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Abstract

The focus of this thesis is the investigation of 2 + 1-dimensional Gross-Neveu model in
the limit of in�nite fermion �avors (the large-Nf limit) via mean-�eld lattice �eld theory.
The phase diagram of this theory, which serves as a model for spontaneous chiral symme-
try breaking, is herein studied in the µ-T plane. Of special interest is the existence of an
inhomogeneous phase, where the chiral condensate depends on the spatial coordinates.
Within this thesis, lattice techniques are applied to investigate the phase diagrams of
QCD-inspired models with particular emphasis on the search for inhomogeneous phases.
An inhomogeneous phase is obtained at �nite lattice spacing. The phase, however, has a
strong dependence on the lattice spacing and the used discretization. In the continuum
limit the inhomogeneous phase vanishes. Indications for a degenerate ground state at
T → 0, where inhomogeneous modulations of the chiral condensate are energetically
equivalent to spatially constant ones, are found at low and intermediate chemical po-
tentials. An extension of the 2 + 1-dimensional Gross-Neveu model via introduction of
an additional chemical potential µI , which couples to a fermionic, isospin-like degree of
freedom, is proposed. A shrinking of the inhomogeneous phase, which is present at �nite
lattice spacing for vanishing µI , is observed when increasing this additional chemical
potential. It vanishes completely when µI exceeds a certain threshold.
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1 Introduction

Elementary particle interactions are governed by three fundamental forces, namely the
strong, weak and the electromagnetic force. Their description is uni�ed by the Standard
Model of particle physics. The Standard Model has been constructed in the framework of
Quantum Field Theory (QFT) by postulating invariance of physical laws under certain
transformations, which are mainly inspired by symmetries observed in nature. Hence,
these transformations are called symmetry transformations. In contrast to the theory
some symmetry might be broken in the observed ground state. This phenomenon, where
the Lagrangian of a theory retains a certain symmetry while the ground state breaks it,
is called spontaneous symmetry breaking.

1.1 Strongly-interacting matter

The main interest in this thesis is the phenomenology of the strong interaction. Math-
ematically it is described by the fundamental theory of Quantum Chromodynamics
(QCD). Its building blocks are the fermionic quark �elds and the gluon �elds, which
are introduced as gauge bosons to the SU(3) gauge symmetry. The non-abelian gauge
group of QCD leads to self-interactions of gluons, which causes the strong interaction to
behave signi�cantly di�erent from abelian gauge theories, such as Quantum Electrody-
namics. The most prominent features are con�nement, i.e. the binding of quarks inside
hadrons, and spontaneous chiral symmetry breaking, which is manifested in the genera-
tion of a chiral condensate 〈ψ̄ψ〉 6= 0. Through the chiral condensate, particles acquire a
dynamical mass and it is often used as an order parameter for chiral symmetry breaking
in phase diagrams. Unfortunately, these interesting phenomena occur at low energies,
where the coupling constant of QCD is large and a perturbative treatment is not pos-
sible. However, the asymptotic freedom of the theory, i.e. the weak coupling at large
energy scales, allows one to understand QCD at very high temperatures T and chemical
potentials µ. At large temperatures one �nds a weakly-coupled quark-gluon plasma [1],
where quarks and gluons are decon�ned, while cold and dense matter is expected to form
a color-superconductor (for a review see Ref. [2]). At intermediate T and µ, one expects
some sort of phase transition from a hadronic and chirally broken phase to occur. At
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1 Introduction 3

�nite temperature and chemical potential, a decon�ned, chirally symmetric phase (SP)
is expected to occur, although recent investigations have shown no direct one-on-one
correspondence between con�nement and chiral symmetry breaking [3].

1.2 Phase diagram of QCD-inspired models

In recent years ab-initio lattice QCD calculations have signi�cantly improved the under-
standing of strongly-interacting matter at �nite temperature (see Ref. [4] for a review).
However, at �nite chemical potential, lattice QCD simulations are plagued by the sign
problem (see e.g. Ref. [5]). Consequently, other approaches are needed which are suitable
to investigate the behavior of matter in the �nite density region of the phase diagram.
One possibility is the employment of QFTs that share relevant properties with QCD
while being more accessible to analytical and numerical methods. Such QCD-inspired
models are expected to reproduce some of its characteristic properties. Prominent ex-
amples are the Nambu-Jona-Lasinio (NJL) model [6] and the Gross-Neveu (GN) model
[7]. While these models do not describe con�nement, they feature a chiral symmetry,
which can be spontaneously broken at low chemical potential and temperature.

Investigations of QCD-inspired models indicate that a fourth state of matter might be
realized corresponding to regions of phase diagram of strongly-interacting matter at �nite
chemical potential. The phase diagram could be extended by a so called inhomogeneous
phase (IP) with a spatially dependent chiral condensate in the intermediate density re-
gion (see Ref. [8] for a review). The 1 + 1-dimensional GN model in the limit of in�nite
fermion �avors, the so-called large-Nf limit, is an example of a rather simple QCD-
inspired quantum �eld theory that features such an IP. In the model the interaction
of fermions is described via a scalar four-fermion self-interaction term. The analytical
solution [9] features three phases: A phase with constant chiral condensate, the so-called
homogeneous broken phase (HBP), a SP and an IP. In the IP, which is found at large
baryon chemical potentials and low temperatures, the chiral condensate is oscillating in
the spatial coordinate. Directly at the transition point from the HBP the chiral conden-
sate has a kink-antikink shape, at larger µ it changes to a sine-like function. This phase
is interpreted as a baryon crystal, since the baryons seem to be localized at the roots
of the chiral condensate. The frequency of the oscillation increases when the chemical
potential is increased even more, while the oscillation amplitude decreases.

IPs have been found in other QCD-inspired models in the mean-�eld approximation,
which is the neglection of bosonic quantum �uctuations and corresponds to the large-Nf

limit for the GN model. These are the NJL model in 3 + 1 [10] and 1 + 1 dimensions
[11] (also called the chiral GN model) and the 1 + 1-dimensional isoNJL with multiple
chemical potentials [12, 13]. The Quark-Meson model, which is not formulated solely on
fermionic �elds, has also shown IPs [14, 15].
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1.3 2 + 1-dimensional quantum �eld theories as models for

strongly-interacting matter

Although certain aspects of the mentioned models resemble QCD, it is possible to �nd
arguments against their ability to describe the phenomenology of strongly-interacting
fermions. 3 + 1-dimensional models with four-fermion interactions, e.g. the NJL model,
are, in contrast to QCD, not renormalizable. The occurring IP also shows a dependence
on the cuto� that is need to normalize the respective model. Other models do not have
the same spacetime dimensions as QCD. Additionally, IPs have, until recently, only
been found in the mean-�eld approximation. This issue has been challenged in Refs. [16,
17], where inhomogeneous correlators, which indicate inhomogeneous chiral condensates,
have been found in lattice simulations of the GN model in 1 + 1 dimensions with �nite
number of fermion �avors. This study implies that models in the mean-�eld approxima-
tion might contain more information on the full QFTs1 than expected.

An important concern about the validity of the GN model as a model for strong inter-
action is its low dimensionality. This aspect will be explicitly focused on in this thesis.
Theoretical considerations provide a reason to study theories with four-fermion interac-
tion terms in three spacetime dimensions. Fermion �elds have energy dimension 1, so
that the coupling of a four-fermion term has dimension -1. Consequently, these theories
are perturbatively non-renormalizable, but in contrast to 3 + 1-dimensional theories a
large-Nf (or large-Nc) expansion allows a renormalization [18]. As a further motivation
for such a study, hydrodynamic properties in heavy-ion collision dynamics, which are
the main experimental tool to investigate the region at �nite chemical potential, are
characterized by longitudinal boost invariance [19�21], i.e. the dependence on the 3 + 1-
dimensional spacetime coordinates is reduced to three independent (Milne-)coordinates
[22]. Experimental attention started to shift to the �nite µ region, e.g. with the up-
coming FAIR facilities in Darmstadt [23]. In such experiments IPs could be observed.
Therefore, it is important to improve theoretical predictions on their possible existence in
the phase diagram of strongly-interacting matter. Interestingly, three-dimensional QFTs
with four-fermion interaction also naturally arise as e�ective models from tight bind-
ing Hamiltonians in condensed matter physics. For example, GN-type models in three
spacetime dimensions are used to describe superconducting electrons in high-temperature
superconductors which are con�ned to planes determined by the lattice structure of the
material (e.g. CuO2 planes) [24�26]. However, this thesis focuses on the application to
strongly-interacting matter.

In this work the main focus will be on the 2 + 1-dimensional GN model in the large-Nf

limit as a compromise between physical signi�cance and renormalizability. Lattice �eld

1Full QFTs in this case denotes taking full quantum �uctuations into account.



2 Outline 5

theory techniques, tested with the 1+1-dimensionsal GN model, are applied to compute
the phase diagram with particular focus on the existence of an IP. Techniques are in-
vestigated which are able to compute inhomogeneous chiral condensates without making
a speci�c ansatz for the functional form of the chiral condensate. This is a signi�cant
advantage compared to other analyses, where the shape of the condensate is restricted
to, e.g., a chiral density wave or where the shape of the condensate cannot be computed.
It is important to remark that, given the simplicity of the GN model, one cannot expect
quantitative predictions for the experiments. Instead our work should be understood
as an exploratory investigation into whether IPs will occur in models that are closer to
QCD. As an important byproduct, in future studies, the developed lattice techniques
can also be applied to models, that are much closer to QCD. In already published results
of our work an IP is obtained at �nite lattice spacing [27]. However, a recent lattice
investigation, that relies on a certain ansatz for the chiral condensate, indicates the van-
ishing of this IP in the continuum [28]. Lattice results with the 2 + 1-dimensional GN
model presented in this thesis will soon be published together with a complementary
continuum mean-�eld analyses [29]. In a further study an additional chemical potential,
that couples analogously to an isospin chemical potential, is introduced to explore its
in�uence on an IP for the �rst time.

2 Outline

In Sec. 3 the GN model in d = D + 1 dimensions is introduced as a model for spon-
taneous chiral symmetry breaking of strongly-interacting matter at �nite temperature
and chemical potential. Basic concepts are established which are needed to study this
model in the large-Nf limit. Symmetries and fermion representations in 1 + 1 and 2 + 1
dimensions are discussed and a chemical potential, that couples similar to an isospin
chemical potential, is added to the GN model. Sec. 4 explains the lattice discretization
of the GN model needed to compute the phase diagram.

In Part III the results of investigations of the 1 + 1-dimensional, 2 + 1-dimensional GN
model and its extension with an additional "isospin" chemical potential are presented.
The analytical solution of the 1 + 1-dimensional GN model and the application of lattice
�eld theory techniques in Secs. 6-8 are explained in Sec. 5. In Secs. 6-8 the phase bound-
ary of the models are computed with di�erent methods and restrictions to the chiral
condensate to obtain a complete phase diagram.

A brief summary and conclusion of the results is given in Sec. 9. Additionally, an outlook
for future investigations based on th �ndings is given. Appendices A-C contain additional
theoretical proofs and discussions, deemed to be not within the scope of Part II.
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3 The Gross-Neveu model in the limit Nf →∞
The Gross-Neveu (GN) model is a relativistic QFT describing Nf fermion �avors with
a four-fermion self-interaction term. It is arguably the simplest model in the class of
QFTs with a four-fermion interaction term, which are often referred to as four-fermion
theories. In the literature a large variety of these models can be found, designed for
applications in high energy and condensed matter physics. In this work, the GN model
will be investigated as a QCD-inspired theory under extreme conditions of high chemical
potential µ and temperature T .

Towards the introduction of thermodynamic state variables, such as µ and T , to a QFT,
it is pointed out that the interpretation of a quantum partition function Z in D + 1-
dimensional Euclidean spacetime as a statistical system in equilibrium is possible, when
the imaginary time direction is restricted to a �nite extent β = 1/T , where T is the
temperature of a statistical system. For a derivation Refs. [30, 31] are referred to. As
a consequence, bosonic �elds, denoted by φ, and fermionic �elds, denoted by ψ, are
restricted to periodic and anti-periodic boundaries in the time direction. Thus, one can
identify the quantum partition function with the canonical partition function. A baryon
chemical potential µ is introduced in analogy to statistical mechanics and the action is
transformed as

S[ψ̄, ψ, φ]→ S[ψ̄, ψ, φ]−
∫

dx0µB , (3.1)

where the baryon number operator B =
∫

dDxψ̄γ0ψ is introduced and Z is interpreted
as a grand canonical partition function.

Now,the GN model [7] is considered in d = D + 1-dimensional2 Euclidean spacetime,
where the action and partition function are

S[ψ̄, ψ] =

∫
ddx ψ̄

(
γν∂ν + γ0µ

)
ψ −

λ

2Nf

(
ψ̄ψ

)2

, Z =

∫
Dψ̄Dψ e−S[ψ̄,ψ] . (3.2)

2Only D = 1, 2 will be considered.

