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Abstract

This work deals with the efficiency of different methods for computing correlation
functions of bound states in twisted mass lattice QCD with Nf = 2 flavors of sea-
quarks. In particular, the focus will be on pseudo-scalar and scalar meson correlators
as well as correlation functions generated by a four-quark operator. The main part
of this thesis will be the comparison of three methods used to compute the quark
propagator, namely the point-source method, the stochastic-source method and the
one-end trick. All possible combinations of three valence quark masses which cor-
responds to light, strange and charmed mesons will be studied. For the four-quark
study, the focus of this work will be on four-quark operators with the same quantum
numbers as the D∗

s0 and a0(980) mesons. This work shows results for the connected
part of their correlator as well as presents and compares methods to compute the
singly disconnected part.



Zusammenfassung

In dieser Arbeit wird die Effektivität verschiedener Methoden für die Berechnung von
Korrelationsfunktionen gebundener Zustände in ,,Twisted mass lattice QCD“ unter-
sucht. Dies beinhaltet sowohl die Korrelationsfunktionen von pseudoskalaren und
skalaren Mesonen als auch Korrelationsfunktionen die mit Vier-Quark-Operatoren
berechnet werden. Eine Großteil dieser Arbeit beschäftigt sich mit dem Vergleich
von drei Methoden, die zur Berechnung des Quark-Propagators verwendet werden:
die Punkt-Quellen-Methode, die Stochastische-Quellen-Methode und der One-End-
Trick. Es werden alle möglichen Kombinationen von drei Valenzquarkmassen unter-
sucht, was Mesonen mit leichten, Strange- und Charm-Quarks entspricht. Für die
Vier-Quark-Korrelatoren wird sich diese Arbeit auf Operatoren konzentrieren, die
die gleichen Quantenzahlen wie die D∗

s0- und a0(980)- Mesonen haben. Es werden
verbundene Korrelatoren berechnet und Methoden für die Berechnung von einfach
unverbundenen Korrelatoren eingeführt und verglichen.
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1 Introduction

A meson is a bound state of one quark and one antiquark. In experiments, around
175 meson states have been discovered. In the theory, quark models (e.g. [1][2]) and
lattice calculations (e.g. [3][4]) are able to compute the spectrum and predict further
states in addition to the states measured in experiments. While pseudo-scalar and
vector mesons are easy to identify in experiments, the identification of scalar states
still remains to be a problem [5]. This is due to a large decay width of those states
and also, one expects exotic states like glue-balls and multi-quark states to appear
in this sector.

On the lattice, pseudo-scalar mesons are relatively easy to compute, due to low sta-
tistical fluctuations and are often used to set the scale [6] or tune mass parameters
[7]. Scalar mesons and excited states in general are harder to compute, due to large
statistical fluctuations. In twisted mass QCD, which is an O(a) improved action, and
used in many projects of the European Twisted Mass Collaboration, including spec-
troscopy [7][8][9], an additional problem occurs: Because of the symmetry breaking
of the action, the correlator of an exited state cannot be computed independently,
because a mixing between excited states and ground states occurs.

However, the spectroscopy of scalar mesons on the lattice is an important issue,
because in combination with the experiment it can give information about the nature
of scalar mesons. For the D∗

s0 state, for example, a significant discrepancy between
lattice computations and the experiment has been observed [10]. This is one of the
reasons why the D∗

s0 and other scalar mesons, such as the a0(980), are presumed
to have four-quark components. A four-quark state is a hypothetical bound state
consisting of two quarks and two antiquarks. The fact that scalar mesons can have
four-quark components is an additional reason why they are challenging to compute.

The spectrum of states excited by four-quark operators can be computed on the
lattice, but due to the mixing with lighter states and the number of possible diagrams,
these studies are difficult to perform. While early lattice studies were performed
with static quarks [11], in recent studies with dynamical quarks only the connected
diagrams for these states were considered [12].

When computing the meson or four-quark spectrum on given gauge field configu-
rations, most of the computation time has to be invested in computing the quark
propagator. Therefore, applying an efficient method to compute these propagators is
an important issue. However, up to now, there are only a few quantitative studies of
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different methods for the computation of propagators, e.g. in [13]. A major part of
this work will be the examination of three basic methods to compute the propagator
in meson correlation functions:

• Using point sources,

• Using stochastic sources [14] [15],

• Reduced stochastic sources (the one-end trick) [16] [17].

I study the spectrum of scalar and pseudo-scalar mesons and use different valence
quark masses in order to examine light, strange and charmed mesons. In addition,
the efficiency of other spectroscopy methods, such as spin dilution and local smearing
techniques, will be studied. Besides a numerical comparison of these techniques, this
work will try to qualitatively understand properties of some methods, for example
the magnitude of the stochastic noise or the increase of the noise-to-signal ratio for
large temporal separations.

For the spectrum of states excited by four-quark operators, I will study candidates
which have two types of diagrams in the correlation function, namely connected di-
agrams, where all four propagators connect two different points in time as well as
singly disconnected diagrams, where two propagators form closed loops. The focus
of this work will be on the singly disconnected diagrams. One needs complicated
methods to compute them and they are suspected to have large statistical fluctua-
tions. I will present two possible methods to compute these diagrams and compare
the results in order to find a preferable method. I will use this method to compute
singly disconnected diagrams of the a0(980) and the D∗

s0 four-quark operators and
will compare the results to the correlators of the connected diagrams. Due to the
observation of an unexpected mixing with significantly light states in the correlation
function, the symmetries of the four-quark operator will be studied. I will show that
the initial operator is not an optimal operator and will propose an improved operator
which could avoid a mixing with very light mesonic states like the pion.

I would like to start in section two with giving a short introduction into lattice QCD
and spectroscopy of bound states. Section three will deal with the construction and
computation of meson correlators, followed by section four where results for meson
correlators will be presented and studied. In the second part of this work, section five
shows how a four-quark correlator is constructed and can be computed. In section six
results for the four-quark correlators will be shown and discussed. Lastly, in section
seven I will summarize my results and give an outlook over further possible studies.
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2 Basic Principles

2.1 Twisted mass lattice QCD

This work will not give a detailed introduction into lattice QCD. Instead the basic
equations will be listed and I will focus on the extraction of masses on the lattice. A
proper introduction into lattice QCD can be found in [18].

In my work I used Nf = 2 gauge configurations generated by the European Twisted
Mass Collaboration (ETMC), which have already been used for several hadron spec-
trum computations (e.g. in [8, 9, 19]). The gauge action is the tree-level Symanzik
improved gauge action

SG[U ] =
β

3

∑
x

(
b0
∑
µ<ν

{1− Re Tr(U1×1
x,µ,ν)}+ b1

∑
µ,ν

{1− Re Tr(U1×2
x,µ,ν)}

)
(2.1)

where β = 6/g20, b1 = −1/12 and b0 = 1 − 8b1. U
1×1
x,µ,ν is the plaquette term, U1×2

x,µ,ν

a rectangular Wilson loop. As the fermionic action I used the Wilson twisted mass
action (cf. [20] and references therein)

SF [χ, χ̄, U ] = a4
∑
x

χ̄ (DW +m+ iµγ5τ3)χ (2.2)

with DW , the Wilson-Dirac operator, defined as

DW =
γµ
2
(∇µ +∇∗

µ) +
ar

2
∇µ∇∗

µ (2.3)

Here, ∇µ and ∇∗
µ are the forward and backward covariant derivatives on the lattice.

∇µψ(x) =
1

a
(U(x, µ)ψ(x+ aµ)− ψ(x)) (2.4)

∇∗
µψ(x) =

1

a

(
ψ(x)− U †(x− aµ, µ)ψ(x− aµ)

)
(2.5)

For the computation I use the twisted mass formalism in order to achieve an O(a)
improvement. Instead of single flavor quark fields this action uses mass degenerated
flavor doublets χ. The operator in the physical basis ψ = (ψu, ψd) can now be
obtained by applying a twist rotation to the spinors in the twisted basis and vice
versa. In the continuum this rotation is given as:

ψ = exp (iωγ5τ3/2)χ, ψ̄ = χ̄ exp (iωγ5τ3/2) (2.6)
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χ and χ̄ are the spinors in the twisted basis, ψ and ψ̄ in the physical basis. The τ ’s
are the Pauli matrices acting in flavor space.

The twist angle ω satisfies the relation:

tanω =
µR

mR
(2.7)

where µR and mR are renormalized masses. At maximal twist, the twist angle is
ω = π/2.

