C
(3)
22

〉

+ (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν 〈[M (u)(~z, ~r2)αν
aa

] [M (d)(~z, ~r1)βµ
bb

]︸ ︷︷ ︸
C

(4)
22

〉

with

M (x)(~z,~v)αβ
ab

= U(~z, 0;~v, 0)ac U(~v, 0;~v, t)cd U(~v, t;~z, t)de G
(x)(~z, t|~z, 0)αβ

eb

In the diquark-antidiquark state, the colour structure is responsible for the emergence of four
diagrams instead of the flavour combination, because here the two levi-civita tensors coming
from the creation operator and two more coming from the annihilation operator are combined
in the following way.

(εabcεcde)(εhijεjmn) = (δadδbe − δaeδbd)(δhmδin − δhnδim)

= δadδbeδhmδin − δadδbeδhnδim − δaeδbdδhmδin + δaeδbdδhnδim

In fig. 3.2, the diagrammatic representation of the diquark-antidiquark correlation function

is shown. Again, C
(1)
22 /C

(4)
22 and C

(2)
22 /C

(3)
22 differ only by the exchange of the light quark

flavours. The grey and the black area on the left hand side indicate two different traces in
colour space (~z → ~r1 → ~z and ~z → ~r2 → ~z) while on the right hand side a single trace is
taken over the whole diagram.

Figure 3.2: Diagrams C
(1)
22 /C

(4)
22 (lhs) and C

(2)
22 /C

(3)
22 (rhs).
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If the heavy quarks are not separated, we find (~r1 = ~r2 = ~z)

ODd(t)|r=0 =(CΓtm)αβ (CΓ̃)γδ

(
χ

(f)
α
a

(~z, t) χ
(f ′)
β
b

(~z, t) εabc

)
(
εcde Q̄ γ

f
(~z, t) U(~z, t;~z, t)fd︸ ︷︷ ︸

δfd

Q̄ δ
g
(~z, t) U(~z, t;~z, t)ge︸ ︷︷ ︸

δge

)
=(CΓtm)αβ (CΓ̃)γδ

(
χ

(f)
α
a

(~z, t) χ
(f ′)
β
b

(~z, t)
) (

Q̄ γ
d
(~z, t) Q̄ δ

e
(~z, t)

)
(δadδbe − δaeδbd)

=(CΓtm)αβ (CΓ̃)γδ

(
χ

(f)
α
a

(~z, t) χ
(f ′)
β
b

(~z, t)
) (

Q̄ γ
a
(~z, t) Q̄ δ

b
(~z, t)− Q̄ γ

b
(~z, t) Q̄ δ

a
(~z, t)

)
=(CΓtm)αβ (CΓ̃)γδ

(
χ

(f)
α
a

(~z, t) χ
(f ′)
β
b

(~z, t)
) (

Q̄ γ
a
(~z, t) Q̄ δ

b
(~z, t) + Q̄ δ

a
(~z, t) Q̄ γ

b
(~z, t)

)
= + 2 · (CΓtm)αβ (CΓ̃)γδ

(
χ

(f)
α
a

(~z, t) χ
(f ′)
β
b

(~z, t)
) (

Q̄ γ
a
(~z, t) Q̄ δ

b
(~z, t)

)
=− 2 · (CΓtm)αβ (CΓ̃)γδ

(
Q̄ γ

a
(~z, t) χ

(f)
α
a

(~z, t)
) (

Q̄ δ
b
(~z, t) χ

(f ′)
β
b

(~z, t)
)

=− 2 · OBB(t)|r=0 (3.5)

Here, we also used the relation (CΓ̃)T = +CΓ̃. The property (CΓ̃)T = −CΓ̃ would have led
to a vanishing diquark-antidiquark operator for r = 0. That means, that both structures are
identical for r = 0 (up to a constant factor). This finding will be confirmed by the numerical
results in sec. 5.

3.2 Off-diagonal entries

Figure 3.3: Diagrams C
(1)
12 /C

(4)
12 (lhs) and C

(2)
12 /C

(3)
12 (rhs).

In order to solve the GEVP, also the off-diagonal entries of the correlation matrix are necessary
as an input, i.e. 〈0| OBB(t)O†Dd(0) |0〉 and 〈0| ODd(t)O†BB(0) |0〉. Presenting the off-diagonal
correlation functions is a rather technical aspect at this point and we learn nothing new in
addition to the discussion of both structures in the previous section. A general remark is
however, that the off-diagonal entries don’t have to be real, in comparison to the diagonal
entries. But due to the hermiticity of the correlation matrix one entry must be the complex
conjugate of the other.
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The vacuum expectation value of a created Dd state, which is annihilated as BB state reads

〈0| OBB(t)O†Dd(0) |0〉 ∝ (3.6)

− (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν

〈[U(~z, 0;~r1, 0)nlU(~r1, 0;~r1, t)laG
(u)(~r1, t|~z, 0)αν

an
][U(~z, 0;~r2, 0)mpU(~r2, 0;~r2, t)pbG

(d)(~r2, t|~z, 0) βµ
bm

]︸ ︷︷ ︸
C

(1)
12

〉

− (CΓ−+
tw )αβ (γ0(CΓ+−

tw )†γ0)µν

〈[U(~z, 0;~r2, 0)npU(~r2, 0;~r2, t)pbG
(u)(~r2, t|~z, 0) βν

bm
U(~z, 0;~r1, 0)mlU(~r1, 0;~r1, t)laG

(d)(~r1, t|~z, 0)αµ
an

]︸ ︷︷ ︸
C

(2)
12

〉

+ (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν

〈[U(~z, 0;~r1, 0)mlU(~r1, 0;~r1, t)laG
(u)(~r1, t|~z, 0)αν

an
U(~z, 0;~r2, 0)npU(~r2, 0;~r2, t)pbG

(d)(~r2, t|~z, 0) βµ
bm

]︸ ︷︷ ︸
C

(3)
12

〉

+ (CΓ−+
tw )αβ (γ0(CΓ+−

tw )†γ0)µν

〈[U(~z, 0;~r2, 0)mpU(~r2, 0;~r2, t)pbG
(u)(~r2, t|~z, 0) βν

bm
][U(~z, 0;~r1, 0)nlU(~r1, 0;~r1, t)laG

(d)(~r1, t|~z, 0)αµ
an

]︸ ︷︷ ︸
C

(4)
12

〉

The vacuum expectation value of a created BB state, which is annihilated as Dd state reads

〈0| ODd(t)O†BB(0) |0〉 ∝ (3.7)

− (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν

〈[G(u)(~z, t|~r1, 0)αν
ak
U(~r1, 0;~r1, t)kgU(~r1, t;~z, t)ga][G

(d)(~z, t|~r2, 0)βµ
bl
U(~r2, 0;~r2, t)lfU(~r2, t;~z, t)fb]︸ ︷︷ ︸

C
(1)
21

〉

− (CΓ+−
tw )αβ (γ0(CΓ−+

tw )†γ0)µν

〈[G(u)(~z, t|~r2, 0)αµ
bl
U(~r2, 0;~r2, t)lfU(~r2, t;~z, t)faG

(d)(~z, t|~r1, 0)βν
ak
U(~r1, 0;~r1, t)kgU(~r1, t;~z, t)gb]︸ ︷︷ ︸

C
(2)
21

〉

+ (CΓ+−
tw )αβ (γ0(CΓ+−

tw )†γ0)µν

〈[G(u)(~z, t|~r1, 0)αν
ak
U(~r1, 0;~r1, t)kgU(~r1, t;~z, t)gbG

(d)(~z, t|~r2, 0)βµ
bl
U(~r2, 0;~r2, t)lfU(~r2, t;~z, t)fa]︸ ︷︷ ︸

C
(3)
21

〉

+ (CΓ+−
tw )αβ (γ0(CΓ−+

tw )†γ0)µν

〈[G(u)(~z, t|~r2, 0)αµ
bl
U(~r2, 0;~r2, t)lfU(~r2, t;~z, t)fb][G

(d)(~z, t|~r1, 0)βν
ak
U(~r1, 0;~r1, t)kgU(~r1, t;~z, t)ga]]︸ ︷︷ ︸

C
(4)
21

〉

Both correlation functions have the same proportionality factor, which is 2K. The corre-
sponding diagrammatic representations are shown in fig. 3.3 and fig. 3.4.
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Figure 3.4: Diagrams C
(1)
21 /C

(4)
21 (lhs) and C

(2)
21 /C

(3)
21 (rhs).