7



3 The Gross-Neveu model in the limit Nf →∞ 8

Here, ψ =
(
ψ1, . . . , ψNf

)T
represents Nf massless fermion �elds3, λ is the coupling con-

stant and x = (x0, . . . , xd−1)T is a spacetime coordinate. Possible choices for the γ
matrices are discussed in Sec. 3.2. Here, the chemical potential µ is already introduced
according to Eq. (3.1). The time direction is implicitly restricted to a �nite extent β
and the integration over the �elds to the (anti-)periodic boundary conditions. There-
fore, if the action S[ψ̄, ψ] is real valued, one can always interpret Z as a grand canonical
partition function of a statistical system.

3.1 Bosonization and the e�ective action

To study the dynamical generation of a chiral condensate an auxiliary scalar �eld σ is
introduced and a Hubbard-Stratonovich transformation [32] is performed

Sσ[ψ̄, ψ, σ] =

∫
ddx

[
ψ̄Qψ +

Nf

2λ
σ2

]
, Z =

∫
Dψ̄DψDσ e−Sσ [ψ̄,ψ,σ], (3.3)

where
Q[σ] = γν∂ν + γ0µ+ σ(x) (3.4)

is the Dirac operator.

A relation is sought to connect the bosonic auxiliary �eld σ to the fermion �elds ψ̄, ψ
using a Ward identity. The integral over the �eld values in Eq. (3.3) must be invariant
under the transformation

σ(x)→ σ(x) + δσ(x), (3.5)

where δσ(x) is an in�nitesimal shift of the bosonic �eld. Applying this transformation
to Eq. (3.3) results in4

Z ′ =

∫
Dψ̄DψDσ exp

(
−
∫

ddx

[
ψ̄Q[σ + δσ]ψ +

Nf

2λ
(σ + δσ)2

])
=

∫
Dψ̄DψDσ e−Sσ [ψ̄,ψ,σ] exp

(
−
∫

ddx δσ

[
ψ̄ψ +

Nf

2λ
(2σ + δσ)

])
. (3.6)

By expansion of the exponential, one obtains

Z ′ =

∫
Dψ̄DψDσ e−Sσ [ψ̄,ψ,σ]

[
1−

∫
ddx δσ

(
ψ̄ψ +

Nf

λ
σ

)
+O(δσ2)

]
Z ′ = Z −

∫
Dψ̄DψDσ e−Sσ [ψ̄,ψ,σ]

[∫
ddx δσ

(
ψ̄ψ +

Nf

λ
σ

)
+O(δσ2)

]
. (3.7)

3As spontaneous chiral symmetry breaking is of interest, only massless fermion �elds are considered.
Hence, the chiral symmetry is not explicitly broken by construction.

4Note that the integral measure is assumed to be invariant under the transformation.
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Using the invariance of the partition function under Eq. (3.5) it is found, neglecting
second order corrections,

0 =

∫
Dψ̄DψDσ e−Sσ [ψ̄,ψ,σ]

[∫
ddx δσ

(
ψ̄ψ +

Nf

λ
σ

)]
. (3.8)

One can restrict the arbitrary shift δσ(x) = δ(x − y)δς, where δς is an in�nitesimal
number, and obtains the Ward identity

〈σ(y)〉 = − λ

Nf

〈ψ̄(y)ψ(y)〉. (3.9)

Thus, the expectation value of the bosonic �eld 〈σ〉 is proportional to the fermion con-
densate 〈ψ̄ψ〉 and can be interpreted as an order parameter for chiral symmetry breaking.
This will be discussed in more detail in Sec. 3.2.

After integrating over the fermion �elds in Eq. (3.3) one obtains an e�ective action,
which depends only on the scalar �eld σ,

Se�[σ] = Nf

(
1

2λ

∫
ddx σ2 − ln det (Q)

)
, Z =

∫
Dσ e−Se�[σ] . (3.10)

As one can see from Eq. (3.10) the action is proportional to the number of fermion �avors
Nf . Since this work is in the limit Nf → ∞, only �eld con�gurations σ corresponding
to global minima of Se�[σ] contribute to the partition function Z. Thus, instead of inte-
gration over the scalar �eld σ in Eq. (3.10) it is su�cient to �nd the global minima of
Se�[σ]. Observables are then evaluated on the minimizing �eld5 σ′, i.e. 〈O[σ]〉 = O[σ′]
for any observable O, in particular 〈σ〉 = σ′.

In this work the dependence of σ is restricted to the spatial coordinates, i.e. σ = σ(x),
where x = (x1, . . . , xd−1)T is a spatial vector. This is motivated by the analytic solution
of the 1 + 1-dimensional GN model [9], where the chiral condensate only depends on
the spatial coordinate. Also the most investigations of IPs are restricted to ansatzes
dependent on spatial coordinates. This restriction will also simplify calculations, as is
explained in detail in Sec. 4.2.

Since it is d = 1 + 1, 2 + 1, that is investigated, in Appendix A it is shown that Se� is
real in these cases. In 1+1 dimensions one can perform this proof for an arbitrary chiral
condensate σ = σ(x0, x1), while in 2 + 1 dimensions the fact that chiral condensate only
depends on spatial coordinates is explicitly used, i.e. σ = σ(x1, x2). From this point on,

5This holds when Se� has a unique global minimum. It can, however, be generalized to multiple
equivalent global minima.
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the theory is mainly investigated in d = 2 + 1-dimensional spacetime, although the GN
model in 1 + 1 dimensions will be referred to in some discussions and as a test for the
numerical methods of this work.

3.2 Fermion representation and symmetries

In App. A it is shown that the e�ective action (Eq. (3.10)) has a discrete symmetry

σ → −σ , (3.11)

i.e. Se�[σ] = Se�[−σ] (compare Eq. (A.4) and Eq. (A.15)). A non-vanishing σ indicates
spontaneous breaking of this symmetry. Moreover, σ is directly proportional to the con-
densate 〈ψ̄ψ〉 (see Eq. (3.9)). Hence, the transformation (3.11) must be connected to a
symmetry transformation of the fermion �elds.

At �rst, one needs to choose an appropriate fermion representation (Rep.). Note that a
suitable set of γ matrices ful�lls the Dirac algebra in Euclidean spacetime

{γµ, γν} = γµγν + γνγµ = 2δµν1, (3.12)

where 1 is the identity in spinor space. After choosing a Rep. (chiral) symmetries will be
discussed for d = 1 + 1, 2 + 1, respectively. The maximal symmetry group is motivated
for free fermions and the symmetries realized in the GN model and the possibility of
spontaneous symmetry breaking are discussed. Additionally, important discrete space-
time symmetries and the connection to transformation (3.11) will be explained.

For a discussion of the Poincaré group in 1 + 1 and 2 + 1 dimensions and its Rep. on a
scalar �eld and with a single fermion �avor see App. B. In this context it is important
to note that a chemical potential of µ 6= 0 and having a �nite temperature also, breaks
Lorentz6 invariance explicitly.

3.2.1 The Gross-Neveu model in d = 1 + 1 dimensions

A brief discussion of the fermion Rep. typically used for the GN model in 1+1 spacetime
dimensions is �rst given. In 1 + 1 spacetime dimensions a possible irreducible 2× 2 Rep.
for the γ matrices is

γ0 = τ1 , γ1 = τ2 , (3.13)

where τj denote the 2× 2 Pauli matrices which satisfy τiτj = δij12 + iεijkτk.

6Although a Euclidean metric is chosen here, the term Lorentz transformation is still used.
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Full symmetry for free fermions

A γ5 matrix is a self-inverse matrix that ful�lls {γ5, γµ} = 0. For rep. (3.13) it is
appropriate to de�ne γ5 = τ3.
The free kinetic fermion action is then invariant under vector transformation

ψ → eiαa12λaψ , ψ̄ → ψ̄e−iαa12λa , (3.14)

and a continuous chiral symmetry generated by γ5,

ψ → eiθaγ5λaψ , ψ̄ → ψ̄eiθaγ5λa , (3.15)

where {λ1, . . . , λNf−1} are the generalized Nf ×Nf Gell-Mann matrices [33] and λNf =
1Nf . α

a and θa are the parameters of the transformation. The structure of the generators
as tensor products with λa is due to �avor rotations. To obtain transformations, that
do not act on �avor space, one can set the parameters to αa = δNf ,aα and θa = δNf ,aθ.
The symmetry group is, consequently, U12(Nf ) × Uγ5(Nf ), where the chiral symmetry
can be broken by a mass term.

The Gross-Neveu interaction

The interaction term of the GN model is not invariant under this transformation for
arbitrary parameters. For example for ψ → eiθγ5ψ(

ψ̄ψ
)2 →

(
ψ̄e2iθγ5ψ

)2
=
(
ψ̄ [cos(2θ)12 + i sin(2θ)γ5]ψ

)2
, (3.16)

i.e.
(
ψ̄ψ
)2

is invariant only for θ = nπ
2
, n ∈ Z. For odd n only a discrete symmetry

transformation remains

ψ → inγ5ψ , ψ̄ → inψ̄γ5 , (3.17)

which, via transformation (3.14), is equivalent to

ψ → γ5ψ , ψ̄ → −ψ̄γ5 . (3.18)

This discrete chiral Z2-symmetry is the remnant of the continuous chiral symmetry
(3.15). Due to Eq. (3.9) a non-vanishing σ implies a non-vanishing fermion condensate
〈ψ̄ψ〉. This in turn indicates spontaneous breaking of the discrete chiral symmetry,
because

〈ψ̄ψ〉 (3.18)→ −〈ψ̄ψ〉 . (3.19)

Accordingly, in 1 + 1 dimensions σ is an order parameter for spontaneous breaking of
the discrete chiral symmetry (3.18).
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3.2.2 The Gross-Neveu model in d = 2 + 1 dimensions

At �rst glance, one might expect that the symmetries in 2 + 1 dimensions are the same
as in 1 + 1 dimensions. However, the situation gets more complicated, since one cannot
de�ne a chiral symmetry transformation in the irreducible Rep. of the Dirac algebra
(3.12), i.e. for 2-component spin space.

2-component fermion representation

In 2 + 1 dimensions there are two inequivalent irreducible Reps. of the Dirac algebra
(3.12), which can be written e.g. as

γ0 = +τ2 , γ1 = +τ3 , γ2 = +τ1 , (3.20)

γ̃0 = −τ2 , γ̃1 = −τ3 , γ̃2 = −τ1 . (3.21)

Neither for Rep. (3.20) nor Rep. (3.21) there is an appropriate γ5 matrix. Consequently,
there is also no discrete chiral symmetry (3.18) and a non-vanishing σ cannot be inter-
preted as an indication for chiral symmetry breaking. Indeed, free fermions only have a
U(Nf ) symmetry, generated by transformation (3.14). Instead, there is another discrete
symmetry

(x0, x1, x2)T → (x0, x1, −x2)T , ψ → −iγ2ψ , ψ̄ → −iψ̄γ2 , (3.22)

changing the sign of 〈ψ̄ψ〉, i.e.
〈ψ̄ψ〉 (3.22)→ −〈ψ̄ψ〉. (3.23)

This symmetry is usually de�ned as P in 2 + 1 dimensions, since the re�ection of both
spatial coordinates is just a rotation with angle π, which is clearly an element of the
Euclidean Lorentz group (see App. B.2). Thus, a non-vanishing σ indicates spontaneous
breaking of parity.

4-component fermion representation

Since the GN model is used as a very basic model for chiral symmetry breaking in QCD,
it is important to consider reducible fermion Reps. with a corresponding γ5 matrix.
One possibility is to combine the irreducible Rep. (3.20) and Rep. (3.21) resulting in
4× 4-matrices

γ0 = τ3 ⊗ τ2 =

 +τ2 0

0 −τ2

 , γ1 = τ3 ⊗ τ3 =

 +τ3 0

0 −τ3

 ,

γ2 = τ3 ⊗ τ1 =

 +τ1 0

0 −τ1

 (3.24)
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(see e.g. Refs. [34�36]). These three matrices are block-diagonal with the upper block
corresponding to Rep. (3.20) and the lower block to Rep. (3.21). The introduction of the
tensor products with τ3 can be interpreted as the introduction of an isospin degree of
freedom (compare Ref. [37]). That is to say that the two upper components of a spinor
describe an "isospin up" spinor, while the two lower components represent "isospin lower"
spinor components. There are two linearly independent matrices that anti-commute with
the γµ matrices7

γ4 = τ1 ⊗ 12 =

 0 +12

+12 0

 , γ5 = −τ2 ⊗ 12 =

 0 +i12

−i12 0

 , (3.25)

i.e. both ful�ll the properties necessary for a γ5 matrix. Chiral transformations are
de�ned by taking both γ4 and γ5 into account. Additionally, one can de�ne

γ45 ≡ iγ4γ5 = τ3 ⊗ 12 =

 +12 0

0 −12

 , (3.26)

which commutes with the γ matrices but anti-commutes with γ4 and γ5. Free massless
fermions in 2 + 1 dimensions are invariant under the vector transformations

ψ → eiαa14λaψ , ψ̄ → ψ̄e−iαa14λa , (3.27a)

ψ → eiβaγ45λaψ , ψ̄ → ψ̄e−iβaγ45λa , (3.27b)

as well as under the axial transformations

ψ → eiφaγ4λaψ , ψ̄ → ψ̄eiφaγ4λa , (3.28a)

ψ → eiθaγ5λaψ , ψ̄ → ψ̄eiθaγ5λa , (3.28b)

with real parameters αa, βa, φa, θa. These four transformations combine to form the
symmetry group U(2Nf ). A mass term leads to the symmetry breaking pattern

U(2Nf )→ U14(Nf )× Uγ45(Nf ) , (3.29)

as the vector transformations (3.27) remain intact.