2.2 Extracting masses on the lattice

On the lattice, expectation values of operators are computed via

〈Ω|O(t1)O(t0)|Ω〉 =
1

N

∫
DχDχ̄DU O(t1)O(t0)e

−SE [χ,χ̄,U ] (2.8)

N =

∫
DχDχ̄DU e−SE [χ,χ̄,U ] (2.9)

where SE[χ, χ̄, U ] = SF [χ, χ̄, U ] + SG[U ] is the Euclidean action of the system.

After analytically integrating out the fermionic fields, the path integral only de-
pends on the gauge fields U . The integral can now be computed numerically by
using a hybrid Monte Carlo algorithm to generate representative sets of gauge field
configurations. Expectation values of operators can then be computed as means of
observables on these configurations.

Masses of eigenstates of the Hamiltonian can be extracted by computing a suitable
two-point or so-called correlation function:

C(t1) = 〈Ω|O(t1)O†(t0)|Ω〉 =
∑
n

|〈n|O|Ω〉|2e−(En−EΩ)∆t, ∆t = t1 − t0 (2.10)

Here, |Ω〉 represents the vacuum state and EΩ represents the vacuum energy.

By taking the limit ∆t → ∞, only the sum with the smallest energy gap En − EΩ

will remain.

lim
∆t→∞

〈Ω|O(t1)O†(t0)|Ω〉 = |〈1|O|Ω〉|2 e−(E1−EΩ)∆t (2.11)
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E1 is the energy of lowest non-trivial state of the system. However, in spectroscopy
one is interested in the energy gap E1 − EΩ, which is the mass of this state, so
subsequently I will denote it Ẽ1 = E1 − EΩ.

Now the so-called effective mass is introduced:

meff = ln
〈Ω|O(t1)O†(t0)|Ω〉

〈Ω|O(t1 + 1)O†(t0)|Ω〉
= En − EΩ (2.12)

For large ∆t, the effective mass will converge to the mass of the ground state.

lim
∆t→∞

ln
〈Ω|O(t1)O†(t0)|Ω〉

〈Ω|O(t1 + 1)O†(t0)|Ω〉
= Ẽ1 (2.13)

However, when computing the meson spectrum, this definition of the effective mass
is only approximate. Due to the periodic boundary conditions in time, the meson can
propagate forwards and backwards in time. Thus, the correlation function cannot
be described by a single exponential function. Instead it has to be described by a
sum of two exponential functions which here is a hyperbolic cosine.

Note that one will only find a non-vanishing correlation function if 〈1|O|Ω〉 6= 0, i.e.
the states O|Ω〉 and |1〉 overlap. Thus, if a suitable operator O can be found, one
can extract the energy of the ground state, which has the same quantum number as
the operator O.

2.3 Notation

In this work I would like to stick to the following conventions: Color indices are
denoted by lower indices a, b, c... = 1, 2, 3 and spin indices are denoted by lower
Greek indices α, β, γ... = 1, ..., 4. Sometimes I will use a spin and color super index
denoted by a lower capital index A,B,C... = 1, ..., 12. I will only use these indices if
they are necessary.

The quark flavor will be given as an upper index in brackets (i), (j)ε{l, s, c; +,−}.
Here, the +,− denotes the twisted mass sign of the quark, where l+ is the up and l−
the down quark. A flavor index with a tilde (̃i) denotes a switched twisted mass sign.
Upper indices n and m denote the sample of random numbers when using stochastic
sources.

If possible, I will only use one index for the space-time coordinate (x1) = (x1, t1).
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3 The meson correlator

3.1 Construction of a meson correlator

I would like to start by introducing a meson creation operator. This operator has
to be gauge invariant and have conserved quantum numbers, e.g isospin, parity and
angular momentum. Taking into account these conditions, one possibility to write
down a meson creation operator is:

O(x) = ψ̄(i)
a,α(x)(Γ1)αβψ

(j)
a,β(x) = Trc,s

(
ψ̄(i)(x)(Γ1)ψ

(j)(x)
)

(3.1)

This operator is gauge invariant and has certain quantum numbers, which are defined
by Γ1, a 4×4 matrix in Dirac space. In this work I chose Γ1 ε {γ5, 1}, i.e. reducing the
spectrum to pseudo-scalar and scalar mesons and (i), (j) ε {l, s, c}, i.e. all possible
combinations of up, down, strange and charm quarks.

However, the standard Nf = 2 twisted mass action which is used, has no strange and
charm quarks. Thus, I choose the partially quenched approach (see section 3.3.1).
This means a twisted mass sign for strange and charm spinors has to be defined,
because the twisted mass action only works for mass degenerated flavor doublets. I
can do so because in the continuum, these flavor breaking effects disappear. In my
work I compute all possible combinations of twisted mass signs. For every choice of
quark flavors there are four possible combinations (++, +−, −+, −−). They split
into two groups, which cannot be related by symmetries (equal or different twisted
mass sign).

In order to relate the operator in the physical basis to an operator in the twisted mass
basis, which I use on the lattice, it must be converted. This happens by rotating it
into the twisted mass basis. This rotation is given by Eq. (2.6).

With the relation exp(iγ5ω) = cos(ω) + i sin(ω)γ5 it is easy to show the following
identities for the twist rotation of mesons:

ψ̄(i)±γ5ψ
(j)∓ = χ̄(i)±γ5χ

(j)∓, ψ̄(i)±
1ψ(j)∓ = χ̄(i)±

1χ(j)∓ (3.2)

ψ̄(i)±γ5ψ
(j)± = ±iχ̄(i)±

1χ(j)±, ψ̄(i)±
1ψ(j)± = ±iχ̄(i)±γ5χ

(j)± (3.3)

Note that these relations are only correct in the continuum. On the lattice the twist
angle is not exactly π/2 and so these relations are only approximate.
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Additionally, due to the twisted mass action, in a single correlator parity plus and
minus or different isospin states can mix. However, when applying the right methods,
it is still possible to extract the masses of single states (cf. section 3.3.3).

A suitable correlation function for extracting meson masses is:

C(∆t, p = 0) =

〈
1

V

∑
x1,x0

O(t1,x1)O(t0,x0)
†

〉
(3.4)

〈〉 is the integration over all gauge and fermionic fields. Here,
∑

x1
is used to obtain

a momentum zero projection. 1/V
∑

x0
is the average over the spatial volume, and

not mandatory. However, it can be used to reduce the noise caused by statistical
fluctuations of the gauge field1.

After inserting the operators, the integration over χχ̄ can be performed by using
their Grassmann properties. The result is the inverse of the Dirac matrix, which is
defined as the quark propagator.

χA(x1)χ̄B(x0) →
(
D−1

)
AB

(x1, x0) (3.5)

The correlation function in terms of propagators is as follows:

C(∆t) = −

〈
1

V

∑
x1,x0

Trc,s

(
γ0Γ

†
2γ0D

−1(i)(x0, t0,x1, t1)Γ1D
−1(j)(x1, t1,x0, t0)

)〉
(3.6)

Here, the 〈〉 is the integration over all gauge fields, which approximates, when us-
ing a suitable Monte-Carlo method, the average over a large number of gauge field
configurations.

In this correlation function, the two propagators point in opposite directions. How-
ever, for some of the techniques, it is mandatory that they propagate in the same
direction, i.e. both have the same starting point. Hence I will use the γ5-Hermiticity
of the action to swap start and endpoint of one propagator:

D−1(x1, x0) = τ1γ5
(
D−1(x0, x1)

)†
γ5τ1 (3.7)

C(∆t) = −

〈
1

V

∑
x1,x0

Trc,s

(
Γ̃2D

−1(i)(x0, x1)Γ̃1

(
D−1 ˜(j)(x0, x1)

)†)〉
(3.8)

1From now on I would like to refer to the noise caused by the statistical fluctuations of the gauge
field as gauge noise
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Here Γ̃1 = Γ1γ5 and Γ̃2 = γ5γ0Γ
†
2γ0 is used.

In principle this expression could be evaluated on the lattice in order to extract the
meson masses. However, computing the exact quark propagator, i.e. inverting the
complete Dirac matrix, demands too much computation time, especially for large
lattices. In the next section I will introduce methods to circumvent this problem.

3.2 Computation of a meson correlator

Typically, most of the computation time for the meson correlator has to be invested
into computing the quark propagator. In this section I would like to introduce
methods to compute the propagators, which appear in the discussed correlation
functions.

3.2.1 Point-source method

The quark propagator is given by the inverse of the Dirac matrix D. An ansatz to
compute the propagator is solving the following equation for a given ξ.