Calculating the correlation functions, shown in eq. 3.2, 3.4, 3.6 and 3.7 for different varying
heavy quark separations r and for the choices Γ = (1 +γ0)γ5 and Γ̃ = (1 +γ0)γj , j = 1, 2, 3 is
now the main task. It is stressed at this point, that the different operators describe different
structures, but still carry the same quantum numbers. The technical realization is addressed
in the next section.
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4 Numerical implementation

In the following, it is explained how the computation of the previously discussed correlation
functions is technically realized. After having discussed the different gauge ensembles together
with their parameters used to solve the path integral over the gauge field, we discuss the use
smearing techniques to improve the signal-to-noise ratio in our calculations. Then, it is shown
how the light quark propagators are estimated using stochastic timeslice sources and finally,
we discuss symmetries of the twisted basis propagator and how we can profit from them.

4.1 Lattice ensembles

In this work, the lattice computations are performed using three ensembles of gauge link
configurations with two degenerate dynamical quark flavours, generated by the European
Twisted Mass Collaboration (ETMC) [23]. The quark action is Wilson twisted mass tuned
to maximal twist, c.f. sec. 2.4, while the gluon action is tree-level Symanzik improved.
Thus, the computed spectral quantities, i.e. the lattice potentials, are O(a) improved. The
parameters of these ensembles are collected in tab. 4.1. Shown are the inverse bare coupling
β, lattice spacing a, lattice size (L/a)3 × T/a, bare twisted light sea quark mass in lattice
units aµ, pion mass mπ and the number of used gauge configurations. We profit from the

Ensemble β a in fm (L/a)3 × T/a aµ mπ [MeV] # gauges

B40.24 3.90 0.079(3) 243 × 48 0.004 340 108

C30.32 4.05 0.063(2) 323 × 64 0.003 325 98

D20.24 4.20 0.0514(8) 243 × 48 0.002 284 211

Table 4.1: Parameters of Nf = 2 gauge ensembles gererated by the ETMC.

fact, that all gauge ensembles have different lattice spacings. This will enable us to analyze
the lattice potentials and eigenvectors, resulting from the GEVP for many different heavy
quark separations. Afterwards we can summarize all results in one diagramm to obtain a
fine resolution of these quantities. To this end, the differing properties of the ensembles, e.g.
(slightly) different pion masses and lattice sizes are ignored.

4.2 Smearing techniques

Ground state energies are extracted from the effective mass plateau for large euclidean times,
where the signal-to-noise ratio is getting worse. Smearing techniques are used to increase the
overlap of trial states with low lying energy eigenstates. That in turn means at the same
time, that excited state are better suppressed. Consequently, the ground state plateau shifts
to smaller temporal separations, where the signal-to-noise ratio is acceptable.
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APE smearing of spatial links

Performing the average over neighboring spatial loops of link variables improves the overlap.
After NAPE iterations APE smeared spatial links are given by [24]

U (NAPE)(x, x+ ek) = PSU(3)

(
U (NAPE−1)(x, x+ ek) + αAPE

j 6=±k∑
j=±1,±2,±3

U (NAPE−1)(x, x+ ej)

U (NAPE−1)(x+ ej , x+ ej + ek)U
(NAPE−1)(x+ ej + ek, x+ ek)

)
,

where U (0) denote the original unsmeared links. αAPE is a weighting parameter and PSU(3)

denotes projection back to SU(3).

Gaussian smearing of light quark operators

After NGauss iterations Gaussian smeared light quark quark operators are given by [25, 26]

χ(NGauss)(x) =

=
1

1 + 6κ

(
χ(NGauss−1)(x) + κGauss

∑
j=±1,±2,±3

U (NAPE)(x, x+ ej)χ
(NGauss−1)(x+ ej)

)
,

where χ(0) are the original unsmeared light quark operators and U (NAPE) denote APE smeared
spatial links. The parameter κGauss has to be adjusted.

HYP2 - Smearing

In static-light correlation functions, HYP2 smearing helps to improve the signal to noise
ratio by reducing the self energy of the static quark. For each line of temporal links the
HYP smearing algorithm performs smearing over all loops of links inside a hypercube of a
certain width. Details of the smearing process depend on three parameters α1, α2 and α3.
For a more detailed discussion about HYP2 smearing and its use in static actions, see Refs.
[27, 28, 18, 19].

All computations were performed with the same choice for the smearing parameters.

• APE Smearing: NAPE = 30 and αAPE = 0.5.

• Gaussian Smearing: NGauss = 50 and κGauss = 0.5

• HYP2 Smearing: α1 = α2 = 1, α3 = 0.5

4.3 Stochastic timeslice-to-all propagators

Several efficient techniques for the numerical expensive computation of light quark propaga-
tors are presented in [29]. Here, only the timeslice source method is briefly discussed.

Using this technique, we can stochastically estimate propagators from any space point ~y in
a given time-slice t0 to any other spacetime point (~x, t). To this end, linear systems have to
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be solved, labeled by n = 1, . . . , NS .∑
y

D(f)(x|y)αβ
ab
φ(f)(y)β

b
[t0, n] = ξ(x)α

a
[t0, n] , ξ(x)α

a
[t0, n] = δ(x0, t0)Ξ(x)α

a
[n], (4.1)

where D(f)(x|y)αβ
ab

denotes for example the twisted mass Dirac operator for either the up-

or the down quark. With the following choice for the stochastic sources (both“±” signs are
chosen randomly and independently of one another)

ξ(x)α
a

[t0, n] = δ(x0, t0)
(
± 1√

2
± i 1√

2

)
we work with random numbers Ξα

a
(x)[n] satisfying

1

N

N∑
n=1

Ξ∗α
a

(x)[n]Ξβ
b
(y)[n] = δabδαβδ(x;y) + O

( 1√
N

)
off-diagonal noise. (4.2)

Using 4.1 and 4.2 it is straightforward to show

G(f)(y;x, t0) =
1

N

N∑
n=1

φ(f)(y)[t0, n]ξ(x, t0)[t0, n]† + O
( 1√

N

)
off-diagonal noise. (4.3)

Stochastic timeslice-to-all propagators are very flexible and allow to exploit translational in-
variance. Correlation functions can be evaluated at a large number of source points, while
only a few inversions have to be performed. Due to the larger lattice volume of the “C30.32”
ensemble, it is justified to consider less gauge field configurations for the numerical computa-
tions compared to the other two ensembles. Here, we can evaluate the correlation functions
with 323 samples (per configuration) instead of 243.

A disadvantage of this technique is, that additional stochastic noise is introduced and it may
be, that the signal gets lost in the noise if these techniques are applied naively. In my cal-
culations, we found an acceptable signal-to-noise ratio using NS = 12 inversions for the light
quark propagator. Another strategy to improve the signal besides increasing the number of
sources is to perform the inversions for multiple different timeslices. After having computed
the correlation functions with the propagators, starting from different timeslices, one can
then average over the results.

Analogue to eq. 4.3, the product of two light quark propagators, which occurs in our corre-
lation functions, can be written as

G(f)
q (~x1, t1|~y1, t0)αβ

ab
G(f ′)
q (~x2, t2|~y2, t0) γδ

cd
=

1

N(N − 1)

N∑
n6=m

Φ
(f)
α
a

(~x1, t1)[n, t0] ξ†β
b

(~y1, t0)[n, t0]

Φ
(f ′)
γ
c

(~x2, t2)[m, t0] ξ†δ
d

(~y2, t0)[m, t0]

Note that each propagator needs to be estimated by a different pair of stochastic sources ξ[n]
and corresponding inversions φ[n] (guaranteed here by

∑
n6=ñ).
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In the following, the mesonic molecule correlation function, c.f. eq. 3.2, is used as an example,
to show explicitly how the correlation functions are computed in the contraction codes by
means of the stochastic quark propagators. A constant prefactor for the correlation function
is omitted to improve the readability and thus, we write “∝” instead of “=”.

〈0| OBB(t)O†BB(0) |0〉 |I=0 ∝

+
N∑

n6=m
〈 U(~r1, 0;~r1, t)ca Φ

(u)
α
a

(~r1, t)[n, 0] (CΓ+−
tw )αβ U(~r2, 0;~r2, t)db Φ

(d)
β
b

(~r2, t)[m, 0]

ξ†λ
d

(~r2, 0)[m, 0] (γ0(CΓ+−
tw )†γ0)λκ ξ

†
κ
c
(~r1, 0)[n, 0] 〉

+
N∑

n6=m
〈 U(~r1, 0;~r1, t)ca Φ

(u)
α
a

(~r1, t)[n, 0] (CΓ+−
tw )αβ U(~r2, 0;~r2, t)db Φ

(d)
β
b

(~r2, t)[m, 0]

ξ†λ
d

(~r2, 0)[n, 0] (γ0(CΓ−+
tw )†γ0)λκ ξ

†
κ
c
(~r1, 0)[m, 0] 〉

+

N∑
n6=m
〈 U(~r1, 0;~r1, t)ca Φ

(d)
α
a

(~r1, t)[m, 0] (CΓ−+
tw )αβ U(~r2, 0;~r2, t)db Φ

(u)
β
b

(~r2, t)[n, 0]

ξ†λ
d

(~r2, 0)[m, 0] (γ0(CΓ+−
tw )†γ0)λκ ξ

†
κ
c
(~r1, 0)[n, 0] 〉

+

N∑
n6=m
〈 U(~r1, 0;~r1, t)ca Φ

(d)
α
a

(~r1, t)[m, 0] (CΓ−+
tw )αβ U(~r2, 0;~r2, t)db Φ

(u)
β
b

(~r2, t)[n, 0]

ξ†λ
d

(~r2, 0)[n, 0] (γ0(CΓ−+
tw )†γ0)λκ ξ

†
κ
c
(~r1, 0)[m, 0] 〉

In each of the four diagrams, the inversions Φ combine with the products of links U , coming
from the heavy quark propagators and the spin matrix CΓ to a matrix in colour space. This
matrix is multiplied with another colour matrix, resulting from the combination of the sources
with γ0Γ†C†γ0. Finally the correlation function is evaluated as trace over remaining colour
matrix.

4.4 Symmetries of the twisted basis propagator

Applying symmetries of the (twisted basis) propagator to the correlation functions leads
to relations between individual diagrams, which can be checked in the numerical results to
support their credibility. Furthermore, averaging over related diagrams helps to improve the
statistical precision. The following four symmetries are considered in this thesis.

γ5 Hermiticity

G(x, y) = τ1γ5

(
G(y, x)

)†
γ5τ1

Parity

G(~x, ~y) = τ1γ0G(−~x,−~y)γ0τ1
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U0(t, ~x)
P−→ U0(t, ~x)P = U0(t,−~x)

Ui(t, ~x)
P−→ Ui(t, ~x)P = Ui(t,−~x− î)†

Time reversal

G(t1, t2) = τ1γ0γ5G(−t1,−t2)γ5γ0τ1

U0(t, ~x)
T−→ U0(t, ~x)T = U0(−t− 1, ~x)†

Ui(t, ~x)
T−→ Ui(t, ~x)T = Ui(−t, ~x)

Charge conjugation

G(x, y) = γ0γ2

(
G(y, x)

)T
γ2γ0

Uµ(t, ~x)
C−→ Uµ(t, ~x)C = Uµ(t, ~x)∗ = (Uµ(t, ~x)†)T

In the above shown symmetries, τ1 denotes the first Pauli matrix, acting in flavour space. It
is responsible for the exchange of the quark flavours u and d when the symmetries are applied
to correlation functions. The gamma matrices act in spin space of course and the propagators
both in spin- and colour space. Every computed correlation function has been checked for the
four presented symmetries and averaging over related diagrams was performed afterwards.
In the following, an example for relating two diagrams via symmetries is shown.

Example

The first diagram of the mesonic molecule correlation function, i.e. C
(1)
11 reads (without

prefactors)

(CΓ+−
tw )αβ(γ0(CΓ+−

tw )†γ0)λκ 〈[U(~r1, 0;~r1, t)ca G
(u)(~r1, t|~r1, 0)ακ

ac
][U(~r2, 0;~r2, t)db G

(d)(~r2, t|~r2, 0)βλ
bd

]〉

In the following, the γ5 hermiticity is used for the twisted mass propagators with the choice
Γ+−
tw = γ5.

−→ (γ5CΓ+−
tw γ5)αβ(γ5γ0(CΓ+−

tw )†γ0γ5)λκ

〈[U(~r1, 0;~r1, t)ca

(
G(d)(~r1, 0|~r1, t)

)†
ακ
ac

][U(~r2, 0;~r2, t)db

(
G(u)(~r2, 0|~r2, t)

)†
βλ
bd

]〉

−→ (CΓ+−
tw )∗αβ(γ0(CΓ+−

tw )†γ0)∗λκ

〈[U(~r1, t;~r1, 0)∗ac

(
G(d)(~r1, 0|~r1, t)

)∗
κα
ca

][U(~r2, t;~r2, 0)∗bd

(
G(u)(~r2, 0|~r2, t)

)∗
λβ
db

]〉

−→ (CΓ+−
tw )∗αβ(γ0(CΓ+−

tw )†γ0)∗λκ

〈[U(~r1, 0;~r1,−t)∗ac
(
G(d)(~r1,−t|~r1, 0)

)∗
ακ
ca

][U(~r2, 0;~r2,−t)∗bd
(
G(u)(~r2,−t|~r2, 0)

)∗
βλ
db

]〉
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We have found, that the first and fourth diagram in the mesonic molecule correlation function
are related via

C
(1)
11 (+t) =

(
C

(4)
11 (−t)

)∗
In this calculation it was used, that

(γ5CΓ+−
tw γ5) = +(CΓ+−

tw )

(γ5γ0(CΓ+−
tw )†γ0γ5) = +(γ0(CΓ+−

tw )†γ0)

for Γ+−
tw = γ5. The signs on the right hand side could also be “−” for other choices.

Moreover, we have used

U(~x, t1; ~x, t2)ab = U(~x, t2; ~x, t1)†ab = U(~x, t2; ~x, t1)∗ba

This equation means that the conjugate transpose reverses the direction of the links and con-
sequently taking the complex conjugate and reversing the direction by hand changes nothing.

Finally, relabeling of indices (α↔ κ, β ↔ λ), using eq. A.1 and the fact that, we are allowed
to shift all times by the same value (because the correlation function only depends on time
differences) lead to the final result.

Several checks of the symmetries of the computed numerical results are shown in sec. 5.1.
Moreover, in sec. A.4, tables can be found, which give a complete overview over all applied
symmetries in this work. In the following, the BB correlation function is used as an example,
to explain the labeling in these tables, which is necessary to understand them. For the choice
Γ = (1 + γ0)γ5 (pb), the (light quark) spin structure reads (c.f. eq. 3.2)

(CΓ+−
tm )αβ (γ0(CΓ+−

tm )†γ0)µν︸ ︷︷ ︸
C

(1)
11

+ (CΓ+−
tm )αβ (γ0(CΓ−+

tm )†γ0)µν︸ ︷︷ ︸
C

(2)
11

(4.4)

(CΓ−+
tm )αβ (γ0(CΓ+−

tm )†γ0)µν︸ ︷︷ ︸
C

(3)
11

+ (CΓ−+
tm )αβ (γ0(CΓ−+

tm )†γ0)µν︸ ︷︷ ︸
C

(4)
11

=− (γ0γ2γ5)αβ(γ0γ2γ5)(1)
µν︸ ︷︷ ︸

C1

−i (γ0γ2γ5)αβ(γ2)(1)
µν︸ ︷︷ ︸

C5

+i (γ2)αβ(γ0γ2γ5)(1)
µν︸ ︷︷ ︸

C9

− (γ2)αβ(γ2)(1)
µν︸ ︷︷ ︸

C13

− (γ0γ2γ5)αβ(γ0γ2γ5)(2)
µν︸ ︷︷ ︸

C2

+i (γ0γ2γ5)αβ(γ2)(2)
µν︸ ︷︷ ︸

C6

+i (γ2)αβ(γ0γ2γ5)(2)
µν︸ ︷︷ ︸

C10

+ (γ2)αβ(γ2)(2)
µν︸ ︷︷ ︸

C14

− (γ0γ2γ5)αβ(γ0γ2γ5)(3)
µν︸ ︷︷ ︸

C3

−i (γ0γ2γ5)αβ(γ2)(3)
µν︸ ︷︷ ︸

C7

−i (γ2)αβ(γ0γ2γ5)(3)
µν︸ ︷︷ ︸

C11

+ (γ2)αβ(γ2)(3)
µν︸ ︷︷ ︸

C15

− (γ0γ2γ5)αβ(γ0γ2γ5)(4)
µν︸ ︷︷ ︸

C4

+i (γ0γ2γ5)αβ(γ2)(4)
µν︸ ︷︷ ︸

C8

−i (γ2)αβ(γ0γ2γ5)(4)
µν︸ ︷︷ ︸

C12

− (γ2)αβ(γ2)(4)
µν︸ ︷︷ ︸

C16

We benefit from multiplying out the spin matrices, which leads to the subdivision of each
diagram into four correlators. First, it is easier to relate correlators via the above shown
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symmetries than relating whole diagrams. Second, we can combine the correlators also to
other Γ structures, i.e. we are more flexible in this case. While considering all correlators C1

- C16 corresponds to Γ = (1 + γ0)γ5 (by construction), considering only C1 - C4 corresponds
to Γ = γ5 and considering only C13 - C16 to Γ = γ0γ5. We use this notation also in the tables
for the symmetries of the other computed correlation functions.
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5 Numerical results

In this section, the numerical results are presented and discussed. First, we check correlators
for their symmetries. Afterwards, the elements of the 2× 2 correlation matrix are shown and
an orthogonality relation for its states is computed. Then, we use 1× 1 correlation matrices,
to compute effective masses for the BB and Dd operators and extract the corresponding
potentials for both cases by fitting the ground state plateaus. Finally, the main result of this
thesis is the investigation of the internal tetraquark structure via eigenvectors, resulting from
the solution of the GEVP, for a large range of heavy quark separations.

For the analysis in sec. 5.1 - 5.4, it is sufficient to discuss the quantities only for the “B40.24”
ensemble as an example. In sec. 5.5 - 5.6 all three ensembles are considered in the results.

5.1 Symmetry checks

In fig. 5.1, four different correlators of the BB correlation function are shown together with
their related counterparts (c.f. tab. A.4).

The first two diagrams in fig. 5.1 are related via the time reversal symmetry T according to

C2(+t) = +C3(−t)

and the next two diagrams via the γ5-Hermiticity.

C5(+t) = +C∗12(−t)

The charge conjugation symmetry C relates the next two correlators

C16(+t) = +C16(−t)

and finally, the two diagrams at bottom are related via the parity symmetry P.

C10(+t) = −C11(+t)

Of course, the here shown relations are only examples. After having performed the lattice
simulations, all symmetries were checked and applied for all entries of the correlation matrix.
We have 4 symmetries for each of the 4 matrix entries. Each entry consists of 4 diagrams and
they are in turn composed of 4 correlators. That means that 256 symmetry relations were
applied in total.

It is absolutely necessary to observe that the correlators C5 - C12 are purely imaginary,
because according to eq. 4.4, these correlators have to be multiplied by “i” in the next step.
In this way, the BB correlation function becomes a purely real quantity.

5.2 Entries of the correlation matrix

Fig. 5.2 shows the entries of the 2 × 2 correlation matrix, defined in eq. 3.1. Before the
computed correlation functions enter the GEVP, the correlation functions in it are normalized
in the following way.

Cij −→

 C11√
C11(t=1)C11(t=1)

C12√
C11(t=1)C22(t=1)

C21√
C22(t=1)C11(t=1)

C22√
C22(t=1)C22(t=1)
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Figure 5.1: Symmetry checking of BB correlators. Diagrams on the left are related to those
on the right. The shown correlators were computed for heavy quark separation r = 0 using the
“B40.24” ensemble.
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This explains why all diagonal entries are equal to one for euclidean time t = 1.

We observe, that also the off-diagonal entries are real. This has the consequence, that they
have to be identical to each other because the correlation matrix is hermitian by definition.
Indeed, after computing both off-diagonal entries using individual contraction codes, it turns
out that this is the case. Also symmetry averaging helps in this context, because it relates
both off-diagonal entries with each other, c.f. tab. A.6 and tab. A.7. This removes differences
due to statistical fluctuations.

Figure 5.2: Entries of the 2 × 2 correlation matrix for heavy quark separation r = 5 and for
ΓBB = (1 + γ0)γ5 , ΓDd = (1 + γ0)γ5. The “B40.24” ensemble was used for the computation of
the shown results.

At least for the case r = 0, this property of the correlation matrix could have been predicted,
because we found out, that both operators are identical up tp a negative constant factor in
this limit, c.f. eq. 3.5.

〈OBBO†Dd〉 ∝ − 〈OBBO
†
BB〉︸ ︷︷ ︸

>0

Consequently, all four entries in the matrix are exactly the same (up to a relative sign between
diagonal- and off-diagonal elements) for r = 0. For increasing heavy quark separations,
the off-diagonal entries become smaller and smaller compared to the diagonal entries. This
behavior is analyzed quantitatively in the next section.
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5.3 Orthogonality relation

Figure 5.3: The orthogonality of the BB / Dd structures is investigated for different heavy
quark separations and for ΓBB = (1 + γ0)γ5, ΓDd = (1 + γ0)γ5 using the “B40.24” ensemble.

The following orthogonality relation

|C12(t)|√
C11(t)C22(t)

tells us, whether the two states in the correlation matrix are orthogonal, if it yields zero or
equal to each other if it is one. Of course, everything between is also possible.

In fig. 5.3, this relation is shown in order to estimate the orthogonality of the BB and Dd
structures. It is shown for a large range of euclidean times for several fixed heavy quark
separations. It is not surprising, that both operators are identical in the limit r → 0. We
knew about this property since the discussion in sec. 3.1. It is however a good idea, to check
whether the computed correlation functions confirm this relation, because affirming this pre-
diction using results form individual and independent contraction codes helps to support the
credibility of the numerical results.

Of course, the mesonic molecule and the diquark-antidiquark operators differ more and more
for growing heavy quark separations, due to their different colour structure. While separat-
ing the heavy quarks means to separate two B mesons for the mesonic molecule, it means to
further extend the static antidiquark in the diquark-antidiquark picture.

The growing error bars for larger heavy quark separations result from a worse signal-to-
noise ratio for the correlation functions in this region, especially for the diquark-antidiquark
correlation function C22. Fig. 5.4 shows the signal-to-noise ratios in the correlation matrix
for heavy quark separation r = 5. The best signal can be found for the mesonic molecule
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correlation function. Considering the diquark-antidiquark operator either as creation- or
annihilation operator in one of the off-diagonal entries leads to a slightly worse signal. The
diquark-antidiquark correlation function has the worst signal-to-noise ratio.

Figure 5.4: Signal-to-noise ratios for the entries of the 2 × 2 correlation matrix for r = 5
and with ΓBB = (1 + γ0)γ5 , ΓDd = (1 + γ0)γ5. The “B40.24” ensemble was used for the
computation of the shown results.

5.4 Effective mass plateaus

In this section, several effective masses are shown, resulting from the solution of the GEVP
with 1×1 matrices, computed with only one of the two structures. In fig. 5.5, effective masses
are shown for the BB state together with fits of constants to the ground state plateaus and
in fig. 5.6 for the Dd structure. We observe, that the ground state fits yield approximately
the same ground state energy for same heavy quark separations and partly also the shape
of the effective mass curves is similar. In general, larger (jackknife) errors occur for the Dd
structure, especially for r & 7 and thus, the plateau becomes more and more blurred. These
findings are consistent with the assumed worse overlap of ODd with the tetraquark ground
state for larger heavy quark separations.

In the past, effective masses for the BB structure with Γ = (1 + γ0)γ5 have already been
computed within exactly the same lattice setup (“B40.24” ensemble), including the same
choice for the smearing parameters [9]. Therefore it is a a good idea to compare my results to
the previous ones. Double checking lattice QCD calculations always supports the credibility
of results. The corresponding figures can be found in sec. A.5. Even for small euclidean
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Figure 5.5: Effective mass (in lattice units) together with ground state fits, resulting from an
1× 1 correlation matrix for the BB operator with ΓBB = (1 + γ0)γ5. The results were produced
using the “B40.24” ensemble.

times, where the errors in the effective mass are very small, we find that the results are in
accordance. For larger times, it is sufficient that the results agree within the error bars. Re-
constructing the expectation values exactly is not possible due to the use of stochastic light
quark propagators. The corresponding (randomly) generated stochastic sources are certainly
not identical in both lattice computations.

Extracting the ground state for varying heavy quark separation leads to the potential of the
static b̄b̄ pair in presence of the light quarks. The resulting potential is discussed in the
following section.

5.5 Lattice potentials

As shown in the previous chapter, the potentials are extracted from effective mass plateaus at
large eucliden times. Details of the shown potentials will of course depend on the quality of
the fit. These circumstances will not be considered in the error bars, which are only jackknife
errors, reflecting statistical uncertainties which arise because of solving the path integral over
the gauge field using a finite number of gauge configurations.

From now on, all the ensembles, listed in tab. 4.1 are considered in the results. Moreover,
data tables for the shown results can be found in the appendix, c.f. sec. A.6. Also the fit-
ranges are collected in these tables. See sec. 4.2 for the choice of the smearing parameters.
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Figure 5.6: Effective mass (in lattice units) together with ground state fits, resulting from an
1× 1 correlation matrix for the Dd operator with ΓDd = (1 + γ0)γ5. The results were produced
using the “B40.24” ensemble.

We use the fact, that the BB potential yields twice the mass of the contributing mesons
as threshold (here: 2m(S)) to renormalise them. All potentials are shown with 2m(S) sub-
tracted, i.e. in the BB potential, we find V → 0 for large separations.

In fig. 5.7, an example plot for the potential is shown for the “D20.24” ensemble. We use this
figure, to analyze and compare the potentials in detail. In general, we can expect that the
potentials, evaluated with the mesonic molecule / diquark-antidiquark operators are (nearly)
identical, because both structures describe the same quantum numbers. Indeed, we see that
the potentials are in very good agreement (identical respecting the error bars) for small heavy
quark separations. However, the potentials distinguish for larger separations, where the over-
lap of the Dd operator with the ground state starts getting worse. Here, we find a threshold
in the BB potential, corresponding to twice the S meson mass, while for the Dd state an
approximate linear increase of the potential occurs. This shape looks like a confining con-
tribution, which arise due to the expansion of the static antidiquark (static colour charges).
This is already a clear indication, that the Dd structure should be absent for large separations
in the eigenvector-analysis.

In fig. 5.8, the potentials resulting from all three considered lattice ensembles are now shown
together in one diagram. For small separations, the BB potentials as well as the Dd potentials
are in very good agreement among themselves and allow us to combine the results in order
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Figure 5.7: Example plot for the effective potentials, resulting from the BB and Dd creation
operators with ΓBB = (1 + γ0)γ5 and ΓDd = (1 + γ0)γ5. The results are based on the “D20.24”
ensemble.

Figure 5.8: Comparison of the BB / Dd potentials for all lattice ensembles, listed in tab. 4.1
and with ΓBB = (1 + γ0)γ5 and ΓDd = (1 + γ0)γ5.

to obtain a fine resolution of the potential. While the consistency remains for the mesonic
molecule structure for larger separations, discrepancies in the diquark-antidiquark potentials
occur. Here, we find an individual (approximate) linear increase for each of the lattice



5 NUMERICAL RESULTS 47

ensembles. It is surprising, that the lattice with the largest spacing (“B40.24”) leads to
results very close to the ground state, while smaller lattice spacings lead to curves, far away
from it. A possible explanation for this is that all smearing parameters kept fixed for all
lattice simulations. That means, that the smaller the lattice spacing, the less smearing was
effectively applied. We also have to keep in mind, that besides the lattice spacing, also the
other parameters of the considered lattice ensembles were not exactly the same, e.g. the
lattice sizes are different and pion masses are (slightly) different. This could also play a role
in this context.

5.6 Eigenvector-analysis

Figure 5.9: Comparison of the BB structure with ΓBB = (1 + γ0)γ5 and the Dd structure
with ΓDd = (1 + γ0)γ5. The results are summarized for all ensembles, listed in tab. 4.1.

Fig. 5.9 shows the entries of the ground state eigenvector or to be more precise the absolute
square of its entries. These values were taken at large euclidean times, approximately the
same time for all three lattice ensembles, see tab. A.10 for details. The almost excellent
consistency of the results over the whole range of heavy quark separations, obtained using
the different lattice ensembles is remarkable. This enables us to get a very fine resolution of
the ground state eigenvector.

The b̄b̄ud tetaquark state can be seen as a superposition of the mesonic molecule and the
diquark-antidiquark structure, in which the eigenvector entries are the coefficients.

|b̄b̄ud; r〉 ≈
∑
j

vj0(t, t0)O†j |0〉 , j ∈ {BB,Dd}

Therefore, we know that the absolute square of the entries of the normalized eigenvector
can be used as weighting for the presence or absence for one of the tetraquark structures
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compared to the other.

The shown results affirm our prediction that the diquark-antidiquark structure should be
absent for large heavy quark separations (c.f. sec. 1.3 and sec. 5.4 - 5.5). Consequently, the
tetraquark state is a pure mesonic molecule state in this limit. Analyzing the eigenvector
for small separations is more instructive, because it is difficult to make predictions in this
limit. Here, it turns out, that the Dd state is indeed the dominant contribution. We find

|v(0)
Dd|

2 ≈ 0.85 for the smallest computed heavy quark separation. However, the Dd contri-
bution rapidly gets smaller if the heavy quark separation is increased. At approximately
r ≈ 0.25 fm, both structures have equally represented and then the BB state starts to dom-
inate the tetraquark state.

In the lattice simulations, which have led to this statements, the heavy quark separation was
fixed by hand. In nature, the distance depends of course on the interactions in the four quark
system. An interesting side note at this point is, that in previous studies of the static-light
four quark system b̄b̄ud system, the radial probability density to find the b̄b̄ antiquark pair at
given separation has its peak at a value very close to the separation, where both states have
the same weighting [7, 10].

Figure 5.10: Comparison of the BB structure with ΓBB ∈ {(1 + γ0)γ5, γ5} and the Dd
structure with ΓDd ∈ {(1 + γ0)γ5, γ5}. The results are shown for the “C30.32” ensemble.

Finally, we profit from having divided all computed correlation functions into several corre-
lators, c.f. sec. 4.4. This enables us to recombine the correlators also to other Γ structures,
here Γ ∈ {(1 + γ0)γ5, γ5}, without performing further lattice computations. In fig. 5.10, the
results for the eigenvector-analysis of the corresponding 4 × 4 correlation matrix are pre-
sented. Shown are only results for the “C30.32” ensemble. Comparing the eigenvector for all
three lattice ensembles in one diagram is not a good idea in this case, because we have four
different curves in the diagram now, each with (large) error bars. Furthermore, we would not
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profit from presenting results for different ensembles one after another, because they lead to
the same qualitative findings, i.e. are consistent.

From fig. 5.10, we learn that the choice Γ = (1 + γ0)γ5 is much more significant in both
tetraquark structures and Γ = γ5 only leads to small contributions to the tetraquark state.
For the BB system, one could already guess this result, because in previous studies of the
BB potentials, it came out that Γ = (1 + γ0)γ5 leads to the most attractive potential with
twice 2m(S) as threshold, which is also the most promising potential from the point of view
of a bound tetraquark state [9]. However, for the Dd structure such a prediction was not
possible. If one neglects the small contributions coming from Γ = γ5, the analysis of the 2×2
/ 4× 4 matrices have led to the same qualitative statements, c.f. fig. 5.9 and fig. 5.10.

Since it turned out that Γ = (1 + γ0)γ5 corresponds to the dominant contributions for both
structures, the previous more detailed analysis and comparison of these two creation operators
throughout this whole section has gained in importance retrospectively, because this means,
that we compared the most dominant contributions for both structure.
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6 Conclusion

6.1 Summary

This work was aiming to expand previous lattice QCD studies concerning the static-light b̄b̄ud
four-quark system by investigating the internal structure of a predicted tetraquark bound
state with quantum numbers I(JP ) = 0(1+). To this end, a diquark-antidiquark structure
was compared to a mesonic molecule structure. The tetraquark (ground) state |b̄b̄ud〉 can be
understood as linear combination of both structures, in which the coefficients are given by
the (ground state-) eigenvector, resulting from the solution of the GEVP. The main result is,
that the diquark-antidiquark structure dominates for small heavy quark separations, but it
becomes more and more negligible for larger separations, so that the tetraquark can be seen
as pure mesonic molecule state in this limit, c.f. sec. 5.6. Another interesting observation
is, that both structures have approximately the same weight at the heavy quark separation,
which is expected to be the most probable separation according to previous studies.

The absence of the diquark-antidiquark structure for large separations was not very surpris-
ing. Already in sec. 3, we could argue that the overlap of this structure with the ground
state is expected to be small for large separations. Moreover, a worse signal-to-noise ratio,
larger errors in the effective mass and discrepancies in the potentials affirmed this assumption
before the eigenvector-analysis has started. However, the behavior for small separations was
less predictable and hence the results in this limit are more instructive.

The performed numerical computations affirmed several predictions, e.g. the equality of both
structures for vanishing heavy quark separation (c.f. sec. 5.3) and we successfully reproduced
previous results from investigations of the BB systems (c.f. sec. A.5). Together with con-
stantly checking symmetries of all computed correlators (c.f. sec. 5.1), the confirmations of
expected phenomena and the reproduction of previous results support the credibility of the
here performed lattice computations in a large amount.

6.2 Outlook

An obvious extension of this work would be the performance of the continuum limit and the
extrapolation to physical quark masses. This was problematic in this work, because we used
gauge field configurations, that differ both in their lattice spacing and light quark masses,
c.f. tab. 4.1. Especially configurations with physical pion mass, which exist nowadays are
interesting in this context. At least, we saw that the results are stable with respect to a
variation of the lattice spacing. Furthermore, the pion mass for the “D20.24” was already
comparably small (284 MeV).

The implementation of heavy quarks on the lattice could be improved, when the static ap-
proximation is dropped and Heavy Quark Effective Theory with O(1/m2

h) corrections is
considered. This would include corrections due to the heavy b̄b̄ spins, using lattice QCD.
In Refs. [30, 31], this approach has been pioneered for the standard static quark-antiquark
potential. However, this is expected to be a very challenging task for b̄b̄qq four-quark systems.

In sec. 3.1, we saw that the presented operator for the diquark-antidiquark structure fails
to represent arbitrary quantum numbers, since it vanishes for various Γ structures. Conse-
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quently, modifications to the diquark-antidiquark creation operator would be necessary before
more extensive studies of this structure could start.

Of course, studying the BB̄ systems by means of lattice QCD would be desirable as a next
step, because of the observation of such tetraquark candidates in experiments. However,
due to the theoretical complexity of this systems and the lack of an promising strategy to
handle them, it is more likely that theory and experiment get closer together if BB states
are observed in present day laboratories in the near future.
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A Appendix

A.1 Gamma matrices: Chiral representation

The euclidean gamma matrices obey the euclidean anti-commutation relations.

{γµ, γν} = 2δµν14

We work explicitly in the chiral representation of the Dirac matrices, where γ5 (the chirality
operator) is diagonal.

γj =

(
0 −iσj

+iσj 0

)
, γ0 =

(
0 −12

−12 0

)
where σk are the Pauli matrices

σ1 =

(
0 +1

+1 0

)
, σ2 =

(
0 −i

+i 0

)
, σ3 =

(
+1 0
0 −1

)
and

γ5 = γ0γ1γ2γ3 =

(
+12 0

0 −12

)
In this representation, the gamma matrices obey (µ = 1, . . . 5)

γµ = γ†µ = γ−1
µ

A.2 Closer view on the light flavour spin matrices

We investigate in what way the two spin matrices, combining the light quarks in the heavy-
light correlation functions are related to each other. The results help to simplify the expres-
sions for the correlation functions without affecting the general validity.

A ≡ CΓ

B ≡ γ0Γ†C†γ0 = γ0A
†γ0 = A† + γ0[A†, γ0] = A† + {Γ†, γ0}γ2

First of all, matrix A was used in the expression for matrix B. The representation C = γ0γ2

for the charge conjugation matrix was chosen, to further evaluate the expression.

γ0[A†, γ0] = γ0Γ†γ2γ0γ0 − γ0γ0Γ†γ2γ0 = γ0Γ†γ2 + Γ†γ0γ2 = {Γ†, γ0}γ2

Obviously, matrices A and B are the adjoint of each other, if Γ† anti-commutes with γ0.

{Γ†, γ0} = 0 ⇐⇒ B = A† ⇐⇒ A = B†

Furthermore, if matrix A has definite properties under transposition, i.e. if it is symmetric
or antisymmetric

AT = (CΓ)T = ±CΓ = ±A
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matrix B adopts this property.

BT = (γ0A
†γ0)T = γ0(AT )†γ0 = ±γ0A

†γ0 = ±B

Since either both or neither of the matrices change their sign under transposition in this case,
we can write

Aαβ Bγδ = (±Aβα) · (±Bδγ) = Aβα Bδγ (A.1)

This statement holds regardless of the choice for Γ, as long as A is either symmetric or
antisymmetric. Consequently, this property allows to interchange the indices of both spin
matrices A and B, without affecting the corresponding correlation function in any way. This
equation also helps to identify the relations between correlators, that are connected via sym-
metries, c.f. sec. 4.4.

A.3 Mesonic molecule states

A.3.1 Meson content

ΓX physical meson content

γ5 −S↑S↓ + S↓S↑ − P↑P↓ + P↓P↑
γ0γ5 −S↑S↓ + S↓S↑ + P↑P↓ − P↓P↑

1 −S↑P↓ + S↓P↑ − P↑S↓ + P↓S↑
γ0 −S↑P↓ + S↓P↑ + P↑S↓ − P↓S↑
γ3 −iS↑S↓ − iS↓S↑ + iP↑P↓ + iP↓P↑
γ0γ3 −iS↑S↓ − iS↓S↑ − iP↑P↓ − iP↓P↑
γ3γ5 −iS↑P↓ − iS↓P↑ + iP↑S↓ + iP↓S↑
γ0γ3γ5 −iS↑P↓ − iS↓P↑ − iP↑S↓ − iP↓S↑
γ1 +iS↑S↑ − iS↓S↓ − iP↑P↑ + iP↓P↓
γ0γ1 +iS↑S↑ − iS↓S↓ + iP↑P↑ − iP↓P↓
γ1γ5 +iS↑P↑ − iS↓P↓ − iP↑S↑ + iP↓S↓
γ0γ1γ5 +iS↑P↑ − iS↓P↓ + iP↑S↑ − iP↓S↓
γ2 −S↑S↑ − S↓S↓ + P↑P↑ + P↓P↓
γ0γ2 −S↑S↑ − S↓S↓ − P↑P↑ − P↓P↓
γ2γ5 −S↑P↑ − S↓P↓ + P↑S↑ + P↓S↓
γ0γ2γ5 −S↑P↑ − S↓P↓ − P↑S↑ − P↓S↓

Table A.1: Relation between the physical basis γ structure and the static-light meson content.
For brevity, P−;↓/↑ is denoted as P↓/↑. (Table taken from [9].)
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A.3.2 Quantum numbers

ψ(f)ψ(f ′) = ud− du ψ(f)ψ(f ′) ∈ {uu , dd , ud+ du}
Γ |jz| P, Px result P, Px result

γ5 + γ0γ5 0 −, + A, SS +, + R, SS
1 0 +, − A, SP −, − R, SP

γ3γ5 0 +, + A, SP −, + R, SP
γ5 − γ0γ5 0 −, + A, PP +, + R, PP
γ3 + γ0γ3 0 +, − R, SS −, − A, SS

γ0 0 −, − R, SP +, − A, SP
γ0γ3γ5 0 −, + R, SP +, + A, SP
γ3 − γ0γ3 0 +, − R, PP −, − A, PP

γ1γ5 1 +, − A, SP −, − R, SP
γ2γ5 1 +, + A, SP −, + R, SP

γ2 + γ0γ2 1 +, − R, SS −, − A, SS
γ1 + γ0γ1 1 +, + R, SS −, + A, SS
γ0γ1γ5 1 −, − R, SP +, − A, SP
γ0γ2γ5 1 −, + R, SP +, + A, SP
γ2 − γ0γ2 1 +, − R, PP −, − A, PP
γ1 − γ0γ1 1 +, + R, PP −, + A, PP

Table A.2: Quantum numbers of BB trial states; given are also combinations of Γ struc-
tures that lead to the cancellation of certain states; see also Tab. A.1. “result” characterizes
the shapes of the numerically computed BB potentials (A: attractive potential; R: repulsive po-
tential; SS: lower asymptotic value 2m(S); SP: higher asymptotic value m(S) + m(P−); PP:
highest asymptotic value 2m(P−)). The states are ordered according to: (1) |jz| = 0, 1, (2) at-
tractive/repulsive potentials (for the flavour structure ud−du), (3) increasing asymptotic value
of the potential, (4) Px = −+. (Table taken from [9].)
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Γ
(ud±du)
X tb P(tm), P(tm)

x , sec. Γ
(ud±du)
X pb P, Px type mult.

jz = 0, I = 0

γ
(−)
5 − iγ(+)

0 +, −, a (+γ5 + γ0γ5)(−) −, + att SS A

γ0γ3γ
(−)
5 +, −, a +γ0γ3γ

(−)
5 −, + rep SP− A

γ
(−)
5 + iγ

(+)
0 +, −, a (+γ5 − γ0γ5)(−) −, + att P−P− A

γ0γ
(−)
3 − iγ3γ

(+)
5 −, +, b (+γ0γ3 + γ3)(−) +, − rep SS B

1(−) −, +, b +1(−) +, − att SP− B

γ0γ
(−)
3 + iγ3γ

(+)
5 −, +, b (+γ0γ3 − γ3)(−) +, − rep P−P− B

γ
(+)
3 −, −, c +iγ3γ

(−)
5 +, + att SP− C

γ0γ
(+)
5 +, +, d +iγ

(−)
0 −, − rep SP− D

jz = 0, I = 1, Iz = 0

γ0γ
(+)
3 − iγ3γ

(−)
5 −, −, c (+γ0γ3 + γ3)(+) −, − att SS E

1(+) −, −, c +1(+) −, − rep SP− E

γ0γ
(+)
3 + iγ3γ

(−)
5 −, −, c (+γ0γ3 − γ3)(+) −, − att P−P− E

γ
(+)
5 − iγ(−)

0 +, +, d (+γ5 + γ0γ5)(+) +, + rep SS F

γ0γ3γ
(+)
5 +, +, d +γ0γ3γ

(+)
5 +, + att SP− F

γ
(+)
5 + iγ

(−)
0 +, +, d (+γ5 − γ0γ5)(+) +, + rep P−P− F

γ0γ
(−)
5 +, −, a +iγ

(+)
0 +, − att SP− G

γ
(−)
3 −, +, b +iγ3γ

(+)
5 −, + rep SP− H

jz = 1, I = 0

γ0γ
(−)
1/2 − iγ1/2γ

(+)
5 −, −/+, e/f (+γ0γ1/2 + γ1/2)(−) +, +/− rep SS I

γ
(+)
2/1 −, −/+, e/f +iγ2/1γ

(−)
5 +, +/− att SP− I

γ0γ
(−)
1/2 + iγ1/2γ

(+)
5 −, −/+, e/f (+γ0γ1/2 − γ1/2)(−) +, +/− rep P−P− I

γ0γ1/2γ
(−)
5 +, +/−, g/h γ0γ1/2γ

(−)
5 −, −/+ rep SP− J

jz = 1, I = 1, Iz = 0

γ0γ
(+)
1/2 − iγ1/2γ

(−)
5 −, +/−, f/e (+γ0γ1/2 + γ1/2)(+) −, +/− att SS K

γ
(−)
2/1 −, +/−, f/e +iγ2/1γ

(+)
5 −, +/− rep SP− K

γ0γ
(+)
1/2 + iγ1/2γ

(−)
5 −, +/−, f/e (+γ0γ1/2 − γ1/2)(+) −, +/− att P−P− K

γ0γ1/2γ
(+)
5 +, −/+, h/g γ0γ1/2γ

(+)
5 +, −/+ att SP− L

Table A.3: Twisted basis (tb) and physical basis (pb) quantum numbers for ud±du. Different
physical basis multiplets are assigned capital letters, while different twisted mass sectors are
assigned small letters. (Table taken from [9].)
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A.4 Symmetry checks of all computed correlators

=̂ γ5 T P C

C1(+t) +C∗4 (−t) +C4(−t) +C4(+t) +C1(−t)
C2(+t) +C∗3 (−t) +C3(−t) +C3(+t) +C2(−t)
C3(+t) +C∗2 (−t) +C2(−t) +C2(+t) +C3(−t)
C4(+t) +C∗1 (−t) +C1(−t) +C1(+t) +C4(−t)
C5(+t) +C∗12(−t) +C8(−t) −C8(+t) +C9(−t)
C6(+t) −C∗11(−t) +C7(−t) −C7(+t) −C10(−t)
C7(+t) −C∗10(−t) +C6(−t) −C6(+t) −C11(−t)
C8(+t) +C∗9 (−t) +C5(−t) −C5(+t) +C12(−t)
C9(+t) +C∗8 (−t) +C12(−t) −C12(+t) +C5(−t)
C10(+t) −C∗7 (−t) +C11(−t) −C11(+t) −C6(−t)
C11(+t) −C∗6 (−t) +C10(−t) −C10(+t) −C7(−t)
C12(+t) +C∗5 (−t) +C9(−t) −C9(+t) +C8(−t)
C13(+t) +C∗16(−t) +C16(−t) +C16(+t) +C13(−t)
C14(+t) +C∗15(−t) +C15(−t) +C15(+t) +C14(−t)
C15(+t) +C∗14(−t) +C14(−t) +C14(+t) +C15(−t)
C16(+t) +C∗13(−t) +C13(−t) +C13(+t) +C16(−t)

Table A.4: Symmetry averaging for C11, c.f. eq. 3.2.

=̂ γ5 T P C

C1(+t) +C∗4 (−t) +C4(−t) +C4(+t) +C1(−t)
C2(+t) +C∗2 (−t) +C3(−t) +C3(+t) +C3(−t)
C3(+t) +C∗3 (−t) +C2(−t) +C2(+t) +C2(−t)
C4(+t) +C∗1 (−t) +C1(−t) +C1(+t) +C4(−t)
C5(+t) −C∗12(−t) −C8(−t) +C8(+t) +C9(−t)
C6(+t) −C∗10(−t) −C7(−t) +C7(+t) +C11(−t)
C7(+t) −C∗11(−t) −C6(−t) +C6(+t) +C10(−t)
C8(+t) −C∗9 (−t) −C5(−t) +C5(+t) +C12(−t)
C9(+t) −C∗8 (−t) −C12(−t) +C12(+t) +C5(−t)
C10(+t) −C∗6 (−t) −C11(−t) +C11(+t) +C7(−t)
C11(+t) −C∗7 (−t) −C10(−t) +C10(+t) +C6(−t)
C12(+t) −C∗5 (−t) −C9(−t) +C9(+t) +C8(−t)
C13(+t) +C∗16(−t) +C16(−t) +C16(+t) +C13(−t)
C14(+t) +C∗14(−t) +C15(−t) +C15(+t) +C15(−t)
C15(+t) +C∗15(−t) +C14(−t) +C14(+t) +C14(−t)
C16(+t) +C∗13(−t) +C13(−t) +C13(+t) +C16(−t)

Table A.5: Symmetry averaging for C22, c.f. eq. 3.4.
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=̂ γ5 T P C

C1(+t) +C∗4(−t) +C4(−t) +C4(+t) +C1(−t)
C2(+t) +C∗3(−t) +C3(−t) +C3(+t) +C2(−t)
C3(+t) +C∗2(−t) +C2(−t) +C2(+t) +C3(−t)
C4(+t) +C∗1(−t) +C1(−t) +C1(+t) +C4(−t)
C5(+t) −C∗12(−t) −C8(−t) +C8(+t) +C9(−t)
C6(+t) −C∗11(−t) −C7(−t) +C7(+t) +C10(−t)
C7(+t) −C∗10(−t) −C6(−t) +C6(+t) +C11(−t)
C8(+t) −C∗9(−t) −C5(−t) +C5(+t) +C12(−t)
C9(+t) +C∗8(−t) +C12(−t) −C12(+t) +C5(−t)
C10(+t) +C∗7(−t) +C11(−t) −C11(+t) +C6(−t)
C11(+t) +C∗6(−t) +C10(−t) −C10(+t) +C7(−t)
C12(+t) +C∗5(−t) +C9(−t) −C9(+t) +C8(−t)
C13(+t) −C∗16(−t) −C16(−t) −C16(+t) +C13(−t)
C14(+t) −C∗15(−t) −C15(−t) −C15(+t) +C14(−t)
C15(+t) −C∗14(−t) −C14(−t) −C14(+t) +C15(−t)
C16(+t) −C∗13(−t) −C13(−t) −C13(+t) +C16(−t)

Table A.6: Symmetry averaging for C12, c.f. eq. 3.6. Correlators written in bold are related
to correlators in C21.

=̂ γ5 T P C

C1(+t) +C∗4(−t) +C4(−t) +C4(+t) +C1(−t)
C2(+t) +C∗3(−t) +C3(−t) +C3(+t) +C2(−t)
C3(+t) +C∗2(−t) +C2(−t) +C2(+t) +C3(−t)
C4(+t) +C∗1(−t) +C1(−t) +C1(+t) +C4(−t)
C5(+t) +C∗12(−t) +C8(−t) −C8(+t) +C9(−t)
C6(+t) +C∗11(−t) +C7(−t) −C7(+t) +C10(−t)
C7(+t) +C∗10(−t) +C6(−t) −C7(+t) +C11(−t)
C8(+t) +C∗9(−t) +C5(−t) −C5(+t) +C12(−t)
C9(+t) −C∗8(−t) −C12(−t) +C12(+t) +C5(−t)
C10(+t) −C∗7(−t) −C11(−t) +C11(+t) +C6(−t)
C11(+t) −C∗6(−t) −C10(−t) +C10(+t) +C7(−t)
C12(+t) −C∗5(−t) −C9(−t) +C9(+t) +C8(−t)
C13(+t) −C∗16(−t) −C16(−t) −C16(+t) +C13(−t)
C14(+t) −C∗15(−t) −C15(−t) −C15(+t) +C14(−t)
C15(+t) −C∗14(−t) −C14(−t) −C14(+t) +C15(−t)
C16(+t) −C∗13(−t) −C13(−t) −C13(+t) +C16(−t)

Table A.7: Symmetry averaging for C21, c.f. eq. 3.7. Correlators written in bold are related
to correlators in C12.
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A.5 Mesonic molecule: Comparison with previous results

Figure A.1: Comparison of computed effective masses with previous results within the same
lattice setup (“B40.24”), including same smearing parameters.
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A.6 Data tables: Lattice potentials and eigenvector-analysis

B40.24 C30.32 D20.24
r VBB / 10−1 σ / 10−3 VBB / 10−1 σ/ 10−3 VBB / 10−1 σ/ 10−3

1 6.156 9.734 5.379 8.846 5.133 11.50
2 6.626 9.067 5.735 8.365 5.466 10.98
3 7.718 8.347 6.213 7.948 5.873 9.820
4 7.572 8.210 6.526 7.603 6.144 8.689
5 7.856 8.724 6.748 7.361 6.354 7.989
6 7.981 8.731 6.895 6.889 6.507 7.525
7 8.011 9.047 6.992 6.483 6.616 7.544
8 8.047 8.698 7.059 6.578 6.699 7.842
9 8.081 8.390 7.118 6.723 6.735 8.204
10 7.145 7.050 6.778 8.591
11 7.142 7.291 6.801 9.224
12 6.820 9.370

Table A.8: Data tables for BB potentials in lattice units, resulting from 1 × 1 correlation
matrices with ΓBB = (1 + γ0)γ5. The fit range for the ground state fits is t ∈ [6, 9] in all cases.

B40.24 C30.32 D20.24

r VDd / 10−1 σ / 10−3 VDd / 10−1 σ/ 10−3 VDd / 10−1 σ/ 10−3

1 6.152 9.843 5.379 8.939 5.124 11.64
2 6.588 9.682 5.730 8.866 5.424 11.41
3 7.113 9.621 6.236 9.088 5.808 11.03
4 7.465 10.40 6.594 9.669 6.073 10.79
5 7.747 12.54 6.890 10.89 6.314 10.85
6 7.992 15.73 7.100 12.34 6.532 10.94
7 8.235 20.10 7.294 13.30 6.745 11.54
8 8.343 25.14 7.483 14.68 6.982 13.32
9 8.422 34.64 7.698 17.26 7.197 16.03
10 7.923 21.25 7.421 19.81
11 8.121 26.08 7.652 23.28
12 7.858 27.47

Table A.9: Data tables for Dd potentials in lattice units, resulting from 1 × 1 correlation
matrices with ΓDd = (1 + γ0)γ5. The fit range for the ground state fits is t ∈ [6, 9] in all cases.
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B40.24 C30.32 D20.24

r v
(BB)
0 /10−1 σ/10−2 v

(BB)
0 /10−1 σ/10−2 v

(BB)
0 /10−1 σ/10−2

2 1.380 1.599 1.598 2.232 1.413 3.174
3 3.743 3.077 3.575 3.384 2.898 4.937
4 6.194 3.752 5.390 4.001 4.131 6.394
5 8.423 2.507 7.347 3.523 5.788 6.508
6 9.437 1.275 8.425 2.838 7.306 5.490
7 9.785 0.645 9.129 1.859 8.370 3.749
8 9.901 0.411 9.533 1.143 9.066 2.643
9 9.950 0.266 9.734 0.725 9.400 1.927
10 9.974 0.165 9.844 0.507 9.602 1.497
11 9.916 0.203 9.722 1.146
12 9.920 0.292 9.794 0.894
13 9.935 0.240 9.811 0.782
14 9.944 0.234 9.834 0.733
15 9.862 0.644
16 9.889 0.540
17 9.094 0.480
18 9.920 0.452

Table A.10: Absolute square of the ground state eigenvector entries, resulting from a 2 × 2
correlation matrix with ΓBB = (1 + γ0)γ5 and ΓDd = (1 + γ0)γ5. Only the BB entry is shown
and the Dd entry is simply |vDd

0 |2 = 1 − |vBB
0 |2 with the same uncertainty. The values were

taken at t = 7 / t = 8 / t = 9 for the “B40.24” / “C30.32” / “D20.24” ensembles.

BB, Γ = (1 + γ0)γ5 BB, Γ = γ5 Dd, Γ = (1 + γ0)γ5 Dd, Γ = γ5
r v0/10−1 σ/10−2 v0/10−1 σ/10−2 v0/10−1 σ/10−2 v0/10−1 σ/10−2

2 1.492 4.846 0.240 1.464 6.382 12.13 1.885 9.605
3 3.193 6.480 0.497 2.301 4.827 11.28 1.483 8.903
4 4.674 7.960 0.721 3.309 3.603 10.18 1.003 6.325
5 6.431 7.594 0.882 3.756 2.143 7.164 0.544 3.764
6 7.489 6.734 0.890 3.755 1.323 5.103 0.299 2.293
7 8.397 4.677 0.749 3.162 6.482 2.884 0.206 1.510
8 9.030 3.020 0.537 2.398 2.558 1.150 0.177 1.244
9 9.383 2.229 0.358 1.845 0.842 0.736 0.174 1.142
10 9.607 1.720 0.284 1.363 0.308 0.410 0.134 0.920
11 9.689 1.478 0.193 1.199 0.164 0.260 0.101 0.680
12 9.700 1.418 0.218 1.234 0.181 0.239 0.064 0.524
13 9.751 1.257 0.193 1.152 0.262 0.270 0.030 0.343
14 9.780 1.249 0.168 1.150 0.451 0.368 0.007 0.167

Table A.11: Absolute square of the ground state eigenvector entries, resulting from a 4 × 4
correlation matrix. The values were taken at t = 8 for the “C30.32” ensemble.
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