In the case of the GN model continuous axial transformations (3.28) are reduced to

discrete symmetries by the
(
ψ̄ψ
)2

interaction term within the same mechanism explained
for 1 + 1 dimensions. These Z2-symmetries are

ψ → γ4ψ , ψ̄ → −ψ̄γ4 , (3.30a)

ψ → γ5ψ , ψ̄ → −ψ̄γ5 , (3.30b)

7We keep the notation used in Ref. [35, 36] for the two anti-commuting matrices.
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and they are needed to interpreted σ as the chiral order parameter. Note that Eq. (3.30a)
and Eq. (3.30b) are not independent. One obtains Eq. (3.30a) by application of vector
transformations (3.27b) for βa = δNf ,a π

2
and Eq. (3.30b). Consequently, one independent

discrete chiral symmetry transformation is obtained.

To conclude, the Gross-Neveu model with fermion Rep. (3.24) has the vector symmetries
(3.27) and discrete chiral Z2-symmetry. The symmetry breaking pattern is

U14(Nf )× Uγ45(Nf )× Z2 → U14(Nf )× Uγ45(Nf ) . (3.31)

Spontaneous breaking of the discrete chiral symmetry is indicated by a breaking of
symmetry (3.11), i.e. by non-vanishing chiral order parameter σ.

3.3 Equivalence of 2- and 4-component fermion representations

In the following, a simple relation will be derived between the expectation values 〈O(σ)〉
obtained with either of the two irreducible 2-component fermion Reps. (3.20) and (3.21)
and the 4-component fermion Rep. (3.24).

Dirac operators for fermion Reps. (3.20), (3.21) and (3.24) are denoted with Q(2), Q̃(2)

and Q(4), respectively. Q(4) has block-diagonal structure in spinor space,

Q(4)[σ] =

(
Q(2)[σ] 0

0 Q̃(2)[σ]

)
. (3.32)

Thus,
det Q(4)[σ] = det Q(2)[σ] det Q̃(2)[σ] . (3.33)

Using

det Q̃(2)[+σ] = det
(
−Q(2)[−σ]

)
= det Q(2)[−σ] = det Q(2)[+σ] , (3.34)

where the last step is shown in App. A.2, Eq. (3.33) simpli�es to

det Q(4)[σ] =
(

det Q(2)[σ]
)2

=
(

det Q̃(2)[σ]
)2

. (3.35)

From Eq. (3.10) and Eq. (3.35) one can conclude

S
(4)
e� [σ, λ] = 2S

(2)
e� [σ, 2λ] = 2S̃

(2)
e� [σ, 2λ] , (3.36)

where S
(2)
e� [σ, λ], S̃

(2)
e� [σ, λ] and S

(4)
e� [σ, λ] denote the e�ective actions for fermion Reps.

(3.20), (3.21) and (3.24), respectively, and coupling constant λ. Consequently, expecta-
tion values 〈O[σ]〉 are related according to

〈O[σ]〉
∣∣∣λ
4×4 Rep. (3.24)

= 〈O[σ]〉
∣∣∣2λ
2×2 Rep. (3.20)

= 〈O[σ]〉
∣∣∣2λ
2×2 Rep. (3.21)

. (3.37)
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Note in particular that the phase diagram with respect to the order parameter σ is the
same for all three Reps. . In practice this is useful, because all numerical computations
can be performed with the computationally cheaper 2×2 fermion Rep. (3.20) (or (3.21)),
while the corresponding results are also valid for the 4 × 4 fermion Rep. (3.24), where
an interpretation in terms of chiral symmetry and its spontaneous breaking is possible.

3.4 Isospin asymmetric Gross-Neveu model

As described in Sec. 3.2.2, a reducible, 4×4 fermion Rep. , e.g. given in Eq. (3.24), can be
interpreted as the introduction of an isospin index. The action Eq. (3.2), then becomes
diagonal in isospin space. Consequently, one can interpret the upper and lower blocks
of Q(4), given in Eq. (3.32), as Dirac operators for fermion �elds with "isospin up" and
"isospin down". Any 4-component spinor with the two lower components vanishing are
de�ned as a fermion �eld with "isospin up" and spinors with the two upper components
vanishing as a fermion �eld with "isospin down".

Although the construction of an isospin degree of freedom8 di�ers from the usual one
in the Standard Model, it is interesting to study how the introduction of an additional
chemical potential µI us, which couples to an isospin degree of freedom, a�ects the phase
diagram of a theory and, especially, the existence of IPs. µI is introduced with an addi-
tional coupling in this space via a γ45 matrix.

The resulting action is given by (compare Eq. (3.2))

S[ψ̄, ψ] =

∫
d3x

(
ψ̄
(
γν∂ν + γ0µ+ γ45γ0µI

)
ψ −

λ

2Nf

(
ψ̄ψ
)2
)
, Z =

∫
Dψ̄Dψ e−S[ψ̄,ψ] ,

(3.38)

where Rep. (3.24) is used, in this case, for the Gamma matrices. Then, the GN model
with "isospin" chemical potential can be treated in the same way as in Sec. 3.1. In the
e�ective action a Dirac operator with the additional isospin structure is obtained, i.e.

Se�[σ] = Nf

(
1

2λ

∫
d3x σ2 − ln Det(Q)

)
, Z =

∫
Dσ e−Se�[σ] (3.39)

with
Q(4) = γν∂ν + γ0µ+ γ45γ0µI + σ . (3.40)

One can show that
det Q(4)[µ, µI ,+σ] = det Q(4)[µ, µI ,−σ] , (3.41)

8For a discussion of this interpretation see Sec. 5 and App. A of Ref. [37]. It should be noted that what
is herein de�ned as isospin di�ers from in the Standard Model, as the underlying symmetries are only
discrete symmetries in the 2 + 1-dimensional GN model
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as is done for µI = 0 in App. A.2. In an analogous way one can calculate

det Q(4)[−µ,−µI , σ] = det Q(4)[+µ,+µI , σ] . (3.42)

The Dirac operator can be expressed via irreducible blocks in isospin space

Q(4)[µ, µI , σ] =

(
Q(2)[µ+ µI , σ] 0

0 Q̃(2)[µ− µI , σ]

)
, (3.43)

where Q2[µ, σ] and Q̃
(2)

[µ, σ] are de�ned as in Sec. 3.3. For Q(2) and Q̃
(2)

the following
identities hold

det Q(2)[µ,+σ] = det Q(2)[µ,−σ] (3.44)

and
det Q(2)[+µ, σ] = det Q(2)[−µ, σ] . (3.45)

Consequently, for µI = 0, again, the identity from Sec. 3.3,

det Q(4)[µ, σ] =
(

det Q(2)[µ, σ]
)2

=
(

det Q̃(2)[µ, σ]
)2

, (3.46)

is found. The same holds for µ = 0 with the identi�cation µI ≡ µ, which can be shown
using Eq. (3.45). Consequently, the identities (3.36) and (3.37) also hold for µI . In the
case of µ 6= 0 and µI 6= 0 one obtains

det Q(4)[µ, µI , σ] = det Q(2)[µ+ µI , σ] det Q̃
(2)

[µ− µI , σ] , (3.47)

which cannot be identi�ed with the typical GN model in 2+1 dimensions. For the upper
block in Eq. (3.43), i.e. for "isospin up" �elds, one has a chemical potential µ + µI and
for "isospin down" �elds one has a chemical potential µ − µI . The application of the
discrete chiral symmetry transformation (3.30) leads to

det Q(4)[µ, µI , σ]→ det Q(4)′[µ, µI , σ] = det Q(2)[µ− µI ,−σ] det Q̃
(2)

[µ+ µI ,−σ]

= det Q(2)[µ− µI , σ] det Q̃
(2)

[µ+ µI , σ]

= det Q̃(2)[µ− µI , σ] det Q(2)[µ+ µI , σ] , (3.48)

where in the second line Eq. (3.44) is used and in the last step Eq. (3.34) is used.
Consequently, the discrete chiral symmetry transformations leads to an exchange of
the chemical potentials for "isospin up" and "isospin down" fermions. As obtained in
this calculation, the action is still invariant under this exchange of chemical potentials.
Through relation Eq. (3.45) one can easily see that the determinant of the Diracoperator
det Q(4) is invariant under the exchange of the two chemical potentials

µI → µ , µ→ µI . (3.49)

In the following discussions µI = 0 is set, unless denoted otherwise. This preserves
generality in dimensionality and spin space in the following chapter. However, the lattice
discretization discussed in Sec. 4 can be applied to µI 6= 0 analogously.



4 Lattice discretization 17

4 Lattice discretization

We consider a D-dimensional spatial volume V of extent L, i.e. V = LD, with periodic
boundary conditions. As in Sec. 3 we later set D = 1, 2. The volume is discretized using
lattice �eld theory, where the lattice spacing is denoted by a and the number of lattice
sites is ND

s , i.e. Ns lattice sites in each of the D directions and L = Nsa. Formally, we
de�ne the lattice in the spatial directions as a set of discrete spacetime points x = na
with n = (n1, . . . , nD)T, where integer numbers nj = 0, . . . , Ns − 1. Unless explicitly
stated otherwise, all spatial coordinates in this chapter are restricted to the lattice sites.

Since we are interested in studying spontaneous chiral symmetry breaking, it is essen-
tial to use a chirally symmetric fermion discretization. We decided to use the naive
discretization (see e.g. the textbook [38]). Naive fermions imply fermion doubling, i.e.
in the case of D spatial dimensions the number of fermion �avors Nf is restricted to
multiples of 2D. This is not a problem, because we focus on the limit Nf → ∞. For a
discussion on the implications of the naive lattice discretization of fermion �elds in the
context of free fermions and the GN model we refer to App. C.

The temporal extent corresponds to the inverse temperature β = 1/T and boundary
conditions are antiperiodic. In the temporal direction we do not use lattice �eld theory,
but regularize the fermion �elds by a superposition of 2Nt plane waves, as discussed
in detail below and in Refs. [39, 40]. The chemical potential can be introduced as
in the continuum by adding γ0µ to the Dirac operator, i.e. an exponential coupling
as typically used in lattice �eld theory is not necessary. As a consequence we expect
smaller discretization errors (see Ref. [41] for a detailed discussion). Ref. [41] states that
in principle one needs to add a corrective term to fermionic observables, when introducing
µ as in the continuum. Since we are interested in the chiral condensate, we do not need
such a correction. The application of plane waves to the GN model allow straightforward
analytical simpli�cations of the fermion determinant9, if the chiral condensate does not
depend on x0, i.e. σ = σ(x) with x = (x1, . . . , xD)T.

4.1 Free fermions

We de�ne the plane wave expansion of a fermion �eld representing a single �avor as

ψ(x0,x) =
Nt∑

n0=−Nt+1

1√
2Nt

ψ(n0,x) eiωn0x0 , (4.1)

where 2Nt denotes the number of modes. The frequencies ωn0 = 2π(n0 − 1/2)/β with
n0 = −Nt + 1,−Nt + 2, . . . , Nt − 1, Nt imply antiperiodic boundary conditions in tem-

9This is also the case for the usual lattice discretization of fermions, as e.g. for the naive discretization.
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poral direction. We use 1/a ≡ 1 as density of degrees of freedom10, i.e. 2Nt/β = 1.
Consequently, the inverse temperature and the number of modes are related according
to β = 2Nt. Inserting the plane wave expansion in the free fermion action leads to11

Sfree[ψ̄, ψ] =

∫
d3x ψ̄(x0,x)

(
γ0(∂0 + µ) +

D∑
ν=1

γν∂ν

)
ψ(x0,x) =

=
Nt∑

n0=−Nt+1

∫
d2x ψ̄(n0,x)

(
(γ0(iωn0 + µ) +

D∑
ν=1

γν∂ν

)
ψ(n0,x) . (4.2)

For the spatial directions we apply the naive lattice discretization,

Sfree[χ̄, χ] =
Nt∑

n0=−Nt+1

∑
x

χ̄(n0,x)

(
γ0(iωn0 + µ)χ(n0,x)

+
D∑
j=1

γj
χ(n0,x + ej)− χ(n0,x− ej)

2

)
. (4.3)

Due to fermion doubling χ represents 2D fermion �avors and, thus, cannot be interpreted
as a standard fermion �eld ψ as e.g. used in Eq. (4.2) or in Sec. 3. The relation between
the components of χ and of ψ is non-trivial. In Refs. [16, 17, 42] this is discussed in
detail. We give a short summary in App. C.