Dφ = ξ (3.9)

where φ is called the sink and ξ the source of the propagator. The standard way of
solving this equation is to use point sources, i.e. placing a single 1 on one element
of the source:

ξA(x2)[x0, C] = δ(x2, x0)δ(A,C) (3.10)

Here the indices in squared brackets denote the placement of the source point. We
then have to solve the linear equation:

DA,B(x2, x1)φB(x1)[x0, C] = δ(x2, x0)δ(A,C) (3.11)

And will obtain the propagator by computing

D−1
B,C(x1, x0) = φB(x1)[x0, C] (3.12)

Now it is important to note that if one wants to compute the full propagator, i.e.
not lose any information stored on the gauge configuration, it is necessary to solve
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the linear equation for all possible source points x0 and C. In practice this is an
impossible task, because then the number of inversions is V · T · Ns · Nc. Where V
is the spatial volume of the lattice, T the temporal extension of the lattice, Ns the
number of spin and Nc the number of color indices.

The straight-forward solution to this problem is taking advantage of the translation
invariance of observables on the lattice and invert the Dirac matrix with only one
fixed source point. This is the so called one-to-all propagator.

Now one end of the propagator D−1
B,C(x1, x0) = φB(x1)[x0, C] is fixed to a chosen x0

and one has to perform only 12 separate inversions, one for each C, which is color
and spin.

The advantage of this technique is that I gain a one-to-all propagator, which does not
contain any additional noise. The method is straightforward and easy to implement.
However, it is not possible to average over all source points in order to gain all the
information stored on a gauge configuration and therewith reduce the gauge noise.
Furthermore, there are correlators with propagators where the source as well as the
sink point needs to be varied (see section 5.2.2 on disconnected correlators of four-
quark states). For these correlators, the point-source method cannot be used.

When using the point-sources method to compute the meson spectrum the following
correlation function is used:

C(∆t, p = 0) =
∑
x1

Trc
(
Γα,β (φγ(x1)[x0, β])

† Γγ,δ φδ(x1)[x0, α]
)

(3.13)

3.2.2 Standard stochastic-source method

In order to obtain an all-to-all propagator to reduce the gauge noise, I will follow [14]
and [15] and construct a source spinor ξ, which has stochastic entries on all spatial
lattice points of one single time slice.

ξnA(x1) = δ(t1, t0)(Z4)
n
A(x1) (3.14)

In my work I consider noise, which is based on random numbers chosen from four en-
tries of the complex unitary circle, i.e. Z4 = Z2×Z2 ε {1/

√
2,−1/

√
2, i/

√
2,−i/

√
2}.
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Basically, it is possible to use other types of noise as long as the following condition
is fulfilled: 〈

(ξnA(x0))
†ξnB(x1)

〉
= δx0,x1δA,B (3.15)

Here, 〈〉 means averaging an infinite number of samples.

Now a sink is generated by solving the equation:

DA,B(x2, x1)φ
n
B(x1) = ξnA(x2) (3.16)

φn
B(x1) = D−1

B,A(x1, x2)ξ
n
A(x2) (3.17)

The quark propagator can now be computed via the spinors φ and ξ†:〈
φn
A(x1)(ξ

n
B(x2))

†〉 = D−1
A,C(x1, x3)

〈
ξnC(x3)(ξ

n
B(x2))

†〉 (3.18)

= D−1
A,B(x1, x2) (3.19)

For an infinite number of samples this is the unbiased quark propagator. In practice,
one can only compute the propagator for a finite number of samples n,m. Therefore,
there are additional terms that are called stochastic noise. When using stochastic
techniques, there is always stochastic noise in addition to the gauge noise. However,
in comparison to the point-source method the gauge noise is reduced, because it is
possible to average over the spatial source points.

Note that one temporal end of the propagator is fixed to t0 due to construction of
the source. Different temporal separations ∆t, as needed for a correlation function,
can still be achieved by the variation of t1.

I am going to write down the expression which is used on the lattice and will show
that it equals the meson correlator in Eq. (3.8). I will omit the Γ structure.

C(∆t, p = 0) =

〈
1

V

∑
x0,x1

(
φn
A(x1)(ξ

n
B(x0))

†ξmB (x0)(φ
m
A (x1))

†)〉 (3.20)

=

〈
1

V

∑
x0...3

(
D−1

AC(x1, x2)ξ
n
C(x2)(ξ

n
B(x0))

†ξmB (x0)(ξ
m
D (x3))

† (D−1
DA(x1, x3)

)†)〉
(3.21)

≈ 1

V

∑
x0,1

Trc,s

(
D−1(x1, x0)

(
D−1(x1, x0)

)†)
(3.22)

I want to refer to this method as the standard stochastic-source method.
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3.2.3 Stochastic noise reduction: The one-end trick

As seen later, the standard stochastic-source method will not provide better results
than the point-source method, because more stochastic noise is added than gauge
noise reduced, by averaging over the spacial volume.

However, the noise-to-signal ratio of the standard stochastic-source method can be
improved when applying the so-called one-end trick which was used in [16] and [17],
for example. In Eq. (3.21) there are four stochastic sources in total, which contain
the stochastic noise. For the special case of mesons where one quark is propagating
forwards and one quark backwards, this number can be reduced to two sources.
When using the same sample of random numbers for the sources of both propagators
it is possible to analytically erase one pair of ξ.

This results in a correlation function where two sinks are multiplied:

C(∆t, p = 0) =

〈
1

V

∑
x1

Trc
(
(φn

α(x1))
†Γαβφ

n
β(x1)

)〉
(3.23)

=

〈
1

V

∑
x0...2

(
(ξn(x0))

† (D−1(x1, x0)
)†
ΓD−1(x1, x2)ξ

n(x2)
)〉

(3.24)

≈ 1

V

∑
x0,1

Trc,s

((
D−1(x1, x0)

)†
ΓD−1(x1, x0)

)
(3.25)

This correlator only equals the meson correlation function Eq. (3.8) if Γ2 = 1. In
order to not be limited to this special case, one needs the concept of spin dilution
for the stochastic sources. This means I reduce the noise not only to one single time
slice but also one spin slice:

ξnα,a(x2)[β] = δt2,t0δα,β(Z4)
n
a(x2) (3.26)

DA,B(x2, x1)φ
n
B(x1)[γ] = ξnA(x2)[γ]

⇒ φn
B(x1)[γ] = D−1

B,A(x2, x1)ξ
n
A(x2)[γ]

Due to spin dilution, one has to invert four times for each gauge configuration and
each sample n. The random numbers Z4 are generated once and copied four times
to each of the four spin slices. If the γ matrices that are used are diagonal, it might
be helpful to use different random number for each spin slice, but if they are not
diagonal, it is mandatory to use the same set of random numbers for each spin slice.
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Using spin dilution, I can write down the meson correlation function for the one-end
trick:

C(∆t, p = 0) =

〈
1

V

∑
x1

Trc
(
Γγ,δ(φ

n
α(x1)[γ])

†Γα,βφ
n
β(x1)[δ]

)〉
(3.27)

=

〈
1

V

∑
x0...2

(
(ξnε (x2)[γ])

† (D−1
εα (x1, x2)

)†
ΓαβD

−1
βη (x1, x0)ξ

n
η (x0)[δ]Γδ,γ

)〉
(3.28)

≈ 1

V

∑
x0,x1

Trc,s

((
D−1(x1, x0)

)†
Γ1D

−1(x1, x0)Γ2

)
(3.29)

The one-end trick has the shortest contraction time of all the methods I compared.
The drawback is, of course, the necessity of four inversions for each gauge configura-
tion, which will not reduce the error caused by the stochastic noise due to the same
set of random numbers for each spin slice.

3.3 Additional spectroscopy methods

In addition to the estimation of quark propagators there are several additional com-
putation techniques that are used when extracting the meson spectrum. I will present
the most important ones very briefly.

3.3.1 Partially quenched setup

Because there are no strange and charm quarks as valence quarks in the Nf = 2
twisted mass action, one needs an alternative way to compute the propagator for
these quarks. In this work I will choose the partially quenched method.

For the computation of the quark propagator, this means that an action with a
different mass µ is used for strange and charm quarks.

D(µs/c)φ = ξ (3.30)

The µs/c has to be tuned using the masses of the kaon and the D meson, for example,
as done in [7].

Note that using this setup with twisted mass QCD will provide a quark doublet for
strange as well as charm quarks. These quarks are denoted by + or − signs and are
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only equal in the continuum. In this work, I will study all possible twisted mass sign
combinations. The discrepancy of results gained with a different twisted mass setup
can provide information about the discretization effects.

Of course, this method only provides strange and charm valence quarks, correspond-
ing sea quarks are still neglected.

3.3.2 Gauge field and quark field smearing

From section 2.2 it is known that the mass of a bound state can be computed by the
two point function of a suitable operator:

C(∆t) = 〈Ω|O(t1)O†(t2)|Ω〉 =
∑
n

|〈n|O|Ω〉|2e−(En−EΩ)∆t (3.31)

When interested in computing the energy of the state E1−EΩ, one has to go to large
∆t in order to reduce contributions of excited states. In addition to that, one can
create an operator which has little overlap with the excited states:

〈n|Os|Ω〉 << 〈1|Os|Ω〉 for n > 1 (3.32)

This can reduce the contribution of excited states even for smaller ∆t.

At this point I introduce the concept of smearing. Instead of creating a local operator,
the quark field and gauge field smearing create an operator with spatial extension
which has a better overlap to the ground state (cf. [8] and references therein). In the
correlation function, this is achieved by smearing the contributing propagators, i.e.
smearing the fermionic source and sink fields, and gauge fields.

A disadvantage of smearing the fields is that it increases the error of the correlator.
However, this effect is compensated because when it is possible to fit a mass plateau
for smaller temporal separations, the error of the mass decreases.

The fermionic fields were smeared using Gaussian smearing with the parameters
NGauss = 30 and κGauss = 0.5. The gauge fields were smeared using APE smearing
with the parameters NAPE = 30 and κAPE = 0.5.

For the one-end trick and point-source method there is an additional aspect which
must be considered. The smearing operator acts on both sides of the quark prop-
agator. For the standard stochastic-source method this means that one can apply
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the smearing operator to the sinks and sources while contracting. For the one-end
trick and the point-source method there are only sinks used in the contraction. This
means that the sources have to be smeared before performing the inversion.

For the case of the one-end trick I will also study a smearing technique already
applied for meson spectroscopy [23]. Here, the smearing operator acts only on one
side of the propagator. This is supposed to reduce the overlap to excited states
without an increase of the noise-to-signal ratio. Here, one can perform the smearing
on the sink or the source side of the propagator.

For lattice calculations especially only smearing the sink is preferable, because un-
smeared stochastic-source inversions are more universal than smeared ones. Addi-
tionally, only smearing the sink during the contraction saves computation time while
computing the propagator. Only smearing the source will save just a small amount
of computation time during the contraction.

For the noise-to-signal ratio it should analytically make no difference which side of
the propagator is smeared, due to the symmetry of the correlator. However, when
using stochastic methods it could make a difference, according to [23]. In this work
both smearing location will be examined.

3.3.3 Generalized eigenvalue problem

When computing the correlation function for excited mesons, one will find a mixing
of states in this correlators. This is due to parity and isospin braking in the twisted
mass formalism. In this work, one will find a mixing between parity plus and minus
states in the correlator for the scalar meson.

Thus, instead of computing the correlation function independently, I will compute a
correlation matrix, which is defined by the following expression:

C̃ij(t) = 〈Ω|Oi(t)Oj(0)
†|Ω〉 (3.33)

Here, the Oi are different operators that might mix. From this matrix, the masses of
the n lowest states can be extracted by solving the generalized eigenvalue problem
[21], where n is the dimension of the correlation matrix.

C̃ij(t)v
n
j (t, t0) = λn(t, t0)C̃ij(t0)v

n
j (t, t0), n = 1, ..., N t > t0 (3.34)
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The effective masses are then computed as

meff
n =

1

a
ln

λn(t, t0)

λn(t+ a, t0)
(3.35)

In the limit t → ∞, these effective masses approach the n lowest masses in the
corresponding sector. As before, the masses of the n states are obtained by fitting a
mass plateau to the effective masses.

Due to the mixing of states it is not trivial which operator Oi corresponds to the
effective mass meff

n . However, it can be investigated by computing the eigenvectors
vnj (t, t0).

When examining the squared absolute value of the eigenvector |vj|2, belonging to
the effective mass n, one can identify the dominating creation operator Oj by the
largest value |vj|2. This only works if the operators have the same norm. This can
be achieved by choosing a similar structure for the operator, which is done in this
work. If this is not possible, the operators have to be normalized by the computation
of trial states.

3.3.4 Using twisted mass symmetries

When doing spectroscopy of mesons, small statistical errors are mandatory. There-
fore, it is helpful to compute all possible combinations of twisted mass signs of
contributing quarks, all possible γ matrices, as well as both time directions, because
most of these combinations are identical in the average. One can use the symmetries
of the twisted mass action to find these relations and average over the correlation
functions.

These symmetries for the twisted mass Dirac operator are as follows:

γ5 hermiticity:

D−1(x1, x2) = τ1γ5
(
D−1(x2, x1)

)†
γ5τ1 (3.36)

time reversal

D−1(t1, t2) = τ1γ0γ5D
−1(−t1,−t2)γ5γ0τ1 (3.37)
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charge conjugation

D−1(x1, x2) = γ0γ2
(
D−1(x2, x1)

)T
γ2γ0 (3.38)

parity

D−1(x1, x2) = τ1γ0D
−1(−x2,−x1)γ0τ1 (3.39)

Some of these symmetries ensure a hermitian correlation matrix, the others can be
use to lower the statistical error of the computation. As an example I will apply time
reversal to the correlation function of the D meson, with two positive twisted mass
quarks.

C(t)(Ds, u+, c+) =

=

〈
1

V

∑
x1,x2

Trc,s

(
γ5D

−1u+(x2, t2,x1, t1)γ5D
−1c+(x1, t1,x2, t2)

)〉

=

〈
1

V

∑
x1,x2

Trc,s

(
γ5γ0γ5D

−1u−(x2,−t2,x1,−t1)γ5γ0·

·γ5γ0γ5D−1c−(x1,−t1,x2,−t2)γ5γ0
)〉

=

〈
1

V

∑
x1,x2

Trc,s

(
γ5D

−1u−(x2,−t2,x1,−t1)γ5D−1c−(x1,−t1,x2,−t2)
)〉

= C(−t)(Ds, u−, c−) (3.40)

One gains the correlation function of the D meson in negative time direction with
two negative twisted mass quarks.
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method point stochastic one-end

# inversions / conf 12 · Nf 12 ·Nf 4 ·Nf

# configurations 20 20 60

≈ norm. contr. time 1 24 0.5

Table 1: information about the number of inversions for each gauge configuration, the
number of gauge configurations and the contraction time for all three meth-
ods of my meson spectroscopy study. The normalized contraction time is the
contraction time divided by the contraction time of the point-source method

4 Results and Interpretation: Mesons correlators

4.1 Simulation Setup

The contractions and inversions in this work were done using (L/a)3×T/a = 243×48
lattice gauge field configurations. These configurations were generated at β = 3.9,
corresponding to a lattice spacing of a = 0.079(2) fm [6].

For the light quarks I used a valence and sea quark mass of µ = 0.0040, which
corresponds to a pion mass of mπ = 336 MeV. For strange and charm quark I
used the partially quenched approach with valence quark masses of µc = 0.26 and
µs = 0.022, which correspond to physical K and D meson masses [7].

Details on how many gauge configurations and inversions were used can be found in
Table 1. The numbers were chosen so that the computational costs for each technique
were equal. However, I neglected the contraction time and therefore will also list it
in the mentioned table. It has to be noted that neglecting the contraction time is
reasonable when using light quarks, because the cost of computing one propagator
is a factor of two to three larger in comparison to the point-source contraction.
However, the cost of computing a strange quark propagator is only a factor of 0.25 and
computing the charm quark even a factor of 0.05. Thus, for contractions where only
charm and strange propagators are used, the contraction time contributes strongly
to the overall computation time.
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4.2 Meson results

The first results that will be presented in Figure 1 are two exemplary effective masses
for the pion and the Ds meson and their parity partners, using the three discussed
techniques. From these plots one will be able to estimate the statistical error, which
can be expected from the numbers of gauge configurations I used. To compare the
different techniques one could now simply compare the errors of the effective masses.
However, this will not be done in this work.

Instead, the error of the correlation functions will be examined, because they are a
fundamental observable which is easily accessible. Furthermore, they have a simple
structure, which can be investigated by analytical models. Due to better comparison,
I will present the relative error or noise-to-signal ratio of the correlator ∆C/C, which
is the error of the correlator divided by its absolute value.

I computed all possible combinations of quark flavors, the pseudo-scalar and scalar
meson and equal and different twisted mass sign for the two quarks, which amounts
to a total number of 72 correlation functions which I present in Figures 2, 3, 4 and
5.

These plots can now be used to decide which methods is suitable for a certain meson
computation. After examining the results a few points can be made.

• Most important, for meson computations the one-end trick should be preferred
to the standard stochastic-source method. For every single correlation function
the one-end trick provides a better noise-to-signal ratio.

• For light mesons and excited states the one-end trick provides results of better
quality than the point-source method. This means that these are states with
a relatively large gauge noise.

• For all other mesons both methods provides results of equal quality.

4.3 Noise-to-signal ratio for stochastic techniques

The presented results suggest that the one-end trick is by a factor of three to five
better than the standard stochastic-source method. I will try to explain this factor
with analytical methods. The noise-to-signal ratio or relative error of the correlator
∆C/C can be evaluated as follows.
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Figure 1: effective masses for the light-light (left) and the strange-charm (right) me-
son sectors for three different methods: point-source method (top), stan-
dard stochastic-source method (middle) and one-end trick (bottom); the upper
plateau corresponds to scalar mesons, lower plateau to pseudo-scalar mesons.
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Figure 2: noise-to-signal ratio for all possible pseudo-scalar meson correlators using
quarks with different twisted mass signs (e.g. O = φ̄+γ5φ

−); the three meth-
ods used are point-source method, standard stochastic-source method and the
one-end trick.
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Figure 3: noise-to-signal ratio for all possible scalar meson correlators using quarks with
different twisted mass signs (e.g. O = φ̄+

1φ−); the three methods used are
point-source method, standard stochastic-source method and the one-end trick.
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Figure 4: noise-to-signal ratio for all possible pseudo-scalar meson correlators using
quarks with equal twisted mass signs (e.g. O = φ̄+γ5φ

+); the three meth-
ods used are point-source method, standard stochastic-source method and the
one-end trick.
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Figure 5: noise-to-signal ratio for all possible scalar meson correlators using quarks with
equal twisted mass signs (e.g. O = φ̄+

1φ+); the three methods used are point-
source method, standard stochastic-source method and the one-end trick.
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The error of the correlator is given by:

∆C =
1√
N0

√
〈|C|2〉 − 〈C〉2 (4.1)

HereN0 is the number of gauge field configurations. The relative error I am interested
in computes as:

∆C

C
=

1√
N0

√
〈|C|2〉 − 〈C〉2

〈C〉2
=

1√
N0

√
〈|C|2〉
〈C〉2

− 1 (4.2)

4.3.1 Standard stochastic-source method

In practice, it is not possible to evaluate 〈|C|2〉 and 〈C〉, due to the quark propagators
appearing in the correlation function. Thus, I would like to use a simple model where
I set all elements of the propagator, i.e. all signal terms, equal one, so that only the
stochastic sources remain.

The equation for the correlator with all the contributing stochastic sources is as given
in Eq. (3.21):

〈C〉 =

=
1

V

1

N2
1

∑
n,m

∑
x1...4

(
D−1(x1, x3)ξ

n(x3)(ξ
n(x2))

†ξm(x2)(ξ
m(x4))

† (D−1(x1, x4)
)†)
(4.3)

=
1

V

1

N2
1

∑
n,m

∑
x2...4

∑
B,C,D

(
ξnC(x3)(ξ

n
B(x2))

†ξmB (x2)(ξ
m
D (x4))

†) (4.4)

=
1

V

1

N2
1

(N2
1NcNsV ) = NcNs (4.5)

Here N1 is the number of stochastic samples for the standard stochastic-source
method. In the last line there is the factor NcNsV N

2
1 from the summation over

all sources. Due to the construction of ξ one will only get a signal for x2 = x3 = x4,
which is a factor V, B = C = D, which gives a factor NcNs and a factor N2 from
the summation over the samples.
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For estimating the noise-to-signal ratio, the expectation value of |C|2 is also needed:

〈|C|2〉 = 〈CC†〉

=
1

V 2

1

N4
1

∑
x2...4

∑
B,C,D

∑
x̃2...4

∑
B̃,C̃,D̃

∑
n,m

∑
ñ,m̃(

ξnC(x3)(ξ
n
B(x2))

†ξmB (x2)(ξ
m
D (x4))

†ξm̃
D̃
(x̃4)(ξ

m̃
B̃
(x̃2))

†ξñ
B̃
(x̃2)(ξ

ñ
C̃
(x̃3))

†) (4.6)

The following terms appear due to the summation over the sources:

N2
1V

3N3
cN

3
s when x3 = x̃3, x2 = x̃2, x4 = x̃4,

A = Ã, B = B̃, C = C̃, n = ñ, m = m̃

N4
1V

2N2
cN

2
s when x2 = x3 = x4, x̃2 = x̃3 = x̃4,

B = C = D, B̃ = C̃ = D̃

−N2
1V NcNs when x2 = x3 = x4 = x̃2 = x̃3 = x̃4,

B = C = D = B̃ = C̃ = D̃, n = ñ, m = m̃

The last term is appearing twice in the other terms and thus has to be subtracted.

The relative error one finds for the standard stochastic-source method is then:

∆C

C
=

1√
N0

√
V NcNs

N2
1

− 1

V NcNsN2
1

+ 1− 1 (4.7)

=
1

N1

√
N0

√
V NcNs −

1

V NcNs

≈(V >>1)
1

N1

√
N0

√
NcNsV (4.8)

In order to be able to directly compare this result to the one-end trick I will perform
the same computation for the one-end trick.
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4.3.2 One-end trick

For the one-end trick I find the following expectation value of the correlator starting
from Eq. (3.28):

〈C〉 = 1

V

1

N2

∑
n

∑
x1...3

(
(ξn[β](x3))

† (D−1(x1, x3)
)†
D−1(x1, x2)ξ

n[α](x2)
)

(4.9)

=
1

V

1

N2

∑
n

∑
x2,3

Trc,s
(
(ξn[β](x3))

†ξn[α](x2)
)

(4.10)

=
1

V

1

N2

(NNcV ) = Nc (4.11)

Here N2 is the number of stochastic samples for the one-end trick. The factor V is
from x2 = x3 and N2 from summation over the samples. In contrast to the standard
stochastic-source method, I only find a factor Nc instead of NcNs due to spin dilution.
For the one-end trick the expectation value of |C|2 is:

〈|C|2〉 = 1

V 2

1

N2
2

∑
x2...3

∑
B,C

∑
n,ñ

∑
x̃2...3

∑
B̃,C̃(

ξnB[α](x2)(ξ
n
C [β](x3))

†(ξñ
B̃
[α](x̃2))

†ξñ
C̃
[β](x̃3)

)
(4.12)

From the sources one finds the following terms:

N2
2V

2N2
c when x2 = x3, x̃2 = x̃3, B = C, B̃ = C̃

N2V
2N2

c when x2 = x̃2, x3 = x̃3, B = B̃, C = C̃, n = ñ

−N2V Nc when x2 = x̃2 = x3 = x̃3, B = B̃ = C = C̃, n = ñ

Again, the last term is appearing twice. The noise-to-signal ratio is as follows:

∆C

C
=

1√
N0

√
1

N2

+ 1− 1

V NcN2

− 1 (4.13)

=
1√
N0

√
1

N2

− 1

V NcN2

≈(V >>1)
1√
N2N0

(4.14)

For the one-end trick I only used one sample for each gauge configuration, so here
N2 = 1. When now comparing this result with the standard stochastic-source method
I gain the following relation between the standard stochastic-source method and the
one-end trick.

∆C/Cstoch.

∆C/Coneend

=

√
(N0)stoch.
(N0)oneend

1

N1

√
NcNsV (4.15)
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Here, N1 is the number of samples for the standard stochastic-source method. If
I insert N1 = 12 and consider a factor of three more gauge configurations for the
one-end trick I gain an analytic factor of around 100. However, in the numerical
data one finds a factor of three to five.

This suggests that the noise-to-signal ratio is dominated by the gauge noise, not by
the stochastic noise. This is because the measured noise is caused by the statistical
fluctuations of the gauge field and the noise from the stochastic sources, while in the
model only the noise from the sources is considered.

However, then the one-end trick should provide results that are significantly better
then the results gained by the point-source method, because the one-end trick re-
duces the statistical fluctuations of the gauge field. One does not find such a large
difference.

Most possible, this discrepancy between the factors might simply come from using
the simple model which replaces the propagators. They drop off exponentially for
larger temporal and spatial separations and thus suppress certain contributions to
the noise.

Nevertheless, both the numerical data and the model calculation support that the
one-end trick should be the method of choice when it comes to computing meson
correlation functions.

4.4 Increase of noise-to-signal ratio over ∆t

For most of the correlation functions I observe an increase of the noise-to-signal ratio
over ∆t. I will try to explain this increase by a model and estimate the slope by
using lattice data. The noise-to-signal ratio of a correlator is given by:

〈∆C
C

〉 = 1√
N0

√
〈|C|2〉 − 〈C〉2

〈C〉
=

1√
N0

√
〈C2〉
〈C〉2

− 1 (4.16)

The correlator 〈C〉 decreases with exp(−mHt) for large ∆t, where mH is the mass of
the computed hadron. That implies 〈C〉2 ∼ exp(−2mHt). However, 〈|C|2〉 decreases
with exp(−MHt) where MH is the mass of the lightest bound state with the same
quantum numbers as two times the computed meson. This is usually a two-particle
state.
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When using this in Eq. (4.16), I find the following for the noise-to-signal ratio:

〈∆C/C〉 =
√
exp(−MH∆t)/ exp(−2mH∆t)− 1 (4.17)

=
√
exp ((2mH −MH)∆t)− 1 (4.18)

≈∆t>>1 exp

(
1

2
(2mH −MH)∆t

)
(4.19)

As an example I would like to examine the error of the D meson and its parity
partner the D∗

0 meson.

As input masses I would like to use the lattice computations for these hadrons I
performed on the given lattices: amD = 0.8264, amD∗

0
= 1.0636. The lightest

two-particle state with the same quantum numbers is a charmonium pion system:
aMH = amPS + amηc = 0.137+ 1.279 = 1.416. Here the ηc is a pseudo-scalar meson
with two charm quarks, where the disconnected diagram was neglected.

Thus, the relative error should show the following time dependence for the D∗
0:

〈∆C
C

〉D∗
0
= exp

(
1

2
(2mD∗

0
−mPS −mηc) ·∆t

)
(4.20)

in lattice units ≈ exp (0.3556 ·∆t) (4.21)

The appearing multiplicative factors were neglected because I am only interested in
the exponential slope. The same calculation can be done for the D meson:

〈∆C/C〉(D) = exp

(
1

2
(2mD −mPS −mηc) ·∆t

)
(4.22)

in lattice units ≈ exp (0.1184 ·∆t) (4.23)

In Figure 6 I compare the numerical data of the one-end trick and the point-source
method to my model calculation from above. For the function I used the calculated
exponential slope and chose the multiplicative factor so that the function fitted the
data. One can observe that this model provides an approximate estimation of the
exponential slope of the error for exited states as well as ground states. One has to
keep in mind that this estimation only holds for large temporal separations.

4.5 The magnitude of gauge noise

As already stated, I observed that for heavy mesons the stochastic methods, in
comparison to the point-source method, are not so effective anymore as they are for
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Figure 6: noise-to-signal ratio of the D meson (top) and the D∗
0 meson (bottom) using

one-end trick and point-source method in comparison to the estimated slope
from Eq. (4.23) (top) and Eq. (4.21) (bottom)
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light mesons. This suggests that for larger quark masses the ratio between gauge
noise and stochastic noise decreases, while for lower quark masses the gauge noise is
large in comparison to the stochastice noise.

The decrease of gauge noise for larger quark masses can be understood when looking
at the Dirac operator:

D(x, y) =
1

2a
γµ
(
U(x, µ)δx,y−aµ − U †(x− aµ, µ)δx,y+aµ

)
+m0δx,y (4.24)

The mesonic correlation function only depends on the quark propagators which are
the inverse of this operator.

It is obvious that for larger quark masses, i.e. a larger m0, the kinetic term, which
contains the link variables, becomes small in comparison to the mass term. This
means that for larger quark masses the gauge noise, which originates in the link
variables, is suppressed.

However, the noise of the stochastic methods is not strongly effected by the quark
mass. Thus, for heavier quark masses the error of the stochastic techniques will not
decrease as fast as the error of the point-source method.

From the data I also observe an advantage of the one-end trick over the point-source
method for the scalar mesons. This suggests that for scalar mesons the gauge noise
is larger than for pseudo-scalar mesons.

4.6 The consequence of spin dilution

Especially for the heavy mesons, I observe a different exponential slope over ∆t for
the standard stochastic-source method and the one-end trick. However, the analytic
model suggests that there is a constant factor between the methods. One possible
assumption is that the advantage of spin dilution only shows up for large temporal
separations, because at small distances there is no coupling between different spin
components of the propagator, which would add noise to the system. This can be
tested with performing a computation with the one-end trick without spin dilution,
which only works for Γ = 1, i.e. all pseudo-scalar mesons when using quarks with
different twisted mass signs, and comparing it to the standard one-end trick compu-
tations.

From the results shown in Figure 7 one can conclude the the following.



4 RESULTS AND INTERPRETATION: MESONS CORRELATORS 33

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18

∆
C
/
C

∆t

light-light

with spin dilution

no spin dilution

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18

∆
C
/
C

∆t

strange-charm

with spin dilution

no spin dilution

Figure 7: noise-to-signal ratio for the pion (top) and the Ds meson (bottom) using the
one-end trick with and without spin dilution. For the two graphs the computa-
tional costs are not equal due to four inversions for spin dilution and only one
inversion for no spin dilution



4 RESULTS AND INTERPRETATION: MESONS CORRELATORS 34

• I observe, especially for heavy mesons, a significant slope when not using spin
dilution. This suggests that the noise from off-diagonal spin elements will only
occur for larger temporal separations.

• However, I find an equal or even better noise-to-signal ratio for computational
costs that are four times lower than for the ordinary one-end trick. This sug-
gests that whenever it is possible to apply the one-end trick without spin dilu-
tion, one should do so.

For the Ds meson one observes a better noise-to-signal ratio for small temporal
separations when using no spin dilution. At first this seems unusual, because one
uses only one inversion instead of four. The reason for this is the different use of
random numbers in the sources. While using spin dilution demands the same set
of random numbers for each spin slice, the method with no spin dilution demands
different random numbers. This means that when the spin dilution itself provides
no advantage there is an additional positive effect when not using spin dilution due
to the different random numbers on each spin slice.

4.7 Different smearing locations

To study the effect of different smearing techniques, three different meson correla-
tors where computed, namely where both sink and source were smeared (smeared-
smeared), where only the source was smeared (local-smeared) and where only the
sink was smeared (smeared-local). The computations were done with 20 gauge field
configurations and the one-end trick was used. I will present the noise-to-signal ratios
and the effective masses of the D meson and the pion.

It is important to know that when only using smearing on one side, a possible cor-
relation matrix is not hermitian anymore. Thus, the generalized eigenvalue problem
in its standard form cannot be used. Instead, for the computation of excited states
an alternative method is needed, e.g. the fitting of exponential functions. There-
fore, I will only apply this method on correlators of ground states, because here the
influence of a mixing with excited states can be neglected.

From the results shown in Figure 8 I would like to conclude the following.

• When using one of the one-sided smearing methods the effective mass drops to
its plateau as fast as when using smearing on both sides.
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• For the pion, however, I do not see a lower noise-to-signal ratio for those tech-
niques.

• For theD meson I observe a slightly better noise-to-signal ratio for the smeared-
local correlator, however, when the plateau is reached, this discrepancy vanishes
within errors.

The first point can be understood from Eq. (3.31). The purpose of smearing is that
|〈n|Os|Ω〉|2 is small in comparison to |〈1|Os|Ω〉|2 for n > 1. When applying one-sided
smearing this factor is replaced by 〈Ω|Os|n〉〈n|O†|Ω〉. Thus, if 〈Ω|Os|n〉 is small in
comparison to 〈Ω|Os|1〉 the new factor is also small and the contribution of excited
states is suppressed.

To sum up, the one-sided smearing techniques do neither seem to clearly improve
the noise-to-signal ratio, nor do they influence the mass plateau. However, one could
apply these techniques to save computation time.
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Figure 8: noise-to-signal ratios (left) and effective masses (right) for the pion (top) and
the D meson (bottom) for the three mentioned smearing methods; notation:
sink - source
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5 The four-quark correlator

To understand the nature of scalar meson states, the study of four-quark correlation
functions is an important issue. The comparison of quark models (cf. [24] and ref.
therein) and lattice studies with the experiment suggest that besides the standard qq̄
structure scalar mesons could have components of other quark or gluon structures. A
natural candidate for this structure is a bound state of two mesons, due to the decay
channel of scalar mesons into two mesons. This two meson structure of a four-quark
operator will be studied here.

5.1 Construction of a four-quark correlator

In this work I would like to study two mesonic states which might have four-quark
components. These are the a0(980) meson with the quantum numbers I(JP ) = 1(0+)
and the D∗

s0 meson with the quantum numbers I(JP ) = 0(0+) and C = S = ±1.

When writing down an operator for a four-quark state one has to note that there
are two basic structures which can form a four-quark operator while being gauge
invariant and having conserved quantum numbers. Here, I will refer to them as
mesonic molecule and diquark-antidiquark. The differences between these structures
are the contraction of color indices and spin indices. Here, I will briefly sketch the
operator structure.

Omesonic =
(
ψ̄aΓ1ψa

) (
ψ̄bΓ2ψb

)
(5.1)

Odiquark = εabc
(
ψT
b Γ1ψc

)
εade

(
ψ̄T
d Γ2ψ̄e

)
(5.2)

In this work I will only study correlation functions from mesonic molecule operators.
In order to create a bound state consisting of four quarks with JP = 0+ and I = 1
for the a0(980) candidate, I write down the following operator, which is the operator
for the mesonic molecule. The decay mode of the a0(980) into KK̄ suggests to use
a strange quark and a strange antiquark for the two additional quarks.

Oa0(x) = Trs,c
(
ψ̄s+(x)γ5ψu(x)

)
Trs,c

(
ψ̄d(x)γ5ψs+(x)

)
(5.3)

The mesonic molecule operator for the four-quark candidate D∗
s0 has a similar struc-

ture. Additionally, there is a sum over the light quarks in order to obtain a light
isospin of zero.
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OD∗
s0
(x) =Trs,c

(
ψ̄u(x)γ5ψs−(x)

)
Trs,c

(
ψ̄u(x)γ5ψc−(x)

)
+

+ Trs,c
(
ψ̄d(x)γ5ψs−(x)

)
Trs,c

(
ψ̄d(x)γ5ψc−(x)

)
(5.4)

In a very first step I will compare different methods to compute correlation function
formed by four-quark operators. This means that I am not going to consider all
possible twisted mass signs for the heavy quark but stick to one setup instead.

After rotating the operator in the twisted mass basis, the construction of the corre-
lation function is now performed in the familiar way:

C(∆t, p = 0) =
∑
x1

〈
O(t1,x1)O(t0,x0)

†〉 (5.5)

Here, I drop the second sum immediately, because with none of the methods, I will
present later on, it is possible to compute it.

However, an important feature appears when performing the Wick contractions. If
two or more quark flavors of the four-quark operator are identical, there is more
than one possibility to contract the spinors. For the operators I use, which have two
identical quarks (u,d for theD∗

s0; s for the a0(980)), there are two ways to contract the
spinors: The connected contraction, where each quark on time slice t0 is contracted
with its partner at time slice t1 and the singly disconnected contraction, where on
each time slice one pair of quarks on this single time slice is contracted. A schematic
picture of these contraction is given in Figure 9, where each line represents a quark
propagator.

I will start at this point with the expression for the connected part of the correlation
function. When contracting quarks on different time slices I obtain a correlation
function with four propagators, which all propagate between the same space time
points forward or backward in time.

Cconn(∆t, p = 0) =
〈∑

x1

Trc,s
(
Γ1D

−1(i)(x1, x0)Γ2D
−1(j)(x0, x1)

)
·

·Trc,s
(
Γ3D

−1(k)(x0, x1)Γ4D
−1(l)(x1, x0)

) 〉
(5.6)
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connected singly disconnected

Figure 9: the two possible ways of Wick contractions for the a0(980) and the D∗
s0 four-

quark candidates

As for the mesons, I will use the γ5 hermiticity of the action to let all quarks propagate
in the same time direction.

Cconn(∆t, p = 0) =
〈∑

x1

Trc,s

(
γ5Γ1D

−1(i)(x1, x0)Γ2γ5

(
D−1(j̃)(x1, x0)

)†)
·

·Trc,s
(
Γ3γ5

(
D−1(k̃)(x1, x0)

)†
γ5Γ4D

−1(l)(x1, x0)

)〉
(5.7)

This correlation function can be computed relatively easy on the lattice by using
the point-source method to compute the quark propagator. I will introduce these
computation methods in the next section.

For the disconnected terms, one finds an additional minus sign due to a different
Wick contraction. The general structure of the singly disconnected propagator looks
as follows:

Cdisc(∆t, p = 0) =

= −
〈∑

x1

Trc,s
(
Γ1D

−1(i)(x1, x0)Γ2D
−1(j)(x0, x0)

Γ3γ5

(
D−1(k̃)(x1, x0)

)†
γ5Γ4D

−1(j)(x1, x1)
)〉

(5.8)
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Unfortunately, this correlator is not easily computable, due to its structure. In the
next section, I will explain the problem and introduce methods to solve it.

5.2 Computation of a four-quark correlator

5.2.1 Computing the connected correlator

For the connected part of the four-quark correlator it seems suitable to use the point-
source method to compute the propagator. Using the stochastic-source method is
not appropriate due to the large noise of the standard method and the fact that
a one-end trick for four-quark correlators is not directly applicable. The standard
one-end trick only works for two propagators having the same starting and endpoints.

When using the point-source method, the general structure of the correlator is as
follows:

Cconn(∆t, p = 0) =

= −
〈∑

x2

Trc
(
Γα,β (φγ(x1)[x0, β])

† Γγ,δ φδ(x1)[x0, α]
)

Trc
(
Γα,β (φγ(x1)[x0, β])

† Γγ,δ φδ(x1)[x0, α]
) 〉

(5.9)

This term can be easily computed on the lattice.

5.2.2 Computing the singly disconnected correlator

When trying to apply the same method for the disconnected term the following
correlator will result:

Cdisc(∆t, p = 0) =

= −
〈∑

x0

(
φD(x0)[A, x1]φA(x1)[B, x1]

(φC(x0)[B, x1])
†φC(x0)[x0, D]

)〉
(5.10)

Here, the term
∑

x0
φC(x0)[x0, D] provides a significant problem. One would need

an order of V inversions to gain all terms needed to compute the whole correlation
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function. In practice this is not possible to carry out. The solution I chose is a mixed
setup between point-source and stochastic-source inversions.

Cdisc(∆t, p = 0) =

= −
〈∑

x0

(
φD(x0)[A, x1]φA(x1)[B, x1]

(φC(x0)[B, x1])
†φ̃C(x0)(ξ̃C(x0))

†)〉 (5.11)

Here, the φ are sinks obtained the point-source method, while φ̃ and ξ̃ are obtained
by the stochastic-source method.

A problem that remains is the time dependence of the closed loop propagator at time
t1. If t0 is fixed, I need several values for t1, to find a dependence of the correlator on
∆t. For this problem there are two possible solutions, which will presented here. One
is choosing the stochastic entries on the source to be on the whole volume instead of
being just on the spatial one, i.e. remove the restriction to a single time slice.

ξ̃nA(x) = (Z4)
n
A(x, t) (5.12)

With this source we can access all time slices of the disconnected loop.

The other solution is keeping the noise restricted to one single time slice, but doing
a larger number of inversions covering different time slices.

ξ̃nA(x) = δ(t, t0)(Z4)
n
A(x), t0 ε teffm (5.13)

Here teffm are all the time points at which the effective mass needs to be studied.
The number of inversions is determined by this number of points.
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6 Results and Interpretation: Four-quark corre-

lators

6.1 Simulation setup

For the computation of four-quark correlators I used the same gauge field configu-
rations as for my meson computation. The following results were obtained on 20
gauge configurations. For the purpose of a initial test of the techniques this number
is sufficient.

6.2 Computational methods

6.2.1 Methods for the singly disconnected term

As already mentioned, the four-quark correlators I am interested in split up in terms
with two different structures. The study of computational methods will focus on the
computation of the singly disconnected term (cf. section 5.1).

In section 5.2.2 I discussed two possible ways of computing the singly disconnected
terms of the four-quark correlators. In order to determine the more efficient method
I will study the comparison between stochastic entries on the whole volume and
stochastic entries on one time slice for one of the singly disconnected terms in Fig-
ure 10. Again, I display the relative error of the correlator ∆C/C, of the singly
disconnected term with two up quark loops. For the stochastic volume noise I used
12 samples of stochastic sources for each gauge configuration. For the stochastic
time-slice noise I used one sample for each gauge configuration, but the inversions
were done for 6 different time slices. This number has to be chosen according to the
number of time slices one is interested in.

Even if the error is very large, the plot suggests that using noise localised on a
single time slice is a better choice for efficient computations. Thus, for the following
computations of the singly disconnected terms I will use the stochastic time-slice
noise method.
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Figure 10: noise-to-signal ratio for stochastic entries on the volume and stochastic entries
on one time slice for computing the singly disconnected terms of the four-quark
correlator (D∗

s0 sector)
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6.2.2 Comparison of stochastic methods

Figure 10 suggests an approximate factor of two to three between the stochastic
volume and the stochastic time-slice method. This factors can also be estimated by
analytic arguments, when setting all signal terms of the propagator equal one.

When using stochastic entries on the whole volume, there are 48 more noise terms
in comparison to stochastic entries on one time slice, due to the temporal extension
of the lattice. This will increase the noise-to-signal ratio by a factor of

√
48 for

the stochastic volume noise. However, for this technique I used 12 samples for each
gauge configuration. This decreases the noise-to-signal ratio by a factor of

√
12. In

total, this means that the stochastic time-slice noise is expected to be better than
the stochastic volume noise by a factor of two. Note that this factor depends on
the number of sources used for both methods and the number of time slices one is
interested in.

6.3 Four-quark study (D∗
s0 sector)

When using the four-quark operator (D∗
s0 sector) in Eq. (5.4) in order to create

a correlation function one will find a total number of six terms, two of which are
connected and four of which are singly disconnected. In Fig. 11 I will show one
of the singly disconnected terms (with two up quark loops) and the two connected
terms in order to get an idea about how large the error of the singly disconnected
term is in comparison to the connected one.

6.4 Four-quark study (a0(980) sector)

Due to the similar structure of the four-quark correlator of the a0(980) sector to the
four-quark correlator of the D∗

s0 sector I can reuse the contraction code from the
former section for the a0(980) computations, with only changing the quark flavors
and the Γ structure.
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Figure 11: correlation function for both connected terms and one singly disconnected
term of the four-quark correlator (D∗

s0 sector). In the legend the flavors of the
light propagators are denoted

6.4.1 The four-quark correlator (a0(980) sector)

When computing the four-quark correlator (a0(980) sector) from the operator in
Eq. (5.3), there are only two terms, one connected and one singly disconnected. I
present them in Figure 12.

For both terms I observe rather low statistical fluctuations. The slope of the singly
disconnected term is very low and thus will dominate the correlation function after
a few temporal separations. This is an important observation because it means that
the singly disconnected term has a large influence on the correlator and cannot be
neglected.

6.4.2 The influence of symmetry breaking on four-quark correlators

Figure 12 suggests that the singly disconnected term dominates the four-quark cor-
relator (a0(980) sector) with a rather small slope, which, in turn, results in a small
mass. Computing the effective mass of this disconnected term gives an approximate
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Figure 12: correlation function for the connected and the singly disconnected term of the
four-quark correlator (a0(980) sector)

mass of 367 ± 145 Mev, which is not the mass we expect from the a0(980) meson
(around 980 MeV). Due to the low statistic, the error is very large, but the value
still suggests that there is an unexpected mixing with the pion (mass of the pion on
given lattices is mπ = 336 MeV). This could be possible due to the parity breaking
effect of the twisted mass action.

In order to observe possible mixing of the a0(980) four-quark and the pion, I will
study the following transformations of the twisted mass action: Charge conjugation
C, parity P , light isospin Il and its third component, strange isospin Is and its third
component. Here, Is is the equivalent of the light isospin for the strange doublet.
The three components are given by the Pauli matrices Is,j = τ j(s) which only act on
the strange doublet (s+, s−)

In twisted mass, parity and isospin are no good quantum numbers anymore, so here
I will focus on charge conjugation, the third component of both isospins, and the
twisted mass parity which is P◦Il,x◦Is,x. In Tab. 2 the continuum quantum numbers
are for QCD with a degenerated strange doublet.

As one can see in Tab. 2 from the twisted mass quantum numbers pion and scalar
meson cannot mix. However, pion and the four-quark operator I used can mix.
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continuum twisted mass

O Il Is P Il,z Is,z C P tm P tm ◦ C

d̄γ5u (π) 1 0 − 1 0 xx xx −

d̄1u (a0) 1 0 + 1 0 xx xx +

(d̄γ5s
+)(s̄+γ5u) 1 xx + 1 xx xx xx xx

(d̄γ5s
+)(s̄+γ5u) + (d̄γ5s

−)(s̄−γ5u) 1 0 + 1 0 xx xx +

Table 2: table of quantum numbers in the continuum and twisted mass for the pion, the
a0(980) meson, the standard a0(980) four-quark operator and the improved one;
xx means that the operator has no conserved quantum number

Using the second operator should prohibit a mixing with the pion. When using the
symmetric operator

OS = (d̄γ5s
+)(s̄+γ5u) + (d̄γ5s

−)(s̄−γ5u) (6.1)

I obtain four singly disconnected graphs:
(
s+(t0) s

+(t1)
)
,
(
s+(t0) s

−(t1)
)
,
(
s−(t0) s

+(t1)
)
,(

s−(t0) s
−(t1)

)
. Here,

(
s+(t0) s

−(t1)
)
means that in the four-quark correlator there

is a strange-plus loop at time t0 and a strange-minus loop at time t1. When I go to
QCD with one strange quark I obtain 4

(
s(t0) s(t1)

)
which is the disconnected term

of the continuum operator O = (d̄γ5s)(s̄γ5u)

When using the antisymmetric combination for the operator

OAS = (d̄γ5s
+)(s̄+γ5u)− (d̄γ5s

−)(s̄−γ5u) (6.2)

all disconnected terms will vanish in the continuum, because two of them will gain
an additional minus sign and cancel the other two. Thus, this appears not to be a
suitable operator.
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7 Summary, Conclusion and Outlook

7.1 Summary & Conclusion

7.1.1 Meson study

The meson studies performed in this thesis were a preparative work for a larger
spectroscopy project from the ETM collaboration. Here the spectrum of various
strange and charmed mesons including gluonic excitations will be computed from
Nf = 2 + 1 + 1 gauge field configurations. My work aimed at providing information
about the effectiveness of several spectroscopy methods to this project.

I computed the noise-to-signal ratio for 24 different meson states. These 24 meson
states in twisted mass correspond to 12 different meson states in the continuum.
Three different methods were used to compute the appearing quark propagators.
The most important findings are:

• For mesons the one-end trick is always better than the standard stochastic-
source method.

• For light mesons and excited states, the one-end trick is slightly more effective
than the point-source method.

• For heavy mesons both methods provide results of equal quality.

By using analytic model calculations I was able to show the advantage of the one-end
trick over the standard stochastic-source method and showed how to estimate the
increase of the noise-to-signal ratio over the temporal separation and presented two
examples using lattice data. By studying the terms of the Dirac operator, I expected
larger gauge noise, in comparison to the noise from the stochastic sources, for the
light mesons and confirmed this with the numerical data. The numerical data also
suggests a larger gauge noise for the scalar mesons.

I studied the influence of spin dilution on the noise-to-signal ratio. The numerical
data suggests that, although using no spin dilution causes an increase of the noise-
to-signal ratio for large temporal separations, the one-end trick without spin dilution
should be preferred when applicable. I examined a smearing method, in which only
one side of the propagator is smeared and compared the results to the standard
method. I could not find an explicit advantage of only smearing the source or the
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sink. Still, the one-sided methods, especially only smearing the sink, can be used to
save computation time.

7.1.2 Four-quark study

The four-quark studies performed in this work are an additional study to a four-
quark work of the ETM collaboration [26]. Because the disconnected terms were
neglected in this work, my thesis aimed at providing preliminary information about
the computation of singly disconnected diagrams, which can be included in future
projects.

For the four-quark studies, I presented a comparison between two stochastic methods,
which can be used to compute the singly disconnected diagram. My numerical data
showed an advantage of the method where the noise is only located on one time slice
and I was also able to analytically estimate the difference between the two methods.

Next, I computed the correlators of connected as well as singly disconnected terms
of the D∗

s0 and a0(980) four-quark candidates. The results suggest that the singly
disconnected diagram can be computed without investing a large amount of com-
putational cost. For the a0(980) candidate I studied the relation of the connected
and singly-disconnected correlator and found an unexpected mixing with very light
states.

In the last section I showed how the mixing could be avoided by using symmetries
of the action in order to create a suitable four-quark operator.

7.2 Outlook

The lattices I used are rather small in comparison to recently used lattices (323 × 64
or even larger). Furthermore, the analytic model suggests a

√
V dependence of the

factor, by which the standard stochastic-source method and the one-end trick differ.
Therefore, it would be interesting to extend my computations for different volumes
and study the volume behavior of the results.

It would be interesting to find out how large the noise added by using the stochastic
methods is in comparison to the gauge noise. This could be studied by computing
the correlators for different numbers of samples of the stochastic sources. When
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comparing the results of this study to the sample dependence of the noise-to-signal
ratio suggested by the analytic model (N for standard stochastic-source method,

√
N

for the one-end trick) the magnitude of which the stochastic noise contributes to the
noise-to-signal ratio could possibly be estimated. Both of the mentioned studies are
ongoing and will be presented in [22].

For the four-quark studies it would be helpful to investigate whether the operator
introduced in the last section of my work will prevent a mixing of the possible four-
quark states with light pseudo-scalar meson states.

In order to confirm or discard the existence of four-quark states, a very lengthy study
is necessary. In a first step, a correlation matrix has to be constructed containing
the complete four quark operator, the scalar meson and the two-meson state. After
solving the generalized eigenvalue problem, one has to look for a third low-lying state.
This possible study is very challenging to perform and will need a lot of computation
time.
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