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Zusammenfassung
In dieser Arbeit werden verschiedene Potentiale zwischen zwei statischen Antiquarks Q̄, die jeweils
von einem twisted mass-Quark mit endlicher Masse umgeben sind, berechnet. Ausgehend von den
Resultaten für u- und d-Quarks, wird das Verhalten der Potentiale in Abhängigkeit der Quark-Masse
untersucht. Dabei werden s- und c-Quarks betrachtet. Bezogen auf Hadronen, entspricht der erste
Fall den Potentialen zwischen zwei B-Mesonen und der zweite Fall denen zwischen zwei Bs- bzw.
Bc-Mesonen, wenn die statischen Antiquarks als b-Antiquarks betrachtet werden. Die Ergebnisse
deuten darauf hin, dass für s- und c-Quarks, anders als für den Fall mit u- und d-Quarks, keine
gebundenen Zustände existieren. Ein weiterer Aspekt dieser Arbeit ist die Erweiterung des Problems
auf das Potential zwischen einem statischen Antiquark Q̄ und einem statischen Quark Q, wieder
jeweils von einem Quark oder Antiquark mit endlicher Masse umgeben. Ein erstes qualitatives
Ergebnis ist die Tatsache, dass alle betrachteten Q̄Q Potentiale attraktiv sind. Für Q̄Q̄ traten
sowohl attraktive als auch repulsive Potentiale auf.





Abstract
In this work different potentials between two static antiquarks Q̄, each surrounded by a twisted
mass quark of finite mass, are computed. Based on the results for u and d quarks, the behaviour of
the potentials depending on the quark mass is investigated. Thereto s and c quarks are considered.
Regarding hadrons, the first case corresponds to the potential between two B mesons and the second
case to that between two Bs and Bc mesons, respectively, if the static antiquarks are considered as
b antiquarks. Unlike the case with u and d quarks, the results indicate that there are no bound
states for s and c quarks. Another aspect of this work is the extension of these investigations to the
potential between a static antiquark Q̄ and a static quark Q, each again surrounded by a quark
or antiquark of finite mass. A first qualitative result is fact that all considered Q̄Q potentials are
attractive. For Q̄Q̄ both attractive and repulsive potentials occurred.
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Chapter 1

Introduction

Hadrons are clearly bound states of quarks and antiquarks, which are kept together by the strong
force carried by gluons. Quantum Chromodynamics (QCD) is, as matters stand, the correct
theory of the strong interaction. Since QCD allows more complex systems than mesons (qq̄) and
baryons (qqq), exotic hadrons have been searched for many years. One of these exotic hadrons is
the tetraquark consisting of two quarks and two antiquarks (qqq̄q̄) and which existence was already
claimed in the seventies [1]. In addition, there are several hadronic resonances which are tetraquark
candidates, e.g. σ, κ, D∗s0, ... [2].

However, the observation in experiments, the investigation using theoretical models and also
the simulation in terms of lattice QCD is much more complex than for ordinary mesons and
baryons.

Initial point of this thesis were the works [3–5], where the potential between two static-light mesons
was investigated in order to provide information on the existence of a bound state, i.e. a tetraquark.
Both static-light mesons were built up of an infinitely heavy (i.e. static) antiquark Q̄ and a light
quark l ∈ {u, d} of finite mass. Regarding hadrons, this corresponds to the potential between two
B mesons, since a static antiquark is a good approximation of a bottom antiquark b̄, due to its
significantly higher mass compared to the light quarks.

The investigation of the behaviour of these potentials depending on the quark mass is one of the two
main goals of this work. As there was a clear indication for a bound state in one channel for b̄b̄ll,
we are also looking for a heavier bound state with strange and charm quarks. This is of particular
interest, since there are two possible scenarios concerning the existence of a bound state. Increasing
the quark mass can either increase the chance of finding a bound state, because it is easier to reach
binding with heavier constituents, or it can decrease the chance of finding a bound state, since the
cloud formed by the quarks (i.e. their wave function) gets smaller which entails a smaller overlap of
the two mesons implicating a more narrow potential.
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Chapter 1: Introduction

The second main goal is to extend these investigations to a system consisting no longer of two
static antiquarks but of one static antiquark and one static quark. Again regarding hadrons, this
corresponds to the potential between a B meson and and B̄ meson, if light quarks are considered.
This case is experimentally more interesting, since due to conservation laws bottom quarks are always
created in quark-antiquark pairs. Hence, to get two bottom quarks one would have to create two
bottom quark-antiquark pairs and then separate the two quarks from the antiquarks. Whereas to get
a b̄bl̄l system, the creation of only one bottom quark-antiquark pair is sufficient.

Nevertheless, such a system involves some new difficulties. For instance, the light quark and the
light antiquark can annihilate resulting in a Q̄Q pair connected by a gluonic string. One also has to
distinguish in a b̄bl̄l system two cases of essentially non-interacting mesons, i.e. BB̄ and the case of
a pion (ll̄) together with the mentioned by gluons connected Q̄Q pair.

In the following, we want to give a short outline of this thesis. We start with some theoretical basics,
which are relevant to comprehend the calculations and results of this work. The next chapter deals
with the corresponding technical realisation in terms of lattice computations. This is then followed
by the results of the numerical computations. Finally, the last chapter gives a summary of this
thesis and an outlook on possible further work.
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Chapter 2

Theoretical foundations

2.1 Notation

Both the colour indices and the flavours are denoted by lower case letters in the upper indices. To
distinguish between them, the flavours are enclosed in brackets and, in addition, always written
in front of the colour indices. Spinor indices are denoted by capital letters in the lower indices,
e.g.

ψ
(u)b
A (~r) (2.1)

describes a fermionic field ψ (e.g. a quark field) located at space point ~r with spinor index A, colour
index b and flavour u.

However, in some cases not all of the indices are shown for the purpose of a more convenient
reading.

Moreover, we will denote fermionic fields in the (pseudo) physical basis with {ψ, ψ̄} and for the
twisted basis we will use {χ, χ̄}.

2.2 Twisted mass lattice QCD

For a detailed introduction to twisted mass lattice QCD (tmLQCD) we refer to [6]. This section is
just meant to give a rough overview.

The twisted mass QCD action for Nf = 2 degenerate light quarks χ(l) ∈ {χ(u), χ(d)} in a continuum
like version reads:

Slight [χ, χ̄, A] =
∫
d4x χ̄(l)

(
γµDµ +mq + iµqγ5τ

3 − a

2 �
)
χ(l) , (2.2)
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Chapter 2: Theoretical foundations

where Dµ denotes the covariant derivative, Aµ the gauge field and a the lattice spacing within the
so called Wilson term. mq is the untwisted quark mass, µq the twisted quark mass and τ3 the third
Pauli matrix acting in flavour space.

A part of the calculations in this work is also based on Nf = 2 + 1 + 1 flavours, where (2.2) for the
light (u,d) doublet and

Sheavy [χ, χ̄, A] =
∫
d4x χ̄(h)

(
γµDµ +mq + iµσγ5τ

1 + µδτ
3 − a

2 �
)
χ(h) (2.3)

for the heavy non-degenerate (s,c) sea quark doublet, with χ(h) ∈ {χ(s), χ(c)}, was used.

The corresponding discretised twisted mass lattice actions Slight [χ, χ̄, U ] and Sheavy [χ, χ̄, U ], with
the link variables U , are shown in [7].

In order to avoid a flavour mixing of the strange and charm quarks [8], we used the degenerate action
of (2.2) in the corresponding valence sectors. This yields two degenerate twisted mass doublets
(c+,c−) and (s+,s−) by changing χ(l) → χ(s) ∈ {χ(s+), χ(s−)} and χ(l) → χ(c) ∈ {χ(c+), χ(c−)},
respectively.

Throughout this work we always work in euclidean space-time and use the chiral representation of
the Dirac matrices

γ0 =
(

0 −1
−1 0

)
, γj =

(
0 −iτ j

+iτ j 0

)
, (2.4)

with the Pauli matrices

τ1 =
(

0 +1
+1 0

)
, τ2 =

(
0 −i

+i 0

)
, τ3 =

(
+1 0
0 −1

)
. (2.5)

The (pseudo) physical basis {ψ, ψ̄} is related to the twisted basis {χ, χ̄} by a so called twist
rotation:

ψ(u) = e+iω2 γ5χ(u) =⇒ ψ̄(u) = χ̄(u)e+iω2 γ5

ψ(d) = e−i
ω
2 γ5χ(d) =⇒ ψ̄(d) = χ̄(d)e−i

ω
2 γ5

(2.6)

Our calculations are done at maximal twist, i.e. ω = π
2 . This involves an automatic O(a) improvement

of the physical observables [9].
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2.2 Twisted mass lattice QCD

2.2.1 Relation between Γ(ppb) and Γ(tb)

With (2.6) we easily obtain the following relations:

ψT (u) Γ(ppb) ψ̄T (u) = χT (u)e+iω2 γ5 Γ(ppb) e+iω2 γ5χ̄(u) = χT (u) Γ(tb)
uū χ̄(u)

ψT (d) Γ(ppb) ψ̄T (d) = χT (d)e−i
ω
2 γ5 Γ(ppb) e−i

ω
2 γ5χ̄(d) = χT (d) Γ(tb)

dd̄
χ̄(d)

ψT (u) Γ(ppb) ψ̄T (d) = χT (u)e+iω2 γ5 Γ(ppb) e−i
ω
2 γ5χ̄(d) = χT (u) Γ(tb)

ud̄
χ̄(d)

ψT (d) Γ(ppb) ψ̄T (u) = χT (d)e−i
ω
2 γ5 Γ(ppb) e+iω2 γ5χ̄(u) = χT (d) Γ(tb)

dū χ̄(u)

(2.7)

Hence, we are able to establish a relation between the Γ-matrices in the (pseudo) physical basis Γ(ppb)

and the Γ-matrices in the twisted basis Γ(tb), which is shown in Table 2.1.

Γ(ppb) Γ(tb)
uū Γ(tb)

dd̄
Γ(tb)
ud̄

Γ(tb)
dū

γ5 +i −i +γ5 +γ5
γ0γ5 +γ0γ5 +γ0γ5 −iγ0 +iγ0

1 +iγ5 −iγ5 +1 +1
γ0 +γ0 +γ0 −iγ0γ5 +iγ0γ5
γ3 +γ3 +γ3 −iγ3γ5 +iγ3γ5
γ0γ3 +iγ0γ3γ5 −iγ0γ3γ5 +γ0γ3 +γ0γ3
γ3γ5 +γ3γ5 +γ3γ5 −iγ3 +iγ3
γ0γ3γ5 +iγ0γ3 −iγ0γ3 +γ0γ3γ5 +γ0γ3γ5

γ1 +γ1 +γ1 −iγ1γ5 +iγ1γ5
γ2 +γ2 +γ2 −iγ2γ5 +iγ2γ5
γ0γ1 +iγ0γ1γ5 −iγ0γ1γ5 +γ0γ1 +γ0γ1
γ0γ2 +iγ0γ2γ5 −iγ0γ2γ5 +γ0γ2 +γ0γ2
γ1γ5 +γ1γ5 +γ1γ5 −iγ1 +iγ1
γ2γ5 +γ2γ5 +γ2γ5 −iγ2 +iγ2
γ0γ1γ5 +iγ0γ1 −iγ0γ1 +γ0γ1γ5 +γ0γ1γ5
γ0γ2γ5 +iγ0γ2 −iγ0γ2 +γ0γ2γ5 +γ0γ2γ5

Table 2.1: Relation between the Γ-matrices in the (pseudo) physical
basis and the twisted basis

The red coloured Γ-matrices are those who change after the performed twist rotation. As can be
seen, not only the structure of these Γ-matrices changes, but also their sign. The consequence
is that the relative sign between some flavour combinations changes, e.g. uū + dd̄ → uū − dd̄.
We have to keep this in mind for the further considerations.
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Chapter 2: Theoretical foundations

2.3 Trial states

To get a trial state |ψ〉 with specific quantum numbers I(JP ), one has to construct an operator O,
which creates these quantum numbers by acting on the QCD vacuum |Ω〉:

|ψ〉 = O |Ω〉 (2.8)

Hence, such operators O are called creation operators and build the basis for the computation of
the correlation function

C(t) ≡ 〈Ω|O†(t)O(0) |Ω〉

=
∞∑
n=0
〈Ω| e+HtO†(0)e−Ht |n〉〈n| O(0) |Ω〉

=
∞∑
n=0

∣∣〈n|O|Ω〉∣∣2︸ ︷︷ ︸
=|an|2

exp
(
− (En − EΩ)︸ ︷︷ ︸

=mn

t
)

t�1≈ |a0|2e−m0 t,

(2.9)

from which we can extract the effective mass

meff(t) ≡ 1
a

log
(

C(t)
C(t+ a)

)
t�1≈ m. (2.10)

Computing meff(t) for different separations of the two considered mesons will then lead to the
potential we are looking for.

For a better comparison with [3, 4] we focus in this section only on light quarks, i.e. flavours
l ∈ {u, d}. Nevertheless, these considerations hold also for s and c quarks, which will be considered
later.1

2.3.1 Static-light mesons

Starting point are the static-light mesons built up either from a static quark Q and an antiquark ψ̄
or a static antiquark Q̄ and a quark ψ, with ψ ∈ {u, d} and a finite mass. These mesons can
be labelled by parity P = ±, the z-component of isospin Iz = ±1 and, since non-trivial gluonic
excitations are not considered, i.e. j = 1

2 , the z-component of the light quark spin jz = ±1
2 . The

lightest static-light meson has P = − and is denoted by S and the parity partner with P = + is
denoted by P−. Regarding Q̄ψ and identifying Q̄ with b̄, S corresponds to B/B∗ and P− to B∗0/B∗1 ,
listed in [10]. For Qψ̄, S corresponds to B̄/B̄∗ and P− to B̄∗0/B̄∗1 , respectively.

1 Then u→ s+/c+ and d→ s−/c−, where +/− describe the sign within the twist rotation, cf. (2.6).
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2.3 Trial states

The static-light meson trial states have the following structure:

Q̄Γψ|Ω〉 and ψ̄ΓQ|Ω〉, (2.11)

with Γ ∈ {γ5, γ0γ5, γj , γ0γj} for the S and Γ ∈ {1, γ0, γjγ5, γ0γjγ5} for the P− state.

For a more detailed discussion of static-light mesons see [11, 12].

2.3.2 BB potentials

As already mentioned in the introduction, we are interested in the potential between two static-light
mesons as a function of the separation. Here and in the following the separation is denoted by R
and the axis of separation is without loss of generality chosen to be the z-axis, where the two static
antiquarks Q̄ are located at ~r1 = (0, 0,+R

2 )T and ~r2 = (0, 0,−R
2 )T , respectively. The static quarks

are surrounded by the light quarks, which have no fixed position. This means ~r1 and ~r2 do also
define the position of the B mesons.

For the BB system the following trial states were used:

(CΓ)AB Q̄aC(~x) ψ(f1)a
A (~x) Q̄bC(~y) ψ(f2)b

B (~y) |Ω〉, (2.12)

where C = γ0γ2 is the charge conjugation matrix and the notation shown in section 2.1 was
used.

These states can be labelled by the isospin I ∈ {0, 1}, its z-component Iz ∈ {−1, 0,+1}, the absolute
value of the z-component of the light quark spin |jz| ∈ {0, 1}, the parity P = ± and the “x-parity”
Px = ±, which is a reflection along the x-axis.

For more information cf. [3, 4] and also Appendix A, where the different quantum numbers are
listed. Moreover, we will give a detailed discussion of the different symmetries and quantum numbers
of BB̄ systems in section 2.6.

2.3.3 BB̄ potentials

We are now regarding the completely new case of a BB̄ system, which means we have to re-
place one of the B mesons by a B̄ meson. Starting from (2.12), we used the following BB̄ trial
states

ΓAB Γ̃CD Q̄aC(~x) ψ(f1)a
A (~x) ψ̄(f2)b

B (~y) QbD(~y) |Ω〉 (2.13)

9



Chapter 2: Theoretical foundations

where due to the new quark-antiquark structure the charge conjugation matrix C is not needed any
longer and therefore dropped. In addition, although there are no interactions involving the static
spin, we have to consider the connection between the static quark and the static antiquark in spin
space, i.e. we inserted a Γ̃ matrix. The reson for this will be explained later.

(2.13) leads to the following correlation function, where Γ(t) denotes the Γ matrix within the
operator O(t) and Γ(0) the Γ matrix within the operator O(0), not to be confused with a time
dependence of the Γ matrices:

C(t) = 〈Ω|O†(t)O(0)|Ω〉

= (γ0Γ∗(t)γ0)AB (γ0Γ̃∗γ0)CD Γ(0)EF Γ̃GH 〈Ω|Q̄bD(~y, t) ψ(2)b
B (~y, t) ψ̄(1)a

A (~x, t) QaC(~x, t)

Q̄cG(~x, 0) ψ(1)c
E (~x, 0) ψ̄(2)d

F (~y, 0) QdH(~y, 0)|Ω〉

= (γ0Γ∗(t)γ0)AB (γ0Γ̃∗γ0)CD Γ(0)EF Γ̃GH 〈Ω|Trcol
[
QC(~x, t) Q̄G(~x, 0) ψ(1)

E (~x, 0) ψ̄(1)
A (~x, t)

]
Trcol

[
QH(~y, 0) Q̄D(~y, t) ψ(2)

B (~y, t) ψ̄(2)
F (~y, 0)

]
|Ω〉

= +e−2Mt (γ0Γ∗(t)γ0)AB Γ(0)EF (γ0Γ̃†γ0)DC
(1 + γ0

2

)
CG

Γ̃GH
(1− γ0

2

)
HD〈

Trcol
[
U(~x, t; ~x, 0) (D−1)(ψ1)

EA (~x, 0; ~x, t)
]
Trcol

[
U(~y, 0; ~y, t) (D−1)(ψ2)

BF (~y, t; ~y, 0)
]〉

= +e−2Mt (γ0Γ∗(t)γ0)AB (Γ(0)T )DC Trspin
[
γ0Γ̃†γ0

(1 + γ0
2

)
Γ̃
(1− γ0

2

)]
〈
Trcol

[
U(~x, t; ~x, 0) (D−1)(ψ1)

CA (~x, 0; ~x, t)
]
Trcol

[
U(~y, 0; ~y, t) (D−1)(ψ2)

BD (~y, t; ~y, 0)
]〉
, (2.14)

where in the second last step the light quark propagator D−1 was inserted and where 〈...〉 denotes a
path integral over the gauge fields A. Within the scope of heavy quark effective theory it can be
shown for the static quark propagator Q−1 that [11]

(Q−1)abAB(x; y) = δ(~x− ~y)Uab(~x, x0; ~y, y0)
(

Θ(y0 − x0)
(1− γ0

2

)
AB

e−M(y0−x0)

+Θ(x0 − y0)
(1 + γ0

2

)
AB

e−M(x0−y0)
)
,

(2.15)

which was also used and where

U(~x, x0; ~y, y0) = P

[
exp

(
±i
∫ y0

x0
dz0A0(~x, z0)

)]
, (2.16)

with P denoting a path-ordered integration.

Moreover, (2.14) shows that the following condition has to be fulfilled:{
Γ̃, γ0

}
= 0 ⇐⇒ Γ̃γ0 = −γ0Γ̃ (2.17)
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2.4 A closer look at isospin

Otherwise the correlator would vanish, since:(1± γ0
2

)(1∓ γ0
2

)
= 0 (2.18)

A possible choice is Γ̃ ∈ {γ5, γ0γ5, γ3, γ0γ3, γ1, γ2, γ0γ1, γ0γ2}, which yields:

Trspin
[
γ0Γ̃†γ0

(1 + γ0
2

)
Γ̃
(1− γ0

2

)]
= −2 (2.19)

by using the following relations:

Γ̃†Γ̃ = 1(1± γ0
2

)(1± γ0
2

)
= 1± γ0

2

Tr
(1± γ0

2

)
= 2

(2.20)

Consequently, the correlation function (2.14) becomes the following:

C(t) =− 2e−2Mt (γ0Γ∗(t)γ0)AB (ΓT (0))DC〈
Trcol

[
U(~x, t; ~x, 0) (D−1)(ψ1)

CA (~x, 0; ~x, t)
]
Trcol

[
U(~y, 0; ~y, t) (D−1)(ψ2)

BD (~y, t; ~y, 0)
]〉

(2.21)

As one might have expected, the Γ̃ matrix drops out and has no influence on the correlation function
and therefore, no influence on the potentials we are interested in.2

To estimate the correlation function (2.21), we have to compute the link variables U given in (2.16)
and the light quark propagators D−1 which is discussed in section 3.1.

2.4 A closer look at isospin

The light quarks can be combined to isospin I = 0 and I = 1. For u and d quarks this is done in
the following way:

I = 0 : ud− du

I = 1 : uu, dd, ud+ du

2 Inserting a Γ̃ matrix into the BB trial state yields the same conclusion, whereby in that case one has to choose
Γ̃ ∈ {1, γ0, γ3γ5, γ1γ2, γ1γ5, γ2γ5, γ2γ3, γ1γ3}. Hence, Γ̃ = 1 is a possible choice and made in (2.12).
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Chapter 2: Theoretical foundations

But now we are interested in the coupling of a quark and an antiquark. Therefore we have to check
the transformation of antiquarks under isospin rotation:

(
u

d

)
→ eiα

a τa

2

(
u

d

)
=⇒

(
ū

d̄

)T
→
(
ū

d̄

)T
e−iα

a τa

2 (2.22)

To get an equal structure for the antiquarks we have to transpose the result, which gives us:(
ū

d̄

)
→ e−iα

a (τa)
2

T
(
ū

d̄

)
= e−iα

a (τa)
2

T

τ2τ2
(
ū

d̄

)
= τ2eiα

a τa

2 τ2
(
ū

d̄

)
(2.23)

Multiplying this equation by ±iτ2 yields:(
±d̄
∓ū

)
→ eiα

a τa

2

(
±d̄
∓ū

)
(2.24)

from which we can conclude by comparison with the left part of (2.22) and neglecting (without loss
of generality) global minus sign:

I = 0 : ud− du =̂ uū+ dd̄

I = 1 : uu, dd, ud+ du =̂ ud̄, dū, uū− dd̄

In this case “=̂” denotes same transformation laws.

2.5 Interpretation in terms of static-light mesons

To identify the meson content of the different BB̄ operators introduced in (2.13) one has to use the
parity and the spin projectors given in the following way:

Parity projectors:

PP=+ = 1 + γ0
2 , PP=− = 1− γ0

2 (2.25)

Spin projectors:

Pjz=↑ = 1 + iγ0γ3γ5
2 , Pjz=↓ = 1− iγ0γ3γ5

2 (2.26)

These projectors act on light quark fields, but we are interested in the quantum numbers of static-
light mesons. Since the spin of static-light mesons is only carried by the light quarks [12], the spin

12



2.5 Interpretation in terms of static-light mesons

projectors (2.26) have obviously the same effect on static-light mesons. But we have to check if this
also holds for the parity projectors (2.25):

The correlation function of the studied BB̄ system has roughly the form (Q̄Γ q)(q̄ ΓQ). For an
easier understanding, we will first focus on only one meson term, the second term. Looking at the
propagator for static quarks (2.15) this term can be replaced by:(

q̄ Γ 1− γ0
2 Q

)
(2.27)

If we now consider a light antiquark field with positive parity, replacing q̄ by q̄ 1+γ0
2 does not change

anything. The correlation function then reads:(
q̄

1 + γ0
2 Γ 1− γ0

2 Q

)
(2.28)

By inserting γ combinations which belong to positive meson parity, i.e 1, γ0, γjγ5 or γ0γjγ5, this
term vanishes (cf. (2.18)). This would mean that the parity of the (q̄ ΓQ) meson is negative if the
light antiquark field has positive parity. If a γ combination belonging to negative meson parity is
inserted, i.e γ5, γ0γ5, γj or γ0γj , one comes to the same conclusion that the parity of the (q̄ ΓQ)
meson is the inverse of the parity of light antiquark field.

Also if one considers a light antiquark field with negative parity this presumption seems to be true.
Therefore we have to use the negative parity projector of the light quark fields PP=− to get a
positive meson parity for (q̄ ΓQ) and vice versa. We have to keep this in mind for the following
considerations.

Regarding the (Q̄Γ q) meson and following the same steps, yields that the parity of this meson is
equal to that of the light quark field. Hence, we can use the parity projectors (2.25) for this meson
in the same way as for light quark fields.

To extract the meson content of the BB̄ system we first have to write the projectors in terms of
eigenvectors corresponding to eigenvalues unequal to 0:

PP=+Pjz=↑ = ~vP=+,jz=↑
(
~vP=+,jz=↑

)†
PP=+Pjz=↓ = ~vP=+,jz=↓

(
~vP=+,jz=↓

)†
PP=−Pjz=↑ = ~vP=−,jz=↑

(
~vP=−,jz=↑

)†
PP=−Pjz=↓ = ~vP=−,jz=↓

(
~vP=−,jz=↓

)†
(2.29)

13



Chapter 2: Theoretical foundations

with

~vP=+,jz=↑ = 1√
2

(+1, 0,−1, 0)T , ~vP=+,jz=↓ = 1√
2

(0,+1, 0,−1)T

~vP=−,jz=↑ = 1√
2

(+1, 0,+1, 0)T , ~vP=−,jz=↓ = 1√
2

(0,+1, 0,+1)T
(2.30)

One can easily show, that

1 = PP=+Pjz=↑ + PP=+Pjz=↓ + PP=−Pjz=↑ + PP=−Pjz=↓ (2.31)

is fulfilled.

Inserting this identity into the light spin coupling of the BB̄ creation operator yields:

ψTΓ ψ̄T = −ψ̄ ΓTψ

= −
∑
P1=±
j1=↑/↓

∑
P2=±
j2=↑/↓

ψ̄ ~vP=P1,jz=j1
(
~vP=P1,jz=j1

)† ΓT ~vP=P2,jz=j2︸ ︷︷ ︸
=: −cP1,j1,P2,j2

(
~vP=P2,jz=j2

)†
ψ (2.32)

where the coefficients cP1,j1,P2,j2 represent the static-light meson content. According to the previous
considerations the meson (Q̄Γ q) has the quantum numbers P = P2 and jz = j2, and the meson
(q̄ ΓQ) has the quantum numbers P = −P1 and jz = j1.

The meson content of the BB̄ system depending on the Γ choice in the (pseudo) physical basis is
listed in Table 2.2. As introduced in subsection 2.3.1, S indicates a static light meson with P = −
and P− (here abbreviated P ) a static-light meson with P = +. The light cloud angular momentum
is denoted by ↑ and ↓ .3

These considerations are very helpful, since for sufficiently large separations the BB̄ system can be
treated as two non-interacting B/B̄ mesons. Hence, the potentials should saturate at a plateau
with the value of two times the corresponding meson mass.

For instance, the BB̄ system with the γ-combination γ5−γ0γ5 only contains S mesons. There-
fore the related potential should saturate at 2m(S). This will also be used to normalise the
potentials.

3 The corresponding table for BB systems can be taken from Appendix A.
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Γ (pseudo) physical meson content
γ5 +S↑S↑ + S↓S↓ + P↑P↑ + P↓P↓
γ0γ5 −S↑S↑ − S↓S↓ + P↑P↑ + P↓P↓

1 +S↑P↑ + S↓P↓ + P↑S↑ + P↓S↓
γ0 +S↑P↑ + S↓P↓ − P↑S↑ − P↓S↓
γ3 +iS↑S↑ − iS↓S↓ − iP↑P↑ + iP↓P↓
γ0γ3 −iS↑S↑ + iS↓S↓ − iP↑P↑ + iP↓P↓
γ3γ5 −iS↑P↑ + iS↓P↓ + iP↑S↑ − iP↓S↓
γ0γ3γ5 −iS↑P↑ + iS↓P↓ − iP↑S↑ + iP↓S↓

γ1 +iS↑S↓ + iS↓S↑ − iP↑P↓ − iP↓P↑
γ0γ1 −iS↑S↓ − iS↓S↑ − iP↑P↓ − iP↓P↑
γ1γ5 −iS↑P↓ − iS↓P↑ + iP↑S↓ + iP↓S↑
γ0γ1γ5 −iS↑P↓ − iS↓P↑ − iP↑S↓ − iP↓S↑
γ2 −S↑S↓ + S↓S↑ + P↑P↓ − P↓P↑
γ0γ2 +S↑S↓ − S↓S↑ + P↑P↓ − P↓P↑
γ2γ5 +S↑P↓ − S↓P↑ − P↑S↓ + P↓S↑
γ0γ2γ5 +S↑P↓ − S↓P↑ + P↑S↓ − P↓S↑

Table 2.2: Relation between Γ in the (pseudo) physical basis and the
static-light meson content

2.6 Symmetries and quantum numbers

As a first step, we have to look for symmetries of the BB̄ system in order to label the different
states by appropriate quantum numbers.

The BB̄ system contains a light quark and a light antiquark, so isospin I ∈ {0, 1} and its z-component
Iz ∈ {+,−} are quantum numbers.

The separation of the static quark and antiquark restricts rotational symmetry to rotations around
the separation axis, i.e. the z-axis. Therefore, and since there are no interactions involving the
spin of the static quark and antiquark, we can label the states by the z-component of the angular
momentum of the light quarks jz ∈ {−1, 0,+1}.

Regarding states with jz = 0, reflecting along an axis orthogonal to the separation axis is also a
symmetry (we choose without restriction of generality the x-axis). The corresponding quantum
number Px ∈ {+,−}, referred to as “x-parity”, can be used as a quantum number for all states, if
we choose |jz| to label the BB̄ states instead of jz.

The separation of the static quark and antiquark also entails the fact that parity P alone is obviously
no symmetry. However, combined with charge conjugation C it is, which means, P ◦ C is an
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Chapter 2: Theoretical foundations

appropriate quantum number to label the BB̄ states.

Summing up, there are five different quantum numbers to label the BB̄ states, i.e. I, Iz, |jz|, P ◦C
and Px.

To give an example, we show the calculation of some quantum numbers for a specific operator by
using the following symmetry transformations. As introduced in section 2.2, {ψ, ψ̄} describe quark
and antiquark fields of the (pseudo) physical basis and {χ, χ̄} quark and antiquark fields of the
twisted basis. Regarding parity transformations in the twisted basis, we have to pay attention to
the arising flavour exchange [6].

The used symmetry transformations are:

Parity P:

ψ (~r) P−→ γ0ψ (−~r) =⇒ ψ̄ (~r) P−→ ψ̄ (−~r) γ0 (2.33)

Twisted mass parity P(tm):

χ(u) (~r) P(tm)
−→ γ0χ

(d) (−~r) =⇒ χ̄(u) (~r) P(tm)
−→ χ̄(d) (−~r) γ0

χ(d) (~r) P(tm)
−→ γ0χ

(u) (−~r) =⇒ χ̄(d) (~r) P(tm)
−→ χ̄(u) (−~r) γ0

(2.34)

Charge conjugation C:

ψ (~r) C−→ γ0γ2ψ̄
T (~r) =⇒ ψ̄ (~r) C−→ −ψT (~r) γ2γ0 (2.35)

Parity combined with charge conjugation P ◦ C:

ψ (~r) P◦C−→ γ2ψ̄
T (−~r) =⇒ ψ̄ (~r) P◦C−→ −ψT (−~r) γ2 (2.36)

Twisted mass parity combined with charge conjugation P
(tm)
◦ C:

χ(u) (~r) P
(tm)
◦C−→ γ2χ̄

T (d) (−~r) =⇒ χ̄(u) (~r) P
(tm)
◦C−→ −χT (d) (−~r) γ2

χ(d) (~r) P
(tm)
◦C−→ γ2χ̄

T (u) (−~r) =⇒ χ̄(d) (~r) P
(tm)
◦C−→ −χT (u) (−~r) γ2

(2.37)
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2.6 Symmetries and quantum numbers

The x-parity transformation Px consists of an ordinary parity transformation P combined with a
π-rotation around the x-axis. Therefore, we first consider rotations Rj(~α):

ψ(~r) Rj(~α)
−→ exp

(
−α2 γ0γjγ5

)
ψ(~r ′) =⇒ ψ̄(~r) Rj(~α)

−→ ψ̄(~r ′) exp
(
−α2 γ5γjγ0

)
(2.38)

This yields for j = 1, i.e. rotations around the x-axis:

ψ(x, y, z) R1(~α)−→ exp
(
−α2 γ0γ1γ5

)
ψ(x,−y,−z) = exp

(
+α

2 γ2γ3

)
ψ(x,−y,−z)

=
( ∞∑
k=0

(
α
2 γ2γ3

)k
k!

)
ψ(x,−y,−z) =

[ ∞∑
m=0

(
α
2 γ2γ3

)2m
(2m)! +

∞∑
n=0

(
α
2 γ2γ3

)2n+1

(2n+ 1)!

]
ψ(x,−y,−z)

=
[ ∞∑
m=0

(−1)m
(
α
2
)2m

(2m)! + γ2γ3

∞∑
n=0

(−1)n
(
α
2
)2n+1

(2n+ 1)!

]
ψ(x,−y,−z)

=
[
cos

(
α

2

)
+ γ2γ3 sin

(
α

2

)]
ψ(x,−y,−z) α=π= γ2γ3 ψ(x,−y,−z) (2.39)

x-parity Px = P ◦ R1 (π):

ψ (x, y, z) Px−→ γ1γ5ψ (−x, y, z) =⇒ ψ̄ (x, y, z) Px−→ ψ̄ (−x, y, z) γ5γ1 (2.40)

Twisted mass x-parity P
(tm)
x = P

(tm)
◦ R1 (π):

χ(u) (~r) P
(tm)
x−→ γ1γ5χ

(d) (−x, y, z) =⇒ χ̄(u) (~r) P
(tm)
x−→ χ̄(d) (−x, y, z) γ5γ1

χ(d) (~r) P
(tm)
x−→ γ1γ5χ

(u) (−x, y, z) =⇒ χ̄(d) (~r) P
(tm)
x−→ χ̄(u) (−x, y, z) γ5γ1

(2.41)

We are now able to compute the quantum numbers P ◦C and Px both in the (pseudo) physical basis
and in the twisted basis. Obviously, it is sufficient if we just regard the light quark and antiquark
fields of (2.13). Looking at the structure of the spinor indices, we identify:

ΓAB ψA(~r1) ψ̄B(~r2) ≡ ψT (~r1) Γ ψ̄T (~r2) (2.42)

The preliminary considerations directly yield for the (pseudo) physical basis {ψ, ψ̄} and the twisted
basis {χ, χ̄} (with ~r1 = (0, 0,+R/2)T and ~r2 = (0, 0,−R/2)T ):

ψT (m)(~r1) Γ ψ̄T (n)(~r2) P◦C−→
(
γ2ψ̄

T (m)(~r2)
)T

Γ
(
−ψT (n)(~r1)γ2

)T
= −ψ̄(m)(~r2) γ2Γγ2 ψ

(n)(~r1)

= ψT (n)(~r1) γ2ΓTγ2 ψ̄
T (m)(~r2) =⇒ ud̄↔ dū, ΓT→ Γ, Γ� γ2 (2.43)
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ψT (m)(~r1) Γ ψ̄T (n)(~r2) Px−→
(
γ1γ5ψ

(m)(~r1)
)T

Γ
(
ψ̄(n)(~r2)γ5γ1

)T
= ψT (m)(~r1) γ5γ

T
1 ΓγT1 γ5 ψ̄

T (n)(~r2)

= ψT (m)(~r1) γ5γ1Γγ1γ5 ψ̄
T (n)(~r2) =⇒ Γ� γ1, Γ� γ5 , (2.44)

χT (m)(~r1) Γ χ̄T (n)(~r2) P
(tm)
◦C−→
(
γ2χ̄

T (m̃)(~r2)
)T

Γ
(
−χT (ñ)(~r1)γ2

)T
= −χ̄(m̃)(~r2) γ2Γγ2 χ

(ñ)(~r1)

= χT (ñ)(~r1) γ2ΓTγ2 χ̄
T (m̃)(~r2) =⇒ uū↔ dd̄, ΓT→ Γ, Γ� γ2 (2.45)

χT (m)(~r1) Γ χ̄T (n)(~r2) P
(tm)
x−→

(
γ1γ5χ

(m̃)(~r1)
)T

Γ
(
χ̄(ñ)(~r2)γ5γ1

)T
= χT (m̃)(~r1) γ5γ

T
1 ΓγT1 γ5 χ̄

T (ñ)(~r2)

= χT (m̃)(~r1) γ5γ1Γγ1γ5 χ̄
T (ñ)(~r2) =⇒ uū↔ dd̄, ud̄↔ dū, Γ�γ1, Γ� γ5

(2.46)

m̃/ñ denotes a change of the flavour m/n, e.g. m = u ⇒ m̃ = d. Furthermore, the notation of
the underlined “rules”, which describe how the signs in Table 2.3 and Table 2.4 come up, is the
following: ↔ describes the respective flavour exchange, Γ→ ΓT the transposition of the Γ matrix
and Γ� γx a multiplication from both sides with γx .

ψ(1)ψ(2) = uū+ dd̄ = uū− dd̄ ∈ {ud̄, dū}

Γ |jz| P ◦ C,Px P ◦ C,Px Px

γ5 0 −, − −, − −
γ0γ5 0 −, − −, − −

1 0 +, + +, + +
γ0 0 −, + −, + +
γ3 0 +, + +, + +
γ0γ3 0 +, + +, + +
γ3γ5 0 +, − +, − −
γ0γ3γ5 0 −, − −, − −
γ1 1 +, − +, − −
γ2 1 +, + +, + +
γ0γ1 1 +, − +, − −
γ0γ2 1 +, + +, + +
γ1γ5 1 +, + +, + +
γ2γ5 1 +, − +, − −
γ0γ1γ5 1 −, + −, + +
γ0γ2γ5 1 −, − −, − −

Table 2.3: Quantum numbers in the (pseudo) physical basis
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χ(1)χ(2) = uū+ dd̄ = ud̄− dū ∈ {ud̄, dū}

Γ |jz| P
(tm)
◦ C,P(tm)

x P
(tm)
◦ C,P(tm)

x P
(tm)
◦ C

γ5 0 −, − +, + −
γ0γ5 0 −, − +, + −

1 0 +, + −, − +
γ0 0 −, + +, − −
γ3 0 +, + −, − +
γ0γ3 0 +, + −, − +
γ3γ5 0 +, − −, + +
γ0γ3γ5 0 −, − +, + −
γ1 1 +, − −, + +
γ2 1 +, + −, − +
γ0γ1 1 +, − −, + +
γ0γ2 1 +, + −, − +
γ1γ5 1 +, + −, − +
γ2γ5 1 +, − −, + +
γ0γ1γ5 1 −, + +, − −
γ0γ2γ5 1 −, − +, + −

Table 2.4: Quantum numbers in the twisted basis

These results combined with those of section 2.5 concerning the meson content are collected in
Table 2.5 for the flavour combinations uū ± dd̄ and in Table 2.6 for the flavour combinations
ud̄/dū.4

The different states are organised in multiplets A-L in the (pseudo) physical basis and in sections
a-l in the twisted basis.

The signs in Table 2.5, which are enclosed in brackets above several γ matrices describe the
corresponding signs between uū and dd̄, i.e. uū+ dd̄ or uū− dd̄.

In Table 2.6 all upper signs correspond to ud̄ and all lower signs to dū. For instance, to get the
quantum numbers shown in the first line in the twisted basis we have to consider the flavour
combination ud̄ with Γ = γ5 + iγ0 or dū with Γ = γ5 − iγ0. This splitting is due to the different
used bases (cf. section 2.2).

4 The corresponding tables for BB systems are presented in Appendix A.
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Γ(uū±dd̄) tb P
(tm)
◦ C,P(tm)

x sec. Γ(uū±dd̄) ppb P ◦ C,Px type mult.

jz = 0, I = 0

i(−) − γ0γ
(+)
5 −, − a (+γ5 − γ0γ5)(+) −, − SS A

γ0γ
(−)
3 −, − a −iγ0γ3γ

(+)
5 −, − SP− A

i(−) + γ0γ
(+)
5 −, − a (+γ5 + γ0γ5)(+) −, − P−P− A

γ
(+)
3 − iγ0γ3γ

(−)
5 +, + b (+γ3 − γ0γ3)(+) +, + SS B

γ
(−)
5 +, + b −i(+) +, + SP− B

γ
(+)
3 + iγ0γ3γ

(−)
5 +, + b (+γ3 + γ0γ3)(+) +, + P−P− B

γ3γ
(+)
5 +, − c +γ3γ

(+)
5 +, − SP− C

γ
(+)
0 −, + d +γ(+)

0 −, + SP− D

jz = 0, I = 1, Iz = 0

i(+) − γ0γ
(−)
5 +, + b (+γ5 − γ0γ5)(−) −, − SS E

γ0γ
(+)
3 +, + b −iγ0γ3γ

(−)
5 −, − SP− E

i(+) + γ0γ
(−)
5 +, + b (+γ5 + γ0γ5)(−) −, − P−P− E

γ
(−)
3 − iγ0γ3γ

(+)
5 −, − a (+γ3 − γ0γ3)(−) +, + SS F

γ
(+)
5 −, − a −i(−) +, + SP− F

γ
(−)
3 + iγ0γ3γ

(+)
5 −, − a (+γ3 + γ0γ3)(−) +, + P−P− F

γ3γ
(−)
5 −, + d +γ3γ

(−)
5 +, − SP− G

γ
(−)
0 +, − c +γ(−)

0 −, + SP− H

jz = 1, I = 0

γ
(+)
1/2 − iγ0γ1/2γ

(−)
5 +, −/+ e/f (+γ1/2 − γ0γ1/2)(+) +, −/+ SS I

γ2/1γ
(+)
5 +, −/+ e/f +γ2/1γ

(+)
5 +, −/+ SP− I

γ
(+)
1/2 + iγ0γ1/2γ

(−)
5 +, −/+ e/f (+γ1/2 + γ0γ1/2)(+) +, −/+ P−P− I

γ0γ
(−)
1/2 −, −/+ g/h −iγ0γ1/2γ

(+)
5 −, +/− SP− J

jz = 1, I = 1, Iz = 0

γ
(−)
1/2 − iγ0γ1/2γ

(+)
5 −, +/− h/g (+γ1/2 − γ0γ1/2)(−) +, −/+ SS K

γ2/1γ
(−)
5 −, +/− h/g +γ2/1γ

(−)
5 +, −/+ SP− K

γ
(−)
1/2 + iγ0γ1/2γ

(+)
5 −, +/− h/g (+γ1/2 + γ0γ1/2)(−) +, −/+ P−P− K

γ0γ
(+)
1/2 +, +/− f/e −iγ0γ1/2γ

(−)
5 −, +/− SP− L

Table 2.5: Twisted and physical quantum numbers for uū± dd̄
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Γ
(
ud̄
dū

)
tb P

(tm)
◦ C sec. Γ

(
ud̄
dū

)
ppb Px type mult.

jz = 0, I = 1, Iz = ±1
γ5 ± iγ0 − i +γ5 − γ0γ5 − SS E
γ0γ3γ5 − i +γ0γ3γ5 − SP− E
γ5 ∓ iγ0 − i +γ5 + γ0γ5 − P−P− E

γ0γ3 ± iγ3γ5 + j +γ0γ3 − γ3 + SS F
1 + j +1 + SP− F

γ0γ3 ∓ iγ3γ5 + j +γ0γ3 + γ3 + P−P− F
γ3 + j ±iγ3γ5 − SP− G
γ0γ5 − i ±iγ0 + SP− H

jz = 1, I = 1, Iz = ±1
γ0γ1/2 ± iγ1/2γ5 +/+ k +γ0γ1/2 − γ1/2 −/+ SS I

γ2/1 +/+ k ±iγ2/1γ5 −/+ SP− I
γ0γ1/2 ∓ iγ1/2γ5 +/+ k +γ0γ1/2 + γ1/2 −/+ P−P− I

γ0γ1/2γ5 −/− l +γ0γ1/2γ5 +/− SP− J

Table 2.6: Twisted and physical quantum numbers for ud̄ and dū

2.7 Diagrams

For the numerical calculations of the BB̄ systems it is helpful to look at the possible diagrams of
the different correlation functions. In these diagrams the separation r along the z-axis is represented
in horizontal direction and the time t is developing in vertical direction. Unfilled circles describe
quarks whereas filled circles are meant to be antiquarks. The lines represent the propagators and as
before, the static quarks and antiquarks are labelled by Q and Q̄, respectively.

Since static quarks have fixed positions and therefore only propagate in time, they can just form
vertical lines. In contrast to that, the light quarks are not located at a fixed point and thus the
structure of the correlation function at time t can differ from that at time 0.

An example for such an “exchange” of the light quarks within the structure of the correlation
function, a so called cross diagram, can be seen in Figure 2.1(b), as well as a so called two meson
diagram (a).
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Q̄

(a)
u Q̄ d

Q̄ u Q̄ d

Q̄

(b)
d Q̄ u

Q̄ u Q̄ d

Figure 2.1: Two meson diagram (a) and cross diagram (b)

2.7.1 BB systems

The possible diagrams regarding a BB system are the two shown in Figure 2.1. Figure 2.2 shows
the possible diagrams for isospin I = 0 and Figure 2.3 those for I = 1 depending on the different
flavour combinations.

Q̄ u Q̄ d

Q̄ u Q̄ d
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Q̄ d Q̄ u

−

Q̄ d Q̄ u

Q̄ u Q̄ d

−

Q̄ u Q̄ d

Q̄ d Q̄ u

Figure 2.2: Diagrams for BB systems (I = 0)
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Q̄ u Q̄ u

Q̄ u Q̄ u

uu | dd +

Q̄ u Q̄ u

Q̄ u Q̄ u

Q̄ d Q̄ d

Q̄ d Q̄ d

+

Q̄ d Q̄ d

Q̄ d Q̄ d

Figure 2.3: Diagrams for BB systems (I = 1)
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2.7 Diagrams

As can be seen, regardless of the choice of the flavour combination, both diagrams, i.e. the two
meson diagram and the cross diagram, are possible and have to be computed.

2.7.2 BB̄ systems

Obviously, for BB̄ systems the cross diagram is not allowed. However, there are new diagrams, the
so called box diagrams, which are shown in Figure 2.4.

t

r

Q̄ u ū Q

Q̄ u ū Q

Q̄ d d̄ Q

Q̄ d d̄ Q

Figure 2.4: Box diagrams

These diagrams can be interpreted as the annihilation of the corresponding light quark and
antiquark.

Figure 2.5 and Figure 2.6 show the possible diagrams for BB̄ systems with I = 0 and I = 1,
respectively.

Q̄ u ū Q

Q̄ u ū Q

uū+ dd̄ +

Q̄ u ū Q

Q̄ u ū Q

uū+ dd̄

Q̄ d d̄ Q

Q̄ d d̄ Q

+

Q̄ d d̄ Q

Q̄ d d̄ Q

+

Q̄ u ū Q

Q̄ u ū Q

+

Q̄ d d̄ Q

Q̄ u ū Q

+

Q̄ d d̄ Q

Q̄ d d̄ Q

Q̄ u ū Q

Q̄ d d̄ Q

Figure 2.5: Diagrams for BB̄ systems (I = 0)
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Q̄ u ū Q

Q̄ u ū Q
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uū+ dd̄
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Q̄ u d̄ Q

Q̄ u d̄ Q

ud̄ | dū

Q̄ d ū Q

Q̄ d ū Q

Figure 2.6: Diagrams for BB̄ systems (I = 1)

A wide difference to the diagrams of BB systems is that for different light quark flavours only
the two meson diagram has to be considered. This means that by computing the two meson
diagram half of the potentials, i.e. all those with I = 1, can be calculated.5 Therefore and since
it was easier to implement into the initial code, we focused as a starting point on this type of
diagram.

5 The correlation functions of ud̄ and dū are related to those of uū− uū via isospin transformations.
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Technical realisation

3.1 Computation of the light quark propagator

Unlink the static quark propagators, which are based on the link variables, the computation of the
light quark propagators is very costly concerning computation time. Nevertheless, there are different
possibilities to compute light quark propagators, while in this work only stochastic timeslice sources
were used. This section is meant to show the basics of this method. Fore more information we refer
to [13, 14].

A stochastic timeslice source located at t̃ is defined by

ξ[t̃]aA(x) = δ(x0 − t̃)
(
± 1√

2
± 1√

2
i

)
, (3.1)

where the two “±”-signs are chosen independently, as well as the different entries on the timeslice t̃.
In our calculations, we used N = 6 different timeslice sources both for the u quark propagator and
for the d quark propagator at each timeslice t̃. They fulfil:

1
N

N∑
n=1

ξ[n, t̃]aA(x)
(
ξ[n, t̃]bB(y)

)∗
= δabδABδ(x0 − t̃)δ(y0 − t̃)δ(~x− ~y)

+ O
(
1/
√
N
)
off-diagonal noise

(3.2)

To obtain the light quark propagator D−1, we have to solve the following N linear systems for given
timeslice sources ξ:

Dab
AB(x; y)φ[n, t̃]bB(y) = ξ[n, t̃]aA(x) , n = 1, . . . , N (3.3)
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φ is the so called sink and D the Dirac matrix. This yields:

1
N

N∑
n=1

φ[n, t̃]aA(x)
(
ξ[n, t̃]bB(y)

)∗
= (D−1)acAC(x; z) 1

N

N∑
n=1

ξ[n, t̃]cC(z)
(
ξ[n, t̃]bB(y)

)∗
= (D−1)abAB(x; y) δ(y0 − t̃) + O

(
1/
√
N
)
off-diagonal noise

(3.4)

Hence, after generating the timeslice sources ξ and solving the linear equations (3.3), which yields
the sinks φ, we have an expression for the light quark propagator D−1.

3.2 Relation between the contractions and the correlation
functions

We are now able to compute the correlation functions, which are essential for the computation
of the potentials. In the following, we will distinguish between physical correlation functions C,
introduced in (2.9), and a more fundamental version of these correlation functions, which we will
call contractions C. These contractions C are easier to implement and can be related to the physical
correlation functions C.

Here is an example for the contraction C of the two meson diagram introduced in section 2.7:

C2meson(r, t)

= Γ(0)AB Γ(t)CD〈[
(φa,(α)
C (0, t))∗ Uab(0, t; 0, 0) ξb,(α)

A (0, 0)
][

(ξc,(β)
B (r, 0))∗ U cd(r, 0; r, t) φd,(β)

D (r, t)
]〉

=
(
(Γ(0)AB)∗ (Γ(t)CD)∗〈[

U ba(0, 0; 0, t) φa,(α)
C (0, t) (ξb,(α)

A (0, 0))∗
][
Udc(r, t; r, 0)

(
φ
d,(β)
D (r, t) (ξc,(β)

B (r, 0))∗
)∗]〉)∗

=
(
(Γ(0)AB)∗ (Γ(t)CD)∗〈[

U ba(0, 0; 0, t) (D−1)ab,(α)
CA (0, t; 0, 0)

][
Udc(r, t; r, 0)

(
(D−1)dc,(β)

DB (r, t; r, 0)
)∗]〉)∗

=
(
(Γ(0)AB)∗ (Γ(t)CD)∗〈[
U ba(0, 0; 0, t) (D−1)ab,(α)

CA (0, t; 0, 0)
][
Udc(r, t; r, 0)

(
(γ5(D−1)†γ5)dc,(β̃)

DB (r, t; r, 0)
)∗]〉)∗ = ...
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... =
(
(Γ(0)AB)∗ (ΓT (t)DC)∗〈[
U ba(0, 0; 0, t) (D−1)ab,(α)

CA (0, t; 0, 0)
][
Udc(r, t; r, 0) (γ5(D−1)γ5)cd,(β̃)

BD (r, 0; r, t)
]〉)∗

=
((

(Γ(0)γ5)AB
)∗ ((γ5ΓT (t))DC

)∗〈[
U ba(0, 0; 0, t) (D−1)ab,(α)

CA (0, t; 0, 0)
][
Udc(r, t; r, 0) (D−1)cd,(β̃)

BD (r, 0; r, t)
]〉)∗

=
((

(Γ(0)γ5)AB
)∗ ((γ5ΓT (t))DC

)∗〈
Trcol

[
U(0, 0; 0, t) (D−1)(α)

CA(0, t; 0, 0)
]
Trcol

[
U(r, t; r, 0) (D−1)(β̃)

BD(r, 0; r, t)
]〉)∗

(3.5)

As in subsection 2.3.3, Γ(t) denotes the Γ matrix within the operator O(t) and Γ(0) the Γ matrix
within the operatorO(0). There is of course no time dependence of the Γ matrices.

These contractions were computed for any of the 16×16 combinations of the two involved Γ matrices,
for each spatial direction x, y and z, both for positive and negative time direction, and for the four
different flavour combinations.

The comparison of (3.5) and (2.21) yields the relation between the computed contractions C and
the physical correlation functions C we are looking for:

• We have to use the computed contractions in negative time direction.

• C2meson(r, t) = −2(C2meson(r, t))∗

• The Γ matrices are related by:

◦ Γ(0)contr. code = γ0Γ(t)cor. func.γ0γ5

◦ Γ(t)contr. code = (Γ(0)cor. func.)∗γ5

• The second light quark flavour β exchanges due to the used twisted mass γ5-hermiticity. Since
we use the negative time direction, this is the flavour of the light quark and not the light
antiquark, which means uū↔ dū and ud̄↔ dd̄.

3.3 Symmetry checks and symmetry averaging

Symmetry checks are a very useful tool to affirm the computed results of the contractions. One
performs a symmetry transformation and creates rules to identify the contraction pairs, which are
connected via this symmetry transformation.
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The available symmetries are:

• Twisted mass time reversal

• Twisted mass parity

• Twisted mass γ5-hermiticity

• Charge conjugation

• Cubic π
2 -rotations around all spacial axes

• Cubic π-rotations around the x- and y-axis

In the following, we will show the procedure for the twisted mass time reversal in detail.

Performing a twisted mass time reversal transformation results in:

(
Γ(0)γ5

)∗
AB

(
γ5ΓT (t)

)∗
DC

ψαC(0, t) ψ̄αA(0, 0)ψβB(r, 0) ψ̄βD(r, t)
T(tm)
−→

(
Γ(0)γ5

)∗
AB

(
γ5ΓT (t)

)∗
DC

(γ0γ5)CV ψα̃V (0,−t) ψ̄α̃W (0, 0) (γ5γ0)WA (γ0γ5)BX ψβ̃X(r, 0) ψ̄β̃Y (r,−t) (γ5γ0)Y D

=
(
γ5γ0Γ(0)γ5γ0γ5

)∗
WX

(
γ5γ0γ5ΓT (t)γ0γ5

)∗
Y V

ψα̃V (0,−t) ψ̄α̃W (0, 0)ψβ̃X(r, 0) ψ̄β̃Y (r,−t)

=
(
γ5γ0Γ(0)γ0

)∗
AB

(
γ0ΓT (t)γ0γ5

)∗
DC

ψα̃C(0,−t) ψ̄α̃A(0, 0)ψβ̃B(r, 0) ψ̄β̃D(r,−t) (3.6)

This yields the following rules:

• We have to relate the contractions computed in positive time direction with those computed
in negative time direction.

• Both flavours exchange, i.e. ud̄↔ dū and uū↔ dd̄.

• The Γ matrices have to be transformed in the following way:

◦ (Γ(0)γ5)∗ → (γ5γ0Γ(0)γ0)∗

◦
(
γ5ΓT (t)

)∗
→
(
γ0Γ(t)Tγ0γ5

)∗
=⇒ We get an extra minus sign, if Γ(0) or Γ(t) ∈ {γ5, γ0, γ0γ3, γ3γ5, γ0γ1, γ1γ5, γ0γ2, γ2γ5}.

Figure 3.1 shows four examples for these general rules1. In each case we check the contractions
computed in positive time direction and light quark flavour combination dū (green/dark blue) against
those, which were computed in negative time direction with flavour combination ud̄ (pink/light
blue).

1 The simulation setup, including the ensemble E17.32, which was used in Figure 3.1, will be discussed in section 4.1.
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3.3 Symmetry checks and symmetry averaging

According to the above mentioned rules, the absolute value of these contractions should be equal
up to statistical fluctuations. Depending on the choice for Γ(0) and Γ(t) they have different
signs.

Obviously, choosing Γ(0) = Γ(t) should yield real and positive definite contractions C. A corre-
sponding example is given in Figure 3.1 (a), where Γ(0) = Γ(t) = 1 is chosen.

However, contractions with Γ(0) 6= Γ(t) can either be real or imaginary and do no longer have to be
positive definite. In (b) we replaced one of the identity matrices by γ0, which is one of the matrices
that cause an extra minus sign.

Figure 3.1 (c) and (d) show purely imaginary contractions, each for Γ(t) = γ0γ5. As expected,
combined with Γ(0) = 1 both contractions have the same sign and the choice Γ(0) = γ0 yields
different signs.
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Figure 3.1: Comparison of real and imaginary part of each two contrac-
tions Cflavour combination, Γ(0), Γ(t), time direction at R = 4a with regard to
twisted mass time reversal (lattice units)
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Any used contraction has been checked for each of the nine above mentioned symmetries, which
means that several thousand plots like the examples shown in Figure 3.1 were generated and
checked. Afterwards we averaged over the contractions that were related by one or more of these
symmetries.

This approach not only decreases the statistical errors, but also supports the credibility of the
numerical results in a large amount.
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Chapter 4

Numerical results

4.1 Lattice setup

In this work two different ensembles were used. In order to compare the results to those of the BB
potentials in [3–5], we started our computations with a very similar lattice setup, i.e. same lattice
extension and comparable lattice spacing a.1 The main difference is that we used Nf = 2 + 1 + 1
dynamical quark flavours instead of Nf = 2. Since s and c sea quarks are considered, this yields a
more realistic simulation, i.e. the systematic errors are reduced.

For the computations of the potentials with s and c quarks we then used a finer lattice to get a
higher resolution at short distances. Otherwise, especially considering c quarks, there would have
been too few non-vanishing values to get a good fit for the potentials. An ensemble with the required
fine lattice spacing was not existent for Nf = 2 + 1 + 1 and therefore we were in this case restricted
to Nf = 2.

The two used ensembles with their relevant parameters are shown in Table 4.1.

Ensemble Nf β (L/a)3 × (T/a) κ aµl aµσ aµδ

A40.24 2+1+1 1.9 243 × 48 0.16327 0.004 0.15 0.19
E17.32 2 4.35 323 × 64 0.15174 0.00175 - -

Table 4.1: Parameters of the used ensembles

L and T correspond to the lattice extensions in space and time, respectively, while µl, µσ and µδ are

1 All computations were performed in units of the lattice spacing a. For a better understanding we present some
results in physical units (fm, MeV). For the transformation we used a = 0.086 fm for ensemble A40.24 and
a = 0.042 fm for ensemble E17.32 (cf. [15, 16] for more information about the ensembles).
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the twisted mass parameters of the sea quarks. Furthermore, the hopping parameter κ is connected
to the untwisted quark mass mq, introduced in (2.2), in the following way [6]:

κ = 1
2(amq + 4) (4.1)

For each computed potential we used about 100 gauge field configurations and the twisted quark
mass values µq (cf. (2.2) and (2.3)) listed in Table 4.2.

flavour A40.24 E17.32

µs - 0.0115
µc 0.27678 0.1320

Table 4.2: Twisted quark mass values µq used for the different ensembles

4.2 Q̄Q̄ potentials

This section shows the numerical results of potentials between two mesons in different channels. The
mesons are both built up from a static antiquark and a quark of finite mass. We will consider s and
c quarks and compare the potentials with existing results for light quarks.

To improve the signal quality we applied APE and Gaussian smearing. In addition, all computations
are both done with the HYP2 static action, which yields an enhanced signal to noise ratio, and
without using HYP2 smeared links, just as done in [3]. This is because ultraviolet fluctuations are
relevant especially for small separations (i.e. R . 2a) and are filtered out by using the HYP2 static
action. For more information concerning these smearing techniques cf. [17].

To be able to unite the two results, the potentials have to be normalised. Since we know the
asymptotic behaviour of the potentials out of their static-light meson content (cf. section 2.5), we
computed the corresponding meson masses, also with and without HYP2 smeared links, and used
them for normalisation.

In order to plug in the potentials into the Schrödinger equation (cf. section 4.3) to find a bound
state, we have to fit a continuous function to the lattice results. We are proceeding analogous to [5],
where the following ansatz is used:

V (r) = −α
r

exp
[
−
(
r

d

)p ]
(4.2)
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4.2 Q̄Q̄ potentials

In this work we are using a two parameter fit (α,d) to determine the respective potentials. Due to
the considerations made in [5], the value of p is set for all concerning calculations each to 1.0, 1.5
and 2.0.

During the creation of this work the potentials to all quantum numbers listed in Appendix A
were computed both for s and for c quarks. The qualitative behaviour of these potentials, i.e.
repulsive (rep) or attractive (att), does not depend on the quark mass and can be taken from the
tables shown in Appendix A as well.

In order to compare the results with [5], we are only focussing in detail on the two most at-
tractive channels, the scalar isosinglet and the vector isotriplet. The corresponding creation
operators for the scalar isosinglet entails Γ(ppb) = γ5 + γ0γ5 with light quark flavour combination
ud− du.

The vector isotriplet can be described by the creation operator entailing Γ(ppb) = γ0γ3 + γ3 and
light quark flavour combination ud+ du. The degenerate isospin partners with light quark flavour
combination ud/du yield the same quantum numbers and thus we included the corresponding results
into those we used for the fitting procedure.

4.2.1 Charm quarks

A meson consisting of a static antiquark and a charm quark corresponds to a so called Bc meson,
which is built up from an b̄ and a c quark. Hence, the following potentials are called BcBc

potentials.

Regarding (2.9) and (2.10), it is important to fit the mass plateaus at large times T . However, this
is not always possible, since the statistical errors increase at high values of T , which restricts the
fitting range significantly.

Nevertheless, the signal for the meson masses was rather precise, so we were able to determine the
meson masses at a comparatively high precision. But this was not the case for the BcBc potentials,
especially not for the results without HYP2 smearing.

We performed the fits for the mass plateaus of the potentials at the same time span for the HYP2
smeared and the unsmeared results, which was the largest possible range for the unsmeared results.
Performing the plateau fits for the meson masses at that time span yielded values for the χ2-error
of over 150 and thus, we performed the fits for the meson masses at larger ranges. Subtracting
two times the corresponding Bc meson mass (each with and without HYP2 smearing, respectively)
should set the plateau, which the potentials approach, to 0. Regarding Figure 4.1, this is obviously
not the case.
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Figure 4.1: BcBc potentials for the scalar isosinglet (a) and the vector
isotriplet (b) both with and without HYP smearing (not adjusted)

The reason for the too high potential values is the fact that the effective masses within the potentials
do not reach the mass plateaus for this short time range and thus higher excitations are sizeable
included. In addition, as mentioned above, we used a larger time span for the plateau fits for the
meson masses, which also increases the discrepancy. However, we were able to fit the effective
masses within the potentials at larger time ranges for the HYP2 smeared results, which lowers the
values of the corresponding potentials to the expected value of two times the meson mass within
the range of the statistical errors.

Nevertheless, there is also an alternative strategy. Assuming the same behaviour for the potential
using the unsmeared links, we adjusted the appropriate normalisation constant so that the potential
values match at R = 3a. Furthermore, we shifted the plateaus, which the potentials approach, to
the corresponding value of 2m(S). This is shown in Figure 4.2.
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Figure 4.2: BcBc potentials for the scalar isosinglet (a) and the vector
isotriplet (b) both with and without HYP smearing (adjusted)
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4.2 Q̄Q̄ potentials

Applying the ansatz (4.2) with p = 2.0 to the lattice results shown in Figure 4.2 yields the continuous
potential V (r), which is presented in Figure 4.3. The potential fits for the p-values 1.0 and 1.5 can
be taken from Appendix B.

2m(S) - 2.0

2m(S) - 1.5

2m(S) - 1.0

2m(S) - 0.5

2m(S)

 0  0.05  0.1  0.15  0.2  0.25  0.3

V
 [

G
e
V

]

R [fm]

(a) scalar isosinglet

α = 0.227 ± 0.069, d/a = 2.554 ± 0.364   (p = 2.0 fixed)

2m(S) - 2.0

2m(S) - 1.5

2m(S) - 1.0

2m(S) - 0.5

2m(S)

 0  0.05  0.1  0.15  0.2  0.25  0.3

V
 [

G
e
V

]

R [fm]

(b) vector isotriplet

α = 0.195 ± 0.055, d/a = 2.366 ± 0.259   (p = 2.0 fixed)

Figure 4.3: Fitted BcBc potentials for the scalar isosinglet (a) and the
vector isotriplet (b) with p = 2.0 fixed (red points not included into
the fit)

4.2.2 Strange quarks

Analogous to the previous subsection, the potential between two mesons, each consisting of a static
antiquark and a strange quark, corresponds to the potential between twoBs mesons.

Using strange quarks involves higher statistical errors compared to the previous computations with
charm quarks, since the strange quark mass is considerably smaller than the charm quarks mass.
The statistical errors of the potential values at R = 3a for the results without HYP2 smearing were
so large that they were unusable. Thus, we already matched the potentials at R = 2a and used the
potential values of the results with HYP2 smeared links for R ≥ 3a.

The adjusted potentials for the scalar isosinglet and the vector isotriplet are presented in Figure 4.4
and the corresponding potential fits according to (4.2) are shown in Figure 4.5.
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Figure 4.4: BsBs potentials for the scalar isosinglet (a) and the vector
isotriplet (b) both with and without HYP smearing (adjusted)
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Figure 4.5: Fitted BsBs potentials for the scalar isosinglet (a) and the
vector isotriplet (b) with p = 2.0 fixed (red points not included into
the fit)

As mentioned in the beginning of this section, we only included the degenerate isospin partners
of the vector isotriplet into the fitted potentials (Figure 4.5) but not into the potentials shown in
Figure 4.4. This leads to small fluctuations of the potential values, but within the respective error
margins.

4.2.3 Comparison with light quarks

To compare the results for the considered s and c quarks, the different potentials are plotted with
the results taken from [5] for light quarks in Figure 4.6.
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Figure 4.6: Comparison between the Q̄Q̄ potentials for the different
considered quarks (without error bars)

The results for the light quarks were transformed into physical units by setting the lattice spacing
to a = 0.079 fm, like proposed in [5].

As expected, the potential gets more narrow, if the quark mass increases. It is noticeable that in (a)
the potential for strange quarks is closer to that for charm quarks and in (b) it is closer to that for
light quarks. Nevertheless, this is within the error margin, which is not shown in Figure 4.6 for
reasons of clarity, but can be seen in Figure 4.3 and Figure 4.5.

4.3 Numerical solution of the Schrödinger equation

In this section we will solve the Schrödinger equation numerically in order to find out whether
there is an indication for a bound BcBc/BsBs state, i.e. a tetraquark, or not. We are proceeding
analogous to [5].

Obviously, if the two antiquarks Q̄, which are treated in the static limit, were infinitely heavy, they
would form an arbitrary large binding energy in all attractive channels. Nevertheless, they have a
finite mass so the binding is questionable. To see if there is a bound tetraquark state we solve the
s-wave radial part of the Schrödinger equation for the fitted potentials V (r), i.e.[

− ~
2µ

d2

dr2 + 2mM + V (r)
]
R(r) = ER(r) , (4.3)

with the wave function ψ(r) = R(r)
r and the meson mass mM ∈ {mBs ,mBc}. The reduced quark

mass µ is both set to mM
2 and mb

2 , where mb is the mass of a bottom quark. This is because each
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heavy antiquark carries for small separations only the bottom quark mass, but for large separations
the mass of the respective meson. The used mass values are listed in Table 4.3.

mb mBs mBc

4977 MeV 5367 MeV 6277 MeV

Table 4.3: Values for the different quark and meson masses used in this
work (cf. [2, 18])

Solving the Schrödinger equation (4.3) yields neither a bound state for charm quarks nor for strange
quarks. In order to be able to better assess this result, we determined how far we would have to
increase the inserted masses listed in Table 4.3 to reach binding.

For the potentials with c quarks the inserted mass should be & 10mBc for the scalar isosinglet and
even larger for the vector isotriplet. Concerning s quarks, the inserted mass should be & 1.7mBs for
both channels.

This indicates that it is extremely improbable to find a bound BcBc state, i.e. a bbc̄c̄ tetraquark.
For the case with s quarks, it also seems evidenced that even bearing in mind the systematic errors
arising during the potential normalisation (cf. subsection 4.2.2) there is no indication for a bound
BsBs state, i.e. a bbs̄s̄ tetraquark.

These results clearly indicate that increasing the quark mass decreases the chance of finding a bound
tetraquark state. Hence, the effect that the potential becomes more narrow outweighs the fact that
heavier constituents do easier form a bound state.

4.4 Q̄Q potentials

This section shows the first results of the computations done for the potential between a meson
consisting of a static antiquark Q̄ and a quark of finite mass and another meson which is made of a
static quark Q and an antiquark of finite mass.

4.4.1 Charm quarks

Since this is meant to be a first test and we want to focus on the qualitative behaviour of the
potentials, i.e. see if the potentials are attractive or repulsive, we used the smaller lattice A40.24
(c.f. Table 4.1) and charm quarks to reduce the computation time. This means that the following
potentials correspond to the potentials between a Bc and a B̄c meson. In addition, the results are
presented in units of the lattice spacing a.

38



4.4 Q̄Q potentials

SS

1.64

1.66

1.68

1.70

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = γ5 - γ0γ5

1.64

1.66

1.68

1.70

 0  1  2  3  4  5  6
V

a

R/a

Γ
(ppb)

 = γ0γ3 - γ3

1.64

1.66

1.68

1.70

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = γ0γ1/2 - γ1/2

P−P−

1.70

1.80

1.90

2.00

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = γ5 + γ0γ5

1.70

1.80

1.90

2.00

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = γ0γ3 + γ3

1.70

1.80

1.90

2.00

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = γ0γ1/2 + γ1/2

SP−

1.70

1.75

1.80

1.85

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = γ0γ3γ5

1.70

1.75

1.80

1.85

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = 1

1.70

1.75

1.80

1.85

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = iγ3γ5

1.70

1.75

1.80

1.85

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = iγ0

1.70

1.75

1.80

1.85

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = iγ2/1γ5

1.70

1.75

1.80

1.85

 0  1  2  3  4  5  6

V
a

R/a

Γ
(ppb)

 = γ0γ1/2γ5

Figure 4.7: BcB̄c potentials with light flavour combination ud̄ (i.e.
I = 1) sorted by their meson content for the different Γ matrices with
corresponding quantum numbers listed in Table 2.6 (lattice units)
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In accordance to the previous considerations in section 2.5 the potentials pictured in Figure 4.7
saturate at three different levels. The potentials shown in the first row saturate at the smallest
value of V a ≈ 1.7, which is in the range of two times the mass of the lightest static-charm meson
state S (cf. Figure 4.8, which shows two effective mass plots with appropriate plateau fits for the
static-light meson states S and P−).

The potentials shown in the second row of Figure 4.7 saturate at the highest level of V a ≈ 2.0. This
value is in the range of the static-charm meson mass of the excited P− state and thus again compatible
with the preliminary consideration concerning the meson content in section 2.5.

The meson content of the six potentials at the bottom of Figure 4.7 is a combination of S and P−
static-charm mesons. Hence, they should saturate at approximately m(S) +m(P−), which is also
fulfilled.
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Figure 4.8: Effective masses of static-charm mesons and the correspond-
ing mass plateau fits for ensemble A40.24 (lattice units)

4.4.2 Comparison with BcBc

The most crucial outcome of the studies concerning BcB̄c potentials is the fact that all potentials
are attractive. Regarding BcBc systems, both attractive and repulsive potentials occurred (cf.
subsection 4.2.1 and Figure 4.9, respectively).
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4.4 Q̄Q potentials

Although, we only checked this statement for half of the potentials, i.e. for those with I = 1, this
seems to hold for I = 0 as well. The reason for this is the fact that changing only one of the
quantum numbers like flavour, spin or parity, flips the potential from attractive to repulsive and
vice versa in the case of BB. Since we are considering all quantum numbers in the I = 1 channel,
this rule is for BB̄ not valid and therefore there is no indication for repulsive potentials in the I = 0
channel.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0  1  2  3  4  5  6  7  8

V
a

R/a

ud-du,  Γ = γ0γ3+γ3,  jz = 0,  I = 0,  P = +,  Px = −

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0  1  2  3  4  5  6  7  8

V
a

R/a

ud+du,  Γ = γ5+γ0γ5,  jz = 0,  I = 1,  Iz = 0,  P = +,  Px = +

Figure 4.9: Two examples for repulsive BcBc potentials (lattice units)

A possible explanation from a more phenomenological point of view is given in [19], where the
argumentation is mainly based on the Pauli principle. Starting from colour singlets Bc, the colour
wave function of the two indistinguishable antiquarks b̄ within the BcBc system is either in a triplet,
which is attractive, or an anti-sextet, which is repulsive. For BcB̄c, again starting form colour
singlets Bc/B̄c, the colour wave function of the bb̄ pair can either be in a singlet, which is attractive,
or in an octet, which is repulsive.

The difference is, that due to the Pauli principle and conservation of the initial quantum numbers,
there are specific channels for BcBc where only the repulsive anti-sextet can be achieved. This leads
to repulsive potentials as shown in Figure 4.9. However, for BcB̄c the ground state is always a
singlet, which yields attractive potentials (cf. Figure 4.7).
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Chapter 5

Conclusion

5.1 Summary

In this work we expanded the investigations of [3–5], where the potentials between two static-light
mesons were studied, i.e. Q̄Q̄ potentials, in two ways:

• We computed the Q̄Q̄ potentials both for charm and for strange quarks in order to analyse
the behaviour of the potentials depending on the quark mass and to check if there are also
indications for a bound tetraquark state.

• We took initial steps towards extending the Q̄Q̄ investigations to the experimentally more
interesting case of Q̄Q.

The results for the Q̄Q̄ potentials clearly indicate that there are no bound b̄b̄ss and b̄b̄cc tetraquark
states. Another outcome concerning these Q̄Q̄ investigations is that increasing the quark mass
decreases the chance of finding a bound tetraquark state.

The investigations of the Q̄Q systems yielded remarkable results regarding the qualitative be-
haviour of the different potentials. In contrast to the Q̄Q̄ potentials, the Q̄Q potentials are all
attractive.

5.2 Oulook

With the results of this work and those of [3–5] the investigations of Q̄Q̄ potentials seem to be
completed. However, e.g. the continuum limit and lighter quark masses could be considered. In
addition, an improvement could of course be made by reducing the statistical errors. This can be
done by increasing the number of the inversions per gauge field configuration, the size of the lattice
or by just using more gauge field configurations.
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Chapter 5: Conclusion

The investigations of the Q̄Q systems should be extended as a next step by means of the missing box
diagrams to compute the remaining half of the problem, i.e. the potentials for I = 0. Furthermore,
strange and light quarks could be considered.

An additional step would be the computation of the existing potentials with reduced statistical
errors in the same way as mentioned above, so that a sensible potential fit can be performed.
Afterwards one could check if there are indications for a bound tetraquark state, as was done for
the Q̄Q̄ systems.
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Appendix A

BB systems

A.1 Quantum numbers

In the following, the different quantum numbers for BB systems are listed in two tables. Table A.1
shows those for the flavour combination uu/dd and Table A.2 those for the flavour combination ud±du.
A respective detailed discussion is made for BB̄ systems in section 2.6.

Γ
(
uu
dd

)
tb P(tm) sec. Γ

(
uu
dd

)
ppb P, Px type mult.

jz = 0, I = 1, Iz = ±1
γ3 ± iγ0γ3γ5 + i +γ3 + γ0γ3 −, − att SS E

γ5 + i ∓i −, − rep SP− E
γ3 ∓ iγ0γ3γ5 + i +γ3 − γ0γ3 −, − att P−P− E
γ0γ5 ± i + i +γ0γ5 + γ5 +, + rep SS F
γ0γ3 + i ∓iγ0γ3γ5 +, + att SP− F

γ0γ5 ∓ i + i +γ0γ5 − γ5 +, + rep P−P− F
γ0 − j +γ0 +, − att SP− G
γ3γ5 − j +γ3γ5 −, + rep SP− H

jz = 1, I = 1, Iz = ±1
γ1/2 ± iγ0γ1/2γ5 −/+ k/l +γ1/2 + γ0γ1/2 −, +/− att SS K

γ2/1γ5 −/+ k/l +γ2/1γ5 −, +/− rep SP− K
γ1/2 ∓ iγ0γ1/2γ5 −/+ k/l +γ1/2 − γ0γ1/2 −, +/− att P−P− K

γ0γ1/2 −/+ k/l ∓iγ0γ1/2γ5 +, −/+ att SP− L

Table A.1: Twisted and physical quantum numbers for uu/dd (taken
from [20])
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Γ(ud±du) tb P(tm), P
(tm)
x sec. Γ(ud±du) ppb P, Px type mult.

jz = 0, I = 0

γ
(−)
5 − iγ(+)

0 +, − a (+γ5 + γ0γ5)(−) −, + att SS A
γ0γ3γ

(−)
5 +, − a +γ0γ3γ

(−)
5 −, + rep SP− A

γ
(−)
5 + iγ

(+)
0 +, − a (+γ5 − γ0γ5)(−) −, + att P−P− A

γ0γ
(−)
3 − iγ3γ

(+)
5 −, + b (+γ0γ3 + γ3)(−) +, − rep SS B

1(−) −, + b +1(−) +, − att SP− B
γ0γ

(−)
3 + iγ3γ

(+)
5 −, + b (+γ0γ3 − γ3)(−) +, − rep P−P− B

γ
(+)
3 −, − c +iγ3γ

(−)
5 +, + att SP− C

γ0γ
(+)
5 +, + d +iγ(−)

0 −, − rep SP− D

jz = 0, I = 1, Iz = 0

γ0γ
(+)
3 − iγ3γ

(−)
5 −, − c (+γ0γ3 + γ3)(+) −, − att SS E

1(+) −, − c +1(+) −, − rep SP− E
γ0γ

(+)
3 + iγ3γ

(−)
5 −, − c (+γ0γ3 − γ3)(+) −, − att P−P− E

γ
(+)
5 − iγ(−)

0 +, + d (+γ5 + γ0γ5)(+) +, + rep SS F
γ0γ3γ

(+)
5 +, + d +γ0γ3γ

(+)
5 +, + att SP− F

γ
(+)
5 + iγ

(−)
0 +, + d (+γ5 − γ0γ5)(+) +, + rep P−P− F

γ0γ
(−)
5 +, − a +iγ(+)

0 +, − att SP− G

γ
(−)
3 −, + b +iγ3γ

(+)
5 −, + rep SP− H

jz = 1, I = 0

γ0γ
(−)
1/2 − iγ1/2γ

(+)
5 −, −/+ e/f (+γ0γ1/2 + γ1/2)(−) +, +/− rep SS I

γ
(+)
2/1 −, −/+ e/f +iγ2/1γ

(−)
5 +, +/− att SP− I

γ0γ
(−)
1/2 + iγ1/2γ

(+)
5 −, −/+ e/f (+γ0γ1/2 − γ1/2)(−) +, +/− rep P−P− I

γ0γ1/2γ
(−)
5 +, +/− g/h γ0γ1/2γ

(−)
5 −, −/+ rep SP− J

jz = 1, I = 1, Iz = 0

γ0γ
(+)
1/2 − iγ1/2γ

(−)
5 −, +/− f/e (+γ0γ1/2 + γ1/2)(+) −, +/− att SS K

γ
(−)
2/1 −, +/− f/e +iγ2/1γ

(+)
5 −, +/− rep SP− K

γ0γ
(+)
1/2 + iγ1/2γ

(−)
5 −, +/− f/e (+γ0γ1/2 − γ1/2)(+) −, +/− att P−P− K

γ0γ1/2γ
(+)
5 +, −/+ h/g γ0γ1/2γ

(+)
5 +, −/+ att SP− L

Table A.2: Twisted and physical quantum numbers for ud± du (taken
from [20])
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A.2 Meson content

Table A.3 shows the meson content of a BB system depending on the Γ choice. More information
about the meson content in the case ofBB̄ systems can be taken from section 2.5.

Γ (pseudo) physical meson content
γ5 −S↑S↓ + S↓S↑ − P↑P↓ + P↓P↑
γ0γ5 −S↑S↓ + S↓S↑ + P↑P↓ − P↓P↑

1 −S↑P↓ + S↓P↑ − P↑S↓ + P↓S↑
γ0 −S↑P↓ + S↓P↑ + P↑S↓ − P↓S↑
γ3 −iS↑S↓ − iS↓S↑ + iP↑P↓ + iP↓P↑
γ0γ3 −iS↑S↓ − iS↓S↑ − iP↑P↓ − iP↓P↑
γ3γ5 −iS↑P↓ − iS↓P↑ + iP↑S↓ + iP↓S↑
γ0γ3γ5 −iS↑P↓ − iS↓P↑ − iP↑S↓ − iP↓S↑
γ1 +iS↑S↑ − iS↓S↓ − iP↑P↑ + iP↓P↓
γ0γ1 +iS↑S↑ − iS↓S↓ + iP↑P↑ − iP↓P↓
γ1γ5 +iS↑P↑ − iS↓P↓ − iP↑S↑ + iP↓S↓
γ0γ1γ5 +iS↑P↑ − iS↓P↓ + iP↑S↑ − iP↓S↓
γ2 −S↑S↑ − S↓S↓ + P↑P↑ + P↓P↓
γ0γ2 −S↑S↑ − S↓S↓ − P↑P↑ − P↓P↓
γ2γ5 −S↑P↑ − S↓P↓ + P↑S↑ + P↓S↓
γ0γ2γ5 −S↑P↑ − S↓P↓ − P↑S↑ − P↓S↓

Table A.3: Relation between Γ in the (pseudo) physical basis and the
static-light meson content (taken from [20])
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Q̄Q̄ potentials

B.1 BcBc
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Figure B.1: Fitted BcBc potentials for the scalar isosinglet (a) and
the vector isotriplet (b) with fixed p-values 1.0 and 1.5 (red points not
included into the fit), cf. subsection 4.2.1
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B.2 BsBs
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Figure B.2: Fitted BsBs potentials for the scalar isosinglet (a) and
the vector isotriplet (b) with fixed p-values 1.0 and 1.5 (red points not
included into the fit), cf. subsection 4.2.2
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