4.2 The Gross-Neveu model

A possible naive lattice discretization of the e�ective action (3.3) of the GN model with
Nf �avors is

Sσ[χ̄f , χf , σ] =

Nf/2
D∑

f=1

(
Sfree[χ̄f , χf ] +

Nt∑
n0=−Nt+1

∑
x,y

χ̄f (n0,x)WD(x− y)σ(y)χf (n0,x)

)
+
NfNt

λ

∑
x

σ2(x) , (4.4)

where we substitute WD with

W ′
D(x− y) =

D∏
j=1

(
1

4
δxj−1,yj +

1

2
δxj ,yj +

1

4
δxj+1,yj

)
(4.5)

10Throughout this section we express all dimensionful quantities in units of the lattice spacing, e.g.
L ≡ L/a, µ ≡ µa or σ ≡ σa.

11Note that the representation of γ matrices and spinors depends on the spacetime dimensionality
d = D + 1.
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and

W ′′
D(x− y) =

D∏
j=1

1

Ns

1 +

Ns
4
−1∑

n=1

2 cos

(
2πn(xj − yj)

L

)
+ cos

(π
2

(xj − yj)
) . (4.6)

Because of fermion doubling Nf/2
D naive fermion �elds χf , f = 1, . . . , Nf/2

D are needed
to represent Nf fermion �avors. We stress that a speci�c non-diagonal structure of
WD(x−y) is mandatory for a valid discretization of the GN model with naive fermions,
i.e. a discretization with the correct continuum limit. The straightforward and probably
more intuitive choice WD(x − y) = δx,y , which we used at an early stage of this work
[27] and which was also used in Ref. [28], introduces additional four fermion interactions,
which are not part of the GN model. For a detailed discussion in the context of the 1+1-
dimensional GN model we refer to App. A of Ref. [16]. We motivate the introduction of
a non-diagonal WD for the naive discretization of fermions and derive W ′

D and W ′′
D for

D = 1 in App. C. As we explain in detail there, the chosen weight functions are contrary
choices in the way to suppress the wrong interaction terms. While W ′′

D is more costly
compared to W ′

D as one needs to sum over the whole lattice, it exactly suppresses the
wrong interaction terms. W ′

D in contrast relatively crudely suppresses the wrong inter-
action terms for large lattice spacing albeit resulting in the correct continuum theory
(compare Fig. C.1 in App. C). Note that the number of lattice sites Ns is restricted to
multiples of 4 when using W ′′

D to ensure correct normalization.

After integrating over the fermion �elds in the partition function, as discussed in Sec. 3,
one obtains the discretized e�ective action

Se�[σ] = Nf

(
Nt

λ

∑
x

σ2(x)− 1

2D
ln det(Q)

)
. (4.7)

The Dirac operator Q is a matrix of size 2NtN
D
s Nγ × 2NtN

D
s Nγ with rows and columns

representing spacetime and spin12,

Q(n0,x;n′0,x
′) =δn0,n′

0

(
γ0(iωn0 + µ)δx,x′ +

D∑
j=1

γν
δx+ej ,x′ − δx−ej ,x′

2

+ δx,x′

∑
y

WD(x− y)σ(y)

)
. (4.8)

This matrix is block-diagonal with respect to the temporal indices n0 and n
′
0. Thus, one

12Nγ denotes the dimensionality of spin space. Due to our restriction to D = 1, 2 either Nγ = 2 or
Nγ = 4 in this thesis.
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can factorize the fermion determinant in (4.7),

ln det(Q) =
Nt∑

n0=−Nt+1

ln det
(

Q(n0,x;n0,x
′)
)
, (4.9)

i.e. the problem is reduced to the computation of the determinants of 2Nt smaller ma-
trices of size NγN

D
s ×NγN

D
s .

4.3 Numerical evaluation of the e�ective action

We perform computations in 1 + 1 dimensions with the 2× 2 γ matrices (3.13). In 2 + 1
dimensions most calculations are performed for the irreducible, 2 × 2 Rep. (3.20), but
some are also cross-checked for 4 × 4 γ matrices (3.24) (see the detailed discussion in
Sec. 3.3). For µI 6= 0 Rep. (3.24) is used. An important part of these computations is
the numerical evaluation of the e�ective action (4.7) for a given �eld con�guration σ.
Typically this has to be repeated many times, e.g. when minimizing Se� with respect to
σ or when checking the stability of a homogeneous condensate σ with respect to in�nites-
imal inhomogeneous deformations. Particularly time consuming is the computation of
ln det(Q). To maximize e�ciency, we distinguish the following three cases:

• σ = σ(x1, x2) :13

The Dirac operator (4.8) is a block-diagonal matrix with 2Nt blocks of size NγN
2
s ×

NγN
2
s . The determinant of each block is computed via a standard LU-decomposition

(we use the publicly available GSL library [43]).

• σ = σ(x1):
Restricting the dependence of σ to only one of the D spatial coordinates, i.e.
σ = σ(x1), further reduces the numerical costs of computing Se�. As we will
explain in Sec. 7, this case will be interesting for D = 2. Similar to the plane wave
expansion in temporal direction, one can diagonalize the Dirac operator (4.8) with
respect to ~x = (x2, . . . , xD)T by the ansatz

χ(x0,x) =
Nt∑

n0=−Nt+1

Ns−1∑
n2,...,nD=0

1√
2NtNs

χ(n0, x1, ~n) ei(ωn0x0+~k~x) (4.10)

with ~x still restricted to the sites of the spatial lattice14. We de�ne ~k = (kn2 , . . . , knD)T =
2π~n/L with ~n = (n2, . . . , nD)T and integer numbers nj = 0, . . . , Ns− 1. The Dirac

13Of course, this case is only considered for D ≥ 2.
14In principle the ~x direction could be treated in the continuum, exactly in the same way as the temporal
direction discussed in section 4.1. However, since we plan to compare to computations with σ =
σ(x1, . . . , xD), we prefer to use the same regularization in both cases, i.e. use a lattice discretization
of the ~x direction also for σ = σ(x1).
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operator (4.8) then becomes

Q(n0, x1, ~n;n′0, x
′
1, ~n

′) =

= δn0,n′
0
δ~n, ~n′

(
γ0(iωn0 + µ)δx1,x′1 + γ1

δx1+1,x′1
− δx1−1,x′1

2

+
D∑
ν=2

δx1,x′1γν i sin(knν ) + δx1,x′1

∑
y1

W1(x1 − y1)σ(y1)

)
(4.11)

where we de�ne W1 as

W ′
1(x1 − y1) =

1

4
δx1−1,y1 +

1

2
δx1,y1 +

1

4
δx1+1,y1 (4.12)

or

W ′′
1 (x1 − y1) =

1

Ns

1 +

Ns
4
−1∑

n=1

2 cos

(
2πn(x1 − y1)

L

)
+ cos

(π
2

(x1 − y1)
) .

(4.13)

This is a block-diagonal matrix with respect to the temporal indices n0 and n′0 as
well as the spatial indices ~n and ~n′. The computation of the fermion determinant in
(4.7) is thus reduced to the computation of the determinants of 2NtN

D−1
s matrices

of size NγNs ×NγNs,

ln det(Q) =
Nt∑

n0=−Nt+1

Ns−1∑
n2,...,nD=0

ln det
(

Q(n0, x1, ~n;n0, x
′
1, ~n)

)
. (4.14)

Again, the determinant of each block is computed via a standard LU-decomposition.

• σ = const:
The eigenvalues of Q can be calculated analytically in a straightforward way.Due
to the restriction on homogeneous σ the result is independent of the choice on
the WD function. We show the result for the D + 1-dimensional GN model. We
only consider D ∈ {1, 2} and, thus, are able to use 2 × 2 γ matrices according
to the discussion in Sec. 3.3. ln det(Q) is then computed by summing over the
eigenvalues15,

Se�[σ]

Nf

=
NtN

D
s

λ
σ2 − 1

4

Nt∑
n0=1

∑
n

ln
(
A2
D(σ) +B2

)
, (4.15)

15Note that in contrast to previous equations in this section the sum over n0 is restricted to positive
integers.
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where n = (n1, . . . , nD)T with nj = 0, . . . , Ns − 1 and

AD(σ) = σ2 − µ2 + ω2
n0

+
D∑
j=1

sin2(knj) , B = 2µωn0 , (4.16)

ωn0 = 2π(n0 − 1/2)/β and knj = 2πnj/L. We will also need the second derivative
of Se�[σ] at σ = 0, which can be expressed as
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and the fourth derivative of Se�[σ] at σ = 0, i.e.

∂4
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)
. (4.18)

4.4 Scale setting

The scale setting for the 1 + 1-dimensional and 2 + 1-dimensional GN model works
similar. Our method to set the scale is based on results from Ref. [37, 44�46], where it
was found that at µ = 0 there is a homogeneously broken phase with σ 6= 0 for T < Tc
and a symmetric phase with σ = 0 for T > Tc (Tc denotes the critical temperature).
Moreover, the corresponding phase transition turned out to be of second order, as it is
for the 1 + 1-dimensional GN model [9, 44].

In our regularization the number of modes in temporal direction is proportional to the
inverse temperature,

Nt =
β

2
≡ β

2a
, (4.19)

as discussed in the beginning of Sec. 4. Moreover, the lattice spacing is a function of the
coupling constant λ, where a(λ) is monotonically increasing. Thus, the temperature can
be adjusted by either changing Nt or λ. To set the scale, we �x the number of modes at
the critical temperature to Nt,c, where Nt,c is typically a small number, 2 ≤ Nt,c ≤ 10
(throughout this section Ns = L is chosen su�ciently large, such that �nite volume
corrections are negligible). This in turn �xes the coupling constant λ, which has to be
tuned in such a way that 2Nt,ca(λ) corresponds to βc (according to (4.19)). An obvious
possibility is to determine λ such that σ(λ−ε) = 0 and σ(λ+ε) 6= 0 for in�nitesimal ε (see
Fig. 4.1). Mathematically equivalent (because the phase transition is of second order),
but more practical from a numerical point of view is to consider (∂2/∂σ2)Se�[σ]/Nf |σ=0
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Fig. 4.1: Both plots are from calculations for D = 2. For D = 1 the results are qualitatively the
same. (left)|σ| as a function of λ for Nt = 5 and Ns = 100. Nt,c = 5 corresponds to λ = 3.998, i.e. that
value of λ, where |σ| starts to deviate from 0. The plot also con�rms that the transition between the
homogeneously broken phase and the symmetric phase at µ = 0 is of second order. (right)|σ|µ=0,T as
a function of T/Tc for Nt,c = 4 and Ns = 80.

(see (4.17)) as a function of λ and to determine its root, which leads to

λ = 2Nt,cN
2
s

( Nt,c∑
n0=1

∑
n

AD(0)

A2
D(0) +B2

)−1

. (4.20)

Even though λ is now �xed, the temperature can still be changed in discrete steps by
increasing or decreasing the number of modes, T = 1/2Nt.

Fig. 4.2: Tc/σ0 as a function of the lattice spacing a. (left) D = 1. The data points correspond to
Nt,c ∈ [2, 36]. For small values of a, Tc/σ0 approaches the analytical result e

C/π ≈ 0.566 . . .(right) D =
2. The data points correspond to Nt,c ∈ [2, 28]. For small values of a, Tc/σ0 approaches the analytical
result 1/2 ln(2) ≈ 0.721 . . .

To obtain |σ|µ,T , one has to minimize Se� with respect to σ. In µ-T regions, where a
homogeneous condensate is expected, e.g. at µ = 0, this is numerically rather simple.
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One just has to minimize Se� as given in Eq. (4.15), which is an ordinary function of a
single variable, using e.g. a standard golden section search. |σ|µ=0,T quickly approaches
a plateau, when decreasing T , i.e. |σ|µ=0,T is almost constant for T <∼Tc/4 (see Fig. 4.1,
right plot). This allows to determine σ0 = |σ|µ=0,T=0 ≈ |σ|µ=0,T <∼ Tc/4

and to express all

dimensionful quantities in units of σ0, which is common throughout the literature.

For the critical temperature Tc/σ0 we obtain values rather close to the analytically known
result in the continuum, i.e. 1/2 ln(2) in the 2 + 1-dimensional GN model[45] and eC/π
in the 1 + 1-dimensional GN model[9], where C is the Euler-Mascheroni constant. When
increasing Nt,c (and, thus, decreasing λ), which amounts to approaching the continuum
limit, our results for Tc/σ0 approach 1/2 ln(2) ≈ 0.721 and eC/π ≈ 0.566, as can be seen
in Fig. 4.2.



Part III

Results

25



5 Preliminary remarks on the results

This section describes the lattice setups used and the structure applied in the follow-
ing Secs. 6, 7 and 8. In each of these sections the methods employed to detect phase
boundaries will be discussed �rst. It is important to remark that not all the methods
used allow one to determine a complete phase diagram, they rather focus on some of
its aspects. Nevertheless, the term "phase diagram" is still used and it will accord-
ingly have a di�erent interpretation, depending on the respective section. To validate
the numerical methods of this thesis, they are tested on the analytical results of the
d = 1 + 1-dimensional GN model in the large-Nf limit at the beginning of each section.
Thereby, the analytical results are discussed in the following. Then, expectations for
2 + 1-dimensional models are brie�y formulated based on previous studies. Finally, the
lattice data are collected in Tab. 1.

5.1 Analytical solution of the 1 + 1-dimensional Gross-Neveu
model in the large-Nf limit

Fig. 5.1: (left) The revised phase diagram of the 1 + 1-dimensional GN model in the large-Nf limit
[9]. The dashed blue line represents the �rst order phase transition from the SP and the HBP for
homogeneous chiral condensate σ = const. from Ref. [47]. All other boundaries are of second order.
(right) The chiral condensate σ′ in the IP for various µ/σ0 = (µc + ∆µ)/σ0, at T = 0, where µc is the
chemical potential, at which the phase transition from the IP to the HBP occurs.

26
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In this subsection the analytical solution for the d = 1 + 1-dimensional GN model is
presented. Analytical results are shown for both the homogeneous chiral condensate [47]
and the revised phase diagram [9] with inhomogeneous solutions in the left panel of Fig.
5.1. The analytical solution in Ref. [9] features three phases characterized by di�erent
behaviors of σ = σ′:16

• A symmetric phase (SP) with σ = 0 at large µ and/or large T .

• A homogeneous broken phase (HBP) with σ = const. and σ 6= 0 at small µ and
small T .

• An inhomogeneous phase (IP), where σ(x) is a varying function of the spatial co-
ordinates (compare to the right panel of Fig. 5.1), at intermediate µ and small T .
Exactly at the phase transition one obtains a kink-antikink shape. With increasing
µ the chiral condensate changes to a cos-like shape. The frequency of the oscillation
increases with a further increase of the chemical potential, while the amplitude de-
creases. This functional behavior of the chiral condensate is analytically described
by a product of Jacobi elliptic functions.

For a homogeneous condensate σ = const. one obtains a �rst order transition from
T/σ0 = 0.0, µ/σ0 = 1/

√
2 ≈ 0.707 to the Tricritical point (TCP) at T/σ0 = 0.318,

µ/σ0 = 0608, where the homogeneous phase transition changes from �rst to second
order. The Tricritical point (TCP) is located at the Lifshitz point (LP), which occurs
for an inhomogeneous σ = σ(x1) and describes the point, where both phase boundaries
from the IP meet the phase transition between the homogeneous phases. Above the LP
the second order boundary between the HBP and the SP does not change compared
to the homogeneous case. Below the LP both second order phase transitions towards
the IP split up and the IP completely covers the �rst order line from the homogeneous
phase diagram. The boundary between the HBP and the IP extends to T/σ0 = 0.0,
µ/σ0 = 2/π ≈ 0.637.

5.2 Classi�cation of phase boundaries and previous results

Strictly, one would have to classify phase transitions after Ehrenfest, i.e. via the investi-
gation of discontinuities in derivatives of the grand canonical potential. For the purposes
of this work only the behavior of the order parameter σ at the transition will be inves-
tigated. A �rst order transition is characterized by the non-di�erentiability of the chiral
condensate as a function of the chemical potential at �xed T , while in a second order
transition the chiral condensate changes continuously and is di�erentiable with respect
to the chemical potential.

16In Sec. 3.1 σ′ was de�ned as the chiral condensate, i.e. as the global minimum of the e�ective action
(3.10). To simplify the notation σ is de�ned as the global minimum from now on.
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The numerical methods discussed in the di�erent sections of the Part III will be applied
to the 2 + 1-dimensional GN model and to its isospin asymmetric variant as de�ned in
Sec. 3.4. The three phases from the test case d = 1 + 1 are expected to also exist for the
d = 2 + 1-dimensional models from Refs. [27, 28, 37, 45, 46]. In the 2 + 1-dimensional
GN model the IP might only be present at a �nite lattice spacing a, as indicated by
recent results reported in Ref. [28]. For the 2 + 1-dimensional GN model with "isospin"
chemical potential the author is not aware of existing works. Note, however, that the
chiral condensate in a possibly existing IP does not necessarily have a similar functional
form as in 1 + 1 dimensions, e.g. two-dimensional modulations could be preferred by the
action. Thus, the approaches in this thesis to detect such an IP should, in principle, not
rely on a speci�c ansatz for the chiral condensate.

5.3 Lattice data

Nt,c aσ0 Ns Lσ0

Sec. 6 d = 1 + 1 16 0.055 480 26.4
d = 2 + 1 2 0.379 40 15.2

3 0.237 60 14.2
8 0.086 160 13.8
8 0.086 300 25.8

d = 2 + 1, µI 6= 0 2 0.379 40 15.2
3 0.237 60 14.2
6 0.115 100 11.5
6 0.115 120 13.8

Sec. 7 d = 1 + 1 2 0.444 50 22.2
4 0.219 100 21.9
8 0.109 200 21.8

d = 2 + 1 2 0.379 40 15.2
3 0.237 60 14.2
4 0.174 80 13.9
8 0.086 160 13.8

d = 2 + 1, µI 6= 0 2 0.379 40 15.2

Sec. 8 d = 1 + 1 2 0.444 50 22.2
d = 2 + 1 2 0.379 40 15.2

3 0.237 60 14.2
4 0.174 80 13.9

Tab. 1: Lattice setups presented in the following sections. The data is ordered by the thesis section,
i.e. by the respective method to determine a phase diagram, and, additionally, sorted by the respective
models.

In Tab. 1 the lattice setups discussed in the respective section, i.e. for each of the di�erent
methods to determine a phase diagram, are presented. In general, often more investiga-
tions than recorded in Tab. 1 have been performed. For clarity only data sets that are
mentioned in the respective section are listed. It is important to note that investigations
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of the continuum limit were performed for �xed ratio Nt,c/Ns, i.e. the ratio of tempo-
ral extent βc at the critical temperature with the number of lattice sites in the spatial
direction(s). As a consequence, the spatial lattice extent Lσ0 is not constant, since the
determination of σ0 depends on Nt,c through its dependence on the tuned coupling λ as
explained in Sec. 4.4. The results for the 2 + 1-dimensional GN model are obtained with
the irreducible, 2×2 fermion Rep. (3.20). These were cross-checked with reducible, 4×4
γ-matrices (Rep. (3.24)) for some aσ0 and, as expected, gave the same results within
the precision of the respective method. For the isospin asymmetric GN model reducible
γ-matrices have to be used, since they are required in the introduction of the additional
chemical potential.
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6 The homogeneous phase diagram

In this section only spatially constant condensates, i.e. σ(x) = σ = const, are allowed.
The e�ective action on the lattice can then be evaluated in a very e�cient way by using
(4.15). It is also independent of the choice on the weight function WD in the interaction
term. First, the determination of the phase diagram and the distinction between the
�rst and second order transitions are carried out.

Fig. 6.1: Se� for d = 1 + 1 as a function of σ for homogeneous σ and T/σ0 = 0.395 (where the
second order phase transition is at µ′/σ0 = 0.564). (left) µ/σ0 = (µ′ − ∆µ)/σ0 , inside the HBP,
(right) (µ′ + ∆µ)/σ0 with ∆µ/σ0 = 0.01, inside the SP.

As a �rst step, ∂2Se�/∂σ
2|σ=0 at �xed T as a function of µ is considered and its root

µ′ is determined by a standard bisection algorithm. If the phase transition is of second
order, it is located at µ′. This is illustrated in Fig. 6.1, where Se� for T/σ0 = 0.395 is
plotted as a function of σ for µ/σ0 = (µ′ −∆µ)/σ0 , (µ′ + ∆µ)/σ0 with ∆µ/σ0 = 0.01.
It is then checked, if there is a region µ ∈ [µ′, µ′′], where the global minimum of Se�

with respect to σ is smaller than Se�[σ = 0]|(µ′,T ), i.e. where the minimum point is at
σ 6= 0 (for the minimizations a golden section search method is used). If this is the
case, the phase transition is of �rst order and located at µ′′, which is again determined
by bisection. This is illustrated in Fig. 6.2, where Se� for T/σ0 = 0.101 is plotted as a
function of σ for µ/σ0 = 0.6 , µ′′/σ0 , 0.8. To determine the TCP, i.e. the change of the
order of the phase transition, the fourth derivative ∂4Se�/∂σ

4|σ=0 (4.18) as a function of
T with µ �xed at µ = µ′ is considered and its sign change is determined17. At �xed λ
T can only be varied in discrete steps, i.e. TNt = 1/2Nta by varying Nt. Consequently,
one can determine a sign change only between TN ′

t−1 and TN ′
t
. Then, the TCP is located

17Note that, in principle, the sign change in higher order derivatives of the e�ective action could lead
to a �rst order transition. In practice, the chosen method in this thesis is often successful. This is
cross-checked by the above algorithm to determine �rst and second order boundaries.
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Fig. 6.2: Se� for d = 1 + 1 as a function of σ for homogeneous σ and T/σ0 = 0.101 (where the
�rst order phase transition is at µ′′/σ0 = 0.687). (top left)µ/σ0 = 0.6 , inside the HBP, (top right)
µ/σ0 = µ′′/σ0 , at the phase transition (bottom) µ/σ0 = 0.8, inside the SP.

between TN ′
t−1 and TN ′

t
at µ = µ′. We do not plot the TCP, as it can be visualized by

the change in the order of the phase transition.

6.1 The 1 + 1-dimensional Gross-Neveu model

The resulting phase diagram of the 1+1-dimensional GN model for a homogeneous chiral
condensate is shown in Fig. 6.3 and is in good agreement with the analytical result in
Ref. [47]. A second order boundary from the homogeneous broken phase to the symmet-
ric phase at T/σ0 > 0.33 with aσ0 = 0.055 is obtained. Here, the cuto� e�ects are ne-
glectable in comparison to [47]. At �xed lattice spacing, the phase boundary is relatively
stable for a �nite volume Lσ0 > 9. Close to the continuum limit, i.e. at aσ0 = 0.055, a
deviation of the phase transition towards a slightly larger chemical potential (∼ 0.001σ0)
at a �xed temperature is observed compared to that in the continuum theory. This
rather small deviation is caused by the �nite cuto�. Such an e�ect can also be observed
in the lattice investigation [28]. The deviation gets smaller when further decreasing the
lattice spacing. Besides this small e�ect the phase boundary is in agreement with the
analytical result represented by the blue lines. In between T/σ0 = 0.324, µ/σ0 = 0.607
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Fig. 6.3: Phase diagram of the 1 + 1-dimensional GN model in the µ-T plane for σ = const. The blue
lines represent the analytical solution from Ref. [47]. The green points are obtained with aσ0 = 0.055.

and T/σ0 = 0.313, µ/σ0 = 0.611 a TCP is found, where the second-order phase transi-
tion turns into a �rst-order one. This result agrees with the analytical result, where the
TCP is located at T/σ0 = 0.318, µ/σ0 = 0.608. In addition to the phase boundaries the
left and right spinodal are presented. The left spinodal, i.e. the root of ∂2Se�/∂σ

2|σ=0 as
a function of the chemical potential while no phase transition at this root is observed,
turns towards smaller chemical potentials µ/σ0 & 0.5, while the right spinodal, i.e. the
chemical potential at �xed T where a local minimum at σ 6= 0 in the SP occurs, bends
towards larger chemical potentials µ/σ0 . 0.9. The author is not aware of published
results for the two spinodals and, hence, cannot compare them to the literature.

6.2 The 2 + 1-dimensional Gross-Neveu model

In Fig. 6.4 the phase diagram of the 2 + 1-dimensional GN is presented for homogeneous
chiral condensates and compared to the analytical second order transition from Ref. [45].
Two di�erent lattice spacings at �xed ratio Nt,c/Ns are plotted in the upper panel to
visualize cuto� e�ects. At a relatively large lattice spacing aσ0 = 0.379 and large vol-
ume Lσ0 = 15.2, plotted with red points, a strong deviation towards smaller chemical
potentials for larger T in comparison with the analytical solution is observed. The TCP
is located between T/σ0 = 0.189, µ/σ0 = 0.974 and T/σ0 = 0.165, µ/σ0 = 0.978, while
in the analytical phase diagram no �rst order transition is found for �nite T . With
decreasing T the transition, albeit of �rst order, bends towards µ/σ0 . 1.0, i.e. it comes
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Fig. 6.4: Phase diagram of the 2 + 1-dimensional GN model in the µ-T plane for σ = const. The blue
lines represent the analytical second order phase boundary from Ref. [45]. (top) The phase diagram
obtained with two di�erent lattice spacings at a �xed ratio Nt,c/Ns = 2/40 = 8/160 to illustrate cuto�
e�ects. The red dots are obtained with aσ0 = 0.379 and Lσ0 = 15.2, the green dots with aσ0 = 0.086
and Lσ0 = 13.8. The right-sided plot is a zoomed in version of the left-sided one. (bottom) The phase
diagram obtained for aσ0 = 0.086 for two di�erent spatial extents, i.e. Lσ0 = 13.8 (green points)) and
Lσ0 = 25.8(blue points), to illustrate �nite volume e�ects. The keys of the above two plots also apply
in the bottom panel.

closer to the result of Ref. [45]. However, for some lattice spacings the �rst order phase
transition exceeds even µ/σ0 > 1.0. The left spinodal bends towards a smaller chemical
potential µ/σ0 & 0.95, while the right spinodal bends towards slightly larger chemical
potential compared to the �rst order transition. With decreasing chemical potential the
TCP moves towards lower temperatures and the di�erences of the spinodals to the �rst
order boundary get smaller. With aσ0 = 0.086 and Lσ0 = 13.8 a line of second order
phase transitions is observed at T/σ ≥ 0.145. Below this temperature a �rst order tran-
sition is obtained. The phase boundary is already in relatively good agreement with the
analytical result for T > 0.145. One observes a deviation of the transition towards a
slightly larger chemical potential (∼ 0.02σ0). This temperature independent deviation is
mainly a cuto� e�ect, as it gets slightly smaller when decreasing aσ0 further. The e�ect
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is also visible in Ref. [28]. As can be seen in the lower panel of Fig. 6.4, the �nite volume
still causes a growing deviation towards larger chemical potentials of the �rst order tran-
sition at small temperatures below 0.15σ0. This deviation can also be observed in [28],
but, as therein, they always minimize the e�ective action, they do not di�erentiate be-
tween �rst and second order transitions. At aσ0 = 0.086 and Lσ0 = 25.8 a second order
phase boundary is obtained for temperatures above T/σ0 = 0.072, which is the lowest
temperature investigated. A TCP is, due to the larger volume, not observed. Besides the
remaining, cuto�-caused small deviation towards slightly larger chemical potentials this
line of second order boundaries seems to be quite close to the in�nite-volume, continuum
result. The temperature, at which the TCP is located, and the size of the region enclosed
by the two spinodals is, however, in�uenced not only by the �nite volume but also by
the cuto�, as can be seen from the data in the upper right plot of Fig. 6.4. Here, the
temperature, where the order of the phase transition changes, shrinks to T/σ0 = 0.141
when decreasing the lattice spacing to aσ0 = 0.086. The occurrence of a �rst order
transition is a combined e�ect of a �nite cuto� and volume, but at lower temperatures
it seems to be dominated by the �nite volume.

For the interested reader, a few additional remarks about the combined e�ects of �nite
volume and �nite lattice spacing are now given. For 4.0 < Lσ0 < 8.0 a strong deviation
towards larger chemical potentials for temperatures T/σ0 < 0.4 is obtained and the TCP
is located at relatively high temperatures. This has been observed for aσ0 = 0.379 and
aσ0 = 0.237. For even smaller Lσ0 < 4.0 the HBP thins out extremely, as the �nite
volume and its boundary conditions have strong e�ects on the phase boundary. For
large enough L, the phase transition at larger temperatures is relatively stable against
variations in the lattice spacing for aσ0 < 0.15. For lower temperatures T/σ0 < 0.2,
however, the �nite volume has e�ects on the order of the phase boundary, as described
above. This is probably caused by large temporal extents at low temperatures.

6.3 The isospin asymmetric 2+1-dimensional Gross-Neveu model

For the 2+1-dimensional GN model with isospin chemical potential the same algorithms
as for the previous models are used. However, due to the additional parameter µI , either
µI or µ must be �xed, to perform bisections of the remaining parameter. In practice,
the calculation is performed with one of the two chemical potentials �xed, while the
other is varied in discrete steps of ∆µI = ∆µ = 0.01. Since a �rst impression of the
phase diagram is of interest, one does not di�erentiate between second and �rst order
boundaries, nor does one compute a line of TCPs and spinodals. The phase transition
is, thus, determined via minimization of the e�ective action. In Fig. 6.5 the resulting
phase diagram for aσ0 = 0.115 is plotted. The black points represent a phase transition,
while the blue crosses are leftovers from the bisection and visualize that the system is
already in the SP. As one might imagine, it is numerically di�cult to determine the
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Fig. 6.5: Phase diagram of the isospin asymmetric 2 + 1-dimensional GN model for σ = const for three
parameters µ, µI and T . The black dots are obtained through minimization of the e�ective action with
aσ0 = 0.115. The blue crosses represent no phase transition, as the system is already in the SP.

phase boundary around µI/σ0 = 1.0 via bisection in µ and, vice versa, for the phase
boundary around µ/σ0 = 1.0 via bisection in µI . Consequently, the data points in Fig.
6.5 result from two independent calculations, in which a di�erent one of the two chem-
ical potentials was �xed. To avoid the described numerical di�culties at larger phase
boundaries, the data points at µI < µ are determined via bisection in µ, while at µI ≥ µ
a bisection in µI is used.

Note that in case of µ/σ0 = 0.0 (with the rede�nition µI ≡ µ) or µI/σ0 = 0.0 the phase
boundary is similar to the ordinary 2 + 1-dimensional GN model. This is expected, as
discussed in Sec. 3.4. For T/σ0 > 0.3 a rotational symmetry is observed in the µ-µI
plane, i.e. the location of phase transition (µ′′, µ′′I ) for �xed T seems to be given by√

(µ′′I )
2 + (µ′′)2 = µ′, where µ′ is the phase transition to the SP for µI = 0.0, suggesting

an internal symmetry of the theory which was theoretically unobserved. However, for
lower temperatures this is clearly not the case. The behavior of the phase transition is
investigated in the µ-T plane for di�erent µI in Fig. 6.6. As observed here, the phase
transition for T ≤ 0.1 is relatively una�ected by the isospin chemical potential, e.g. for
µI/σ0 = 0.96 and T/σ0 ≈ 0.07 a phase transition is still observed at the relatively large
chemical potential µ/σ0 ≈ 0.99. An idea, that could explain this behavior, might be the
decoupling of the two species of fermions with di�erent chemical potentials, µ + µI for
"isospin-up" fermions and µ − µI for "isospin-down" fermions, respectively. For µ and
µI around σ0 one type of fermion is always in the HBP while the other is already in the
SP. As a consequence, the whole system should be in the HBP. It is, however, unclear,
why this is not the case for higher temperatures. As shown in Sec. 3.4 Eq. (3.49), Fig.
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6.6 would look similar if µ and µI were exchanged. In principle, only calculations for
µ ≤ µI (or vice versa) are necessary when taking account of this property. It is a good
cross-check for the numerical result that this is indeed ful�lled.

Fig. 6.6: Phase diagram of the isospin asymmetric 2 + 1-dimensional GN model for σ = const in the
µ-T plane for several µI . The phase transitions are obtained through minimization of the e�ective action
for aσ0 = 0.115.

Similarly to the ordinary 2 + 1-dimensional GN model the phase transition is already
relatively close to the in�nite volume and continuum limit in the setup presented (aσ0 =
0.115, Lσ0 = 13.8). For µI = 0.0, there is a slight deviation towards larger chemical
potentials, which is explained in Sec. 6.2. However, the phase boundary for �nite µI is
not expected to be drastically a�ected by �nite lattice spacing and volume for this setup.
The phase diagram seems to respond to �nite volume and the lattice discretization quite
similarly to the model with µI = 0.0, which has been described in detail in Sec. 6.2. This
has been checked for three di�erent a at �xed ratio Nt,c/Ns and two di�erent V for �xed
a. The lattice setups are listed in Tab. 1.



7 Stability analysis for spatially varying chiral condensate 37

7 Stability analysis for spatially varying chiral conden-

sate

To obtain the phase diagram of the GN model, allowing for inhomogeneous chiral conden-
sates σ(x), one must minimize the e�ective action as a functional of σ(x). In principle,
this is possible using lattice �eld theory. Here, the problem reduces to the minimization
of (4.7) in ND

s variables σj, which represent σ(x) on the lattice sites. Finding the global
minimum of a function of many variables is a very challenging task. Therefore, the mod-
ulation of σ is restricted to one spatial direction, i.e. σ(x) = σ(x1). Motivated by the
analytical result in 1 + 1 dimensions [9], where one �nds a second order transition from
the SP to the IP, one begins a study of IP by performing stability analyses with respect
to σ = 0. On the lattice this amounts to �nding the eigenvalues and eigenfunctions of
the Hessian matrix

Hjk =
∂2

∂σj∂σk
Se� (σ0 = σ1 = . . . = σNs−1 = 0) , (7.1)

where negative eigenvalues indicate directions in the multidimensional σi space, in which
Se� decreases. The smallest eigenvalue η of the Hessian matrix is considered as a function
of µ at �xed T and its root µ′ is determined by a bisection algorithm. By comparison
with the boundary obtained via full minimization for σ = const. (compare Sec. 6) one
can identify regions, where at �xed (µ, T ) a spatially varying condensate σ(x1) leads to a
decrease in the e�ective action compared to Se�|σ=0. Note that the root found at chem-
ical potential µ′ does not necessarily correspond to a phase transition. It only separates
a region, where the SP is stable (i.e. no negative eigenvalues of H), from another region,
where σ = 0 is not preferred (i.e. at least one negative eigenvalue of H).

In the continuum the Hessian matrix becomes an in�nite operator which, in principle,
can be analytically diagonalized to yield the eigenvalues. The smallest eigenvalue must
now be found by a one-dimensional minimization of this function, which is done in our
upcoming publication [29]. It is important to note that the restriction σ(x) = σ(x1),
that is applied in the 2 + 1-dimensional models in Sec. 7.2 does not change the line of
instability in the continuum limit, as proven in a momentum space analysis in Ref. [29],
where the line of instability only depends on the 2-norm ‖p‖, where p = (p1, p2) is the
momentum of the chiral condensate.

7.1 The 1 + 1-dimensional Gross-Neveu model

Results for the two di�erent lattice discretizations, discussed in Sec. 4 and App. C, are
presented in Fig. 7.1. In the left panel W1 = W ′

1, as de�ned in Eq. (4.12), is used for
the interaction term in Eq. (4.11) following Ref. [16], while in the right panel W ′′

1 (4.13)
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Fig. 7.1: The "phase diagram" via stability analysis for three di�erent lattice spacings. The trian-
gular data points are obtained by stability analysis with respect to σ = 0 (compare Eq. (7.1)). The
analytical phase diagram in the continuum is from Ref. [9]. (left) W1 (x1 − y1) = W ′1(x1− y1). (right)
W1 (x1 − y1) = W ′′1 (x1 − y1).

is used. The line of instability obtained via the Hessian matrix (7.1) is represented with
triangles. Three di�erent lattice spacings at �xed ratio Nt,c/Ns are studied to test the
convergence of both discretizations to the solution [9] in the continuum limit.

For W1 = W ′
1 the inhomogeneous region is relatively small for the larger lattice spacing,

i.e. for the red triangle data with aσ0 = 0.444. However, by increasing the lattice spac-
ing, the line of instability comes relatively close to the continuum results, i.e. to larger
chemical potentials. In contrast, a deviation to larger chemical potentials compared to
the continuum theory for W1 = W ′′

1 at the largest lattice spacing is observed. When
decreasing a, the line of instability nevertheless converges to smaller chemical potentials
and to the correct phase transition. In a comparison of both given lattice data the
discretization of the interaction term with W ′′

1 seems to approach the continuum limit
faster. Besides the cuto� e�ects, both curves su�er from �nite volume e�ects. They
do not describe a smooth line. As explained in Sec. 5 the frequency of the chiral con-
densate in the inhomogeneous phase increases with the chemical potential. Due to the
�nite volume, the system can only adapt wavelengths that are natural dividers of the
�nite volume. This �nite volume e�ect results in oscillations and deviations towards
smaller chemical potentials in the phase boundary on a �nite sized lattice, as observed
in Ref. [48]. This e�ect will be discussed in more detail for the 2 + 1-dimensional GN
model. The oscillations in the boundary can be removed via a method discussed in
Refs. [39, 48]. For a more detailed discussion the reader is referred to these references
and Sec. 7.2.3, where the in�nite volume result is obtained for the 2 + 1-dimensional GN
model.

To summarize, besides the under-control �nite volume e�ects the numerical stability
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analysis on the lattice converges to the analytical result in the continuum limit, which is
expected as the transition from the SP to the two other phases is of second order. Due
to the nature of the method only phase transitions from the SP are obtained. As already
explained in the beginning of this section, one cannot calculate transitions between the
HBP and the IP by this method. In the application of the 2 + 1-dimensional models,
one might be able to identify regions, where an inhomogeneous chiral condensate might
lower the e�ective actions, when comparing the line of instability to the homogeneous
calculations from Sec. 6.

7.2 The 2 + 1-dimensional Gross-Neveu model for σ(x) = σ(x1)

Again, results for the two di�erent lattice discretizations presented in Sec. 4 and App. C
are presented in Fig. 7.2 at a �nite lattice spacing aσ0 = 0.379. The red triangles rep-
resent the line of instability obtained through the Hessian matrix (7.1). Again, it is
noted that the red triangles do not necessarily correspond to a phase boundary, even
though they could coincide with a phase boundary, as was observed in Sec. 7.1 for the
1 + 1-dimensional GN model. The other boundaries are obtained via minimization of
the e�ective action for σ = const. from Fig. 6.4. For a detailed discussion the reader is
referred to Sec. 6.

In the left panel of Fig. 7.2, W ′
1 is used for the discretized interaction term in Eq. (4.11)

following Ref. [16]. Here, the stability analyses via the Hessian matrix (7.1) leads to
the same µ′ as the homogeneous calculations of the second order boundary and the left
spinodal, as indicated by the red dots. Consequently, one cannot identify an IP even
for very large a through a second order transition from the chirally symmetric phase.
Nevertheless, there might be an IP that is connected by a �rst order transition to the
homogeneous phases. This possibility will be investigated by performing multiple full
multi-dimensional minimizations of Se� using a conjugate gradient algorithm in Sec. 8.

In the right panel of Fig. 7.2, where W ′′
1 is used as weighting function for the interaction

term in Eq. (4.11), signi�cantly di�erent results are observed. This discretization is sim-
ilar to Ref. [28], but the ansatz is more general, since in Ref. [28] the chiral condensate
is restricted to a speci�c harmonic mode k̃ while using the naive discretization without
a modi�cation of the interaction term. This corresponds to a weight function in Fourier
space W̃ ′′′

2 (k) = δk,k̃. Consequently, this ansatz is included in our discretization W ′′
2 and

the resulting inhomogeneous phase must have at least the same size in a true minimiza-
tion. However, as we restrict our chiral condensate to depend only on one dimension,
results from Ref. [28] can only be compared for k̃ = (k̃1, 0).

A triangular region is observed, where an inhomogeneous chiral condensate σ = σ(x1)
leads to a decrease in the e�ective action compared to Se�

∣∣
σ=0

, between the red dots and
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Fig. 7.2: The "phase diagram" via stability analysis. The phase boundary for σ = const. is the same
as in Fig. 6.4. The triangular dots are obtained by stability analysis with respect to σ = 0 (compare
(7.1)). The lattice spacing is aσ0 = 0.379 for a �xed volume (Lσ0 = 15.2, Nt,c = 2, Ns = 40). The
legend in the left panel holds for both phase diagrams. (left) W1 (x1 − y1) = W ′1(x1 − y1). The line of
instability via the Hessian matrix (7.1) corresponds to the homogeneous calculation of the second order
boundary and the left spinodal. (right) W1 (x1 − y1) = W ′′1 (x1 − y1). The triangular region enclosed
by the red dots is part of an IP.

the homogeneous calculation from Fig. 6.3. This region is located at µ/σ0 ≥ 0.96 and
T/σ0 ≤ 0.26 and unambiguously signals the existence of an IP, which covers the trian-
gular region. The LP, which is de�ned here as the point where instability begins to be
caused by inhomogeneous chiral condensates, is located at T/σ0 = 0.264, T/σ0 ≈ 0.963.
The inhomogeneous region might, however, have a larger extension. Note that the red
dots do not seem to correspond to a smooth curve. This is a �nite-volume e�ect, similar
to that observed in the lattice �eld theory study of the 1 + 1-dimensional GN model and
in Refs. [39, 48].

In Fig. 7.3 two examples of eigenvectors of the Hessian matrix (7.3) are shown corre-
sponding to negative eigenvalues for W1 = W ′′

1 in the observed inhomogeneous region.
Although these eigenvectors do not correspond to the global minimum of Se�, they in-
dicate the shape of the spatial modulations of the chiral condensate σ(x1), which lower
the e�ective action locally around and with respect to σ = 0, i.e. Se�[αv(x1)] < Se�[0],
where v(x1) is the normalized eigenvector and α is a relatively small amplitude. Ex-
actly at the line of instability towards the SP, they describe the preferred shape of the
chiral condensate very well, although they do not give the correct amplitude of the in-
homogeneity. Within the triangular region, where an inhomogeneous chiral condensate
is preferred over a homogeneous σ, the obtained eigenvectors corresponding to negative
eigenvalues have a sin-like shape. At �xed temperature the wave number increases for
increasing chemical potential, a behavior also observed for the 1 + 1-dimensional GN
model [9, 44]. In a �nite volume, the corresponding frequencies can only increase in
discrete steps, since only wavelengths which �t in the �nite spatial extent with periodic
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Fig. 7.3: Eigenvector v(x1) of the Hessian matrix (7.1) corresponding to the smallest, negative eigen-
value for aσ0 = 0.379. These normalized eigenvectors are functions that for an in�nitesimal amplitude
lead to lower e�ective actions than Se�[0] and, hence, indicate the possible shape of the chiral condensate.
The dashed lines are cos-functions with the same frequency as the eigenvectors. (left) µ/σ0 = 0.984,
T/σ0 = 0.165. (right) µ/σ0 = 1.085, T/σ0 = 0.165.

boundary conditions can be adapted. This explains the oscillatory behavior of the line
of instability observed in the right panel of Fig. 7.2. This will be explained in more
detail in Sec. 7.2.3. The behavior of the chiral condensate, i.e. the global minimum of
the e�ective action, is studied in Sec. 8.2.

7.2.1 Continuum limit

At �nite a, one obtains an IP forW1 = W ′′
1 , while forW1 = W ′

1 an IP is not found. Based
on this result, a detailed investigation of the continuum limit is necessary, since both
discretizations should lead to the same phase diagram in the continuum. In Fig. 7.4, the
continuum limit is performed by increasing Nt,c, i.e. decreasing a, at �xed ratio Nt,c/Ns

for three di�erent lattice spacings. In the right panel for W1 = W ′′
1 the inhomogeneous

region shrinks for a → 0. As discussed before, the line of instability, that is obtained
via the stability analysis, su�ers from �nite volume e�ects, which can, in principle, be
removed. However, for aσ0 = 0.379 the phase is present up to µ/σ0 ≤ 1.38. The phase
diagram looks qualitatively similar to that of the 1 + 1-dimensional GN model. The LP
is located at T/σ0 ≈ 0.26. For aσ0 = 0.174 the SP is favored for µ/σ0 ≥ 1.06, i.e. the line
of instability is located at much smaller chemical potentials. The LP is also obtained
at lower temperatures T/σ0 ≈ 0.20. This clearly supports a vanishing of the triangular
region, which proves the existence of an IP. The line of instability converges towards the
analytical solution from Ref. [45] without any indication of an IP.

In the phase diagram in the left panel the calculated line of instability does not di�er
from the homogeneous calculations. Thus, an inhomogeneous region is not observed
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Fig. 7.4: The "phase diagram" via stability analysis for three di�erent cuto�s. The blue line is the re-
sult from the continuum stability analysis for Λ/σ0 =∞. Results are presented from stability analyses on
the lattice with σ = σx1

for three di�erent lattice spacings. The red triangles correspond to aσ0 = 0.379,
the pink triangles correspond to aσ0 = 0.237 and the yellow triangles correspond to aσ0 = 0.174. The
respective empty triangles show a pseudo LP where instabilities change from homogeneous modulations
to inhomogeneities.(left) W1 (x1 − y1) = W ′1(x1 − y1). (right) W1 (x1 − y1) = W ′′1 (x1 − y1). Both
discretizations approach the homogeneous second order boundary from Ref. [45] for a→ 0.

with this method. For decreasing lattice spacing the stability analysis approaches the
result for σ = const. from Sec. 6.2 similar to the homogeneous phase diagram, i.e coming
from smaller chemical potentials. For the lowest, studied lattice spacing aσ0 = 0.174
one might observe a deviation towards larger chemical potentials at temperatures above
0.15σ0, and a backbending of the line of instability below this temperature compared
to the homogeneous solution [45]. The latter is mainly a �nite volume e�ect, as for a
homogeneous condensate a �rst order boundary occurs, which cannot be detected by
the stability analysis. The line of instability then corresponds to the left spinodal. The
deviation towards larger chemical potentials is a cuto� e�ect. These e�ects are explained
in detail in Sec. 6.2.

Taking the cuto� and �nite volume e�ects into account and comparing with the ho-
mogeneous phase diagram, both discretizations converge to the second order line from
Ref. [45]. Due to these results a vanishing of the inhomogeneous region for a → 0 is
anticipated supporting the lattice investigation in Ref. [28]. Similarities and di�erences
of this investigation to our methods are now brie�y discussed. In this work, only one-
dimensional modulations without a speci�c ansatz are allowed, while in [28] the chiral
condensate is investigated with the ansatz σ = αq cos(2πqx/L). Indeed, the approach of
this section allows the chiral condensate to take any functional form. Nevertheless, only
one-dimensional chiral condensates are allowed for, so one can only compare to results
with q = (q1, 0)T. However, the numerically costly stability analysis for σ = σ(x1, x2)
should not lead to a di�erent line of instability for the GN model in the continuum limit,
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as proven through continuum stability analysis in momentum space in [29]. It is shown
there that the line of instability only depends on ‖q‖. However, allowing σ = σ(x1, x2)
instead of σ(x1) in full minimizations of the e�ective action might, however, lead to a
signi�cant change in the phase structure, e.g. via a �rst order transition towards inho-
mogeneous chiral condensates.

Summarizing these �ndings, an IP is not found in the continuum limit via the stability
analysis. The line of instability found via computation of Eq. (7.1) approaches the second
order boundary between the HBP and the SP as found in Ref. [45] for both discretizations
used. In the following section, the continuum limit of the e�ective action in the IP will
be investigated to further support this result.

7.2.2 The e�ective action in the inhomogeneous phase for a→ 0

Fig. 7.5: Se�(α) with σ(x1) = α cos(6πx1/L), i.e. a wave with period L/3, for three di�erent lattice
spacings a at µ/σ0 = 1.035, T/σ0 ≈ 0.11. The action for both W1(x1 − y1) = W ′1(x1 − y1) and
W1(x1 − y1) = W ′′1 (x1 − y1) is plotted. Se�(0) is set to 1.25. One can see that both actions approach
each other for a→ 0. The data can be qualitatively compared to Fig. 8 of Ref. [28] for q = (3, 0).

The continuum limit can be applied in a straightforward way on the level of the e�ective
action Se� at18 µ/σ0 = 1.035, T/σ0 ≈ 0.11 for a speci�c ansatz σ(x1) = α cos(6πx1/L),
i.e. a wave with wavenumber 3 in the �nite periodic lattice. This ansatz is moti-
vated by an eigenvector, that corresponds to a negative eigenvalue for aσ0 = 0.379 and

18It is noted that due to the discretization of the temporal direction the observed values of T �uctuate
around 0.001σ0 between the three lattice spacings. The in�uence of these �uctuations on the e�ective
action should, however, be neglectable.
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aσ0 = 0.237, and is similar to the investigation in Ref. [28] with q = (3, 0)T. In Fig. 7.5
the e�ective action, which is now a function of the amplitude α, i.e. Se�[σ] = Se�(α), is
plotted. To visualize the functional behavior of the e�ective action in a logarithmic plot,
a constant with no physical meaning is added to Se� such that Se�(0) = 1.25. This plot
agrees the phase diagram plotted in Fig. 7.4. For W1 = W ′

1, a global minimum α′ = 0 is
obtained for all three lattice spacings aσ0. For W1 = W ′′

1 , however, a minimum α′ 6= 0
is obtained for aσ0 = 0.379 and aσ0 = 0.237. The di�erence ε =

∣∣Se�(α′)− Se�(0)
∣∣ gets

smaller for decreasing lattice spacing. While for aσ0 = 0.379 ε = 1.10 with α′/σ0 = 0.72,
one obtains ε = 0.0 with α′/σ0 = 0.0 for aσ0 = 0.086.. This behavior can be explained in
the context of the top right phase diagram in Fig. 7.4. With larger lattice spacings the
point µ/σ0 = 1.035, T/σ0 = 0.110 is in the middle of the triangular region which can be
identi�ed as part of an IP. For smaller aσ0 these values get closer to the transition to
the SP and, �nally, the chiral symmetry is restored at this point in the phase diagram.
Consequently, the amplitude α′ of the inhomogeneous condensate is decreasing and an
inhomogeneous σ(x1) gets less favored compared to σ = 0. This qualitatively supports
the result in Ref. [28]. Therein, the author makes a comparable ansatz for the chiral
condensate σ = αq cos(2πqx/L) with amplitudes αq for several pairs of wavenumbers
q = (q1, q2). The found result for W ′′

1 qualitatively agrees with Figure 9 of Ref. [28],
where the e�ective action is plotted, for q = (3, 0). Since the lattice spacing aσ0 used in
this work do not match to Ref. [28], one cannot compare ε and α′ directly.

In Fig. 7.5 the e�ective actions for W1 = W ′
1 and W1 = W ′′

1 approach each other in the
limit a→ 0. In the continuum, both actions describe the 2 + 1-dimensional GN model,
where the IP is not favored compared to the SP. Depending on the choice ofW1, one can
obtain an IP at �nite a, which vanishes in the continuum limit. It is worthwhile to note
that the wavenumbers 1, 2, 4 and 5 were also investigated at the same point in the phase
diagram. Higher frequencies were never preferred over the shape investigated in Fig.
7.5. However, for q1 = 2 a non-vanishing α′ at aσ0 = 0.237 was obtained. This could
be caused by a shrinking of the inhomogeneous region, while the homogeneous phase
transitions gets closer to µ/σ0 = 1.0. Hence, µ/σ0 = 1.035, T/σ0 ≈ 0.11 is located closer
to this boundary, which could cause a lower wavelength to also be preferred compared
to σ = 0 similarly to in the 1 + 1-dimensional GN model. When further decreasing the
lattice spacing this inhomogeneous modulation is also not favored, but rather a vanishing
σ is.

ForW1(x1−y1) = δx1,y1 , as was used at an earlier stage in the work of this author's group
[27], results qualitatively similar to Figs. 7.4 and 7.5 with W1 = W ′′

1 were surprisingly
obtained, although this discretization does not describe the 2+1-dimensional GN model
but rather a theory with coupling between di�erent �avors and a matrix di�erent than
the identity between the fermion bilinear, e.g.∼ ψ̄γ0ψσ (for details see App. A of Ref. [16]
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and Ref. [42]). In contrast to the �nite Nf investigation of the 1 + 1-dimensional GN
model in Ref. [16], where the results for this incorrect discretization are qualitatively
di�erent from the GNmodel, a continuum limit similar to Fig. 7.4 is observed. This might
be explained by the high bosonic momenta which generate the wrong interaction terms.
Since the bosonic �eld σ only transports high momenta at the phase transition from the
IP to the SP at �nite a, they might only contribute near the phase transition. The error
caused might be comparatively small compared to the �nite volume and cuto� e�ects.
The surprising behavior of this wrong discretization is subject of current investigations.

7.2.3 In�nite volume extrapolation for W1 = W ′′
1

Fig. 7.6: (left) The "phase diagram" via stability analysis. The blue line is the result for the
homogeneous phase diagram from Ref. [45]. The boundary from stability analyses, denoted with red
triangles, on the lattice are the same as from the right panel of Fig. 7.2, i.e. aσ0 = 0.379 andW1(x1−y1) =
W ′′1 (x1−y1) were used. The green points are obtained through interpolation (from below) of the smallest
eigenvalue η of the Hessian matrix as a function of the chemical potential. (right) The smallest
eigenvalue η of the Hessian matrix as a function of the chemical potential µ for T/σ0 = 0.132. The red
triangles denote values obtained from lattice data with aσ0 = 0.379 in a �nite volume Lσ0 = 15.2. The
green line represents a function that interpolates the "valleys" of the lattice data from below to extract
the behavior of the phase transition in an in�nite volume. The related red and green crosses mark the
obtained phase transition with both methods.

In the case of W1 = W ′′
1 a shrinking of the triangular inhomogeneous region is observed

for decreasing lattice spacing and, hence, a vanishing of the IPs in the limit a → 0 is
expected. However, it might be of interest that the inhomogeneous phase at �nite a is
stable when the �nite volume is increased. In this section a method to remove �nite
volume e�ects on the phase boundary of the 1 + 1- and 2 + 1-dimensional GN model is
discussed. The method will be applied to the 2+1-dimensional GN model at aσ0 = 0.379
and W1 = W ′′

1 to demonstrate the stability of the IP in an in�nite volume investigation.
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As obtained in Fig. 7.2 and Fig. 7.1, the line of instability does not correspond to a
smooth curve, but rather, it has an oscillatory behavior. This is a �nite volume e�ect,
as �rst observed in a lattice investigation of the 1 + 1-dimensional GN model [48]. The
�nite volume only allows a discrete subset of frequencies to be adopted by the chiral con-
densate. The frequencies must correspond to a wavelength, which is a natural divider of
the lattice extent in the x1-direction. In the 1 + 1-dimensional GN model, the frequency
increases continuously in an in�nite volume when the chemical potential is increased for
�xed temperature. Consequently, in the �nite extent of the lattice there are certain val-
ues of µ and T , where a frequency which would be preferred in an in�nite volume cannot
be adopted. This leads to oscillations in the smallest eigenvalue η of the Hessian matrix,
as shown in the right panel of Fig. 7.6 for T = 0.132 and d = 2 + 1. This assumption,
which is shown to be correct in 1 + 1 dimensions by [39, 48], is that the �nite volume
gives peaks in the oscillations of η(µ). At the valleys of the oscillation, in contrast,
the preferred wavelength in an in�nite volume can be adapted by the chiral condensate
in the �nite periodic lattice. Therefore, one can �t these valleys in the neighborhood
of the root of η from below with a parabola to extract the in�nite volume behavior of
the smallest eigenvalue. Hence, the original root of η can only be corrected to a larger
chemical potential. The resulting line of this procedure is depicted in the right panel of
Fig. 7.6. It separates the region where an inhomogeneous chiral condensate lowers the
e�ective action compared to σ = 0 without �nite volume e�ects on the frequency of the
chiral condensate.

Of course, this method can lead to di�erent results depending on the interpolated µ
interval and on the interpolating function. With di�erent �t functions and intervals one
might get slightly di�erent results, i.e. with the choice in this thesis another error, which
is hard to estimate, is introduced. Interpolation with a parabola in a close interval around
the root of η, such that three valleys can be identi�ed, has given the best results. This
method is, in principle, possible for all lattice spacings plotted in Fig. 7.4. In the case
of the 1 + 1-dimensional GN model the obtained smooth phase transition in Refs. [39,
48], which is in agreement with the analytical solution [9], proves the applicability of
this interpolation. For d = 2 + 1, however, this method gets less precise for small lattice
spacings, as the inhomogeneous region gets smaller and the valleys get harder to identify
and to interpolate.

7.3 The isospin asymmetric 2+1-dimensional Gross-Neveu model
for σ(x) = σ(x1)

In this subsection the in�uence of the "isospin" chemical potential, as introduced in Sec.
3.4, on the existence of an IP is studied. Since in the ordinary GN model an inhomo-
geneous region is only observed for W1 = W ′′

1 at �nite lattice spacing, the lattice with
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aσ0 = 0.379 is investigated (compare Fig. 7.2 for results with µI = 0.0) with this choice
of the weight function. In Fig. 7.7 the resulting phase boundary is shown for a homoge-
neous chiral condensate, represented by crosses and dashed lines, and the corresponding
line of instability, represented by triangles in the µ-T plane for �ve di�erent µI . The
phase boundary for a homogeneous chiral condensate is obtained by minimization of the
e�ective action, as explained in Sec. 6.3. These data points are obtained from a bisection
algorithm in µ for �xed µI . Then, µI is varied in discrete steps of ∆µI = 0.1.

Fig. 7.7: The "phase diagram" of the isospin asymmetric 2 + 1-dimensional GN model via stability
analysis in the µ-T plane for several di�erent µI and for aσ0 = 0.379. The crosses, which are connected
with a dashed line, represent the phase boundary via minimization of the e�ective action for σ = const.
The triangles represent the line of instability obtained via stability analysis for σ(x1).

For µI = 0.0 the result from Sec. 7.2 is reproduced. Note that the obtained phase transi-
tion for σ = const. is still relatively far away from the analytical solution [45]. However,
this should not prevent a study at �nite µI , as these cuto� e�ects are, in principle, under
control. In any case, the inhomogeneous region obtained in Sec. 7.2 vanished in the
continuum limit. Consequently, whether �nite µI strongly favors inhomogeneities will
be studied. If this is not the case, any IP will likely also be disfavored in the continuum
limit. As visualized in Fig. 7.7, for small µI one still observe a triangular region, where
an inhomogeneous chiral condensate leads to instabilities of the chirally symmetric so-
lution. However, by comparison with the line of instabilities for µI = 0.1/σ0 (in blue)
with µI/σ0 = 0.4 (in red) this region covers a much smaller area in the µ-T plane when
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increasing the additional chemical potential. More precisely, the LP, where the stability
analysis starts to di�er from the inhomogeneous calculation, seems to move to lower tem-
peratures. Also the largest value of µ, where an instability is obtained, moves towards
lower chemical potentials. For µI/σ0 = 0.4 the di�erence δµ of the line of instability
from the homogeneous boundary at the lowest investigated temperature T/σ0 = 0.066
is already smaller than 0.04σ0. At µI/σ0 = 0.5, which is not shown since too many
points would have overlapped with neighboring data, the line of instability aligns per-
fectly with the phase boundary for a homogeneous chiral condensate. This can also be
observed for µI/σ0 = 0.6 and µI/σ0 = 0.9, i.e. both lines of instability are - within the
errors - in agreement with the homogeneous phase diagram in Sec. 6.3. From this data
set it is concluded that the introduction of µI disfavors the existence of an IP in the
2 + 1-dimensional GN model. Comparing di�erent lattice spacings to get information
about the continuum limit does not seem very promising in this study, as a vanishing
of the IP is observed for µI = 0.0 in the limit a → 0. Since increasing µI also disfavors
inhomogeneous chiral condensates, a similar result is expected in the continuum limit
for �nite µI . With the investigated volume Lσ0 = 15.2, the results are already relatively
close to the in�nite volume results, which is estimated from the µI = 0.0 case.
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8 Minimization of the e�ective action

To calculate the phase diagram of the QCD-inspired models in the mean-�eld approach,
one needs to �nd the global minima of their e�ective actions for σ = σ(x). On the lattice
this amounts to a multi-dimensional minimization in the variables σj, j = 0, . . . , ND

s −1.
In order to search for these minima for given µ and T , a Fletcher-Reeves conjugate gra-
dient algorithm is used, as found in the GNU Scienti�c Library [43]. Via this algorithm
one can determine local minima. To �nd a global minimum of the e�ective action one
can provide several starting points for the local minimization algorithm and then com-
pare the resulting minima. Obviously, this procedure does not guarantee to obtain the
true global minimum.

In the Fletcher-Reeves conjugate gradient algorithm an initial search direction p(0) is cho-

sen as the gradient g(0) of the e�ective action at the starting point σ(0)(x) =
(
σ

(0)
0 , . . . , σ

(0)

ND
s −1

)T

in the multi-dimensional space of variables σj. The gradient at iteration a is computed
via a symmetric �nite di�erence derivative

g
(a)
j =

1

δ

(
Se�[σ

(a)
0 , . . . , σ

(a)
j + 0.5δ, . . . , σ

(a)

ND
s −1

]− Se�[σ
(a)
0 , . . . , σ

(a)
j − 0.5δ, . . . , σ

(a)

ND
s −1

]
)
,

(8.1)
where δ = 10−5. Line minimization is carried out in the search direction p(a) until
the functions gradient and the search direction are approximately orthogonal, i.e. line
minimization terminates when19

p(a)g(a) < χ
∥∥p(a)

∥∥∥∥g(a)
∥∥ , (8.2)

where ‖.‖ is the 2-norm on the ND
s -dimensional vector space. One typically chooses

χ = 0.1, as line minimization only needs to be carried out approximately. However, one
can also use χ = 0.01 and χ = 0.2 and obtain similar results with di�erent computational
cost for the same lattice setup. If condition (8.2) is ful�lled, the search direction is
updated using the Fletcher-Reeves formula

p(a+1) = g(a+1) +

∥∥g(a+1)
∥∥2

‖g(a)‖2 g(a) , (8.3)

where g(b) is the gradient calculated in iteration b. The local minimization algorithm
terminates when ∥∥g(a)

∥∥ < ε (8.4)

with ε = 0.01. It should be noted that with this algorithm one can only identify local
minima of the e�ective action Se�[σ(x)].

19Here, one does not sum over a.
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To �nd a global minimum for a given chemical potential and temperature, one can
rely on several local minimizations with di�erent starting values σ(0). Some of these
starting points are inspired by eigenvectors corresponding to negative eigenvalues from
the stability analysis (compare Sec. 7), but also randomized starting values are used. By
comparison with all computed local minima one tries to �nd the global minimum (global
minima) of the e�ective action.

8.1 The 1 + 1-dimensional Gross-Neveu model

The 1 + 1-dimensional GN model serves as a test case for the algorithm. Since the aim
is to compute the functional shape of the chiral condensates for several �xed conditions
of µ and T , the focus of this test is simply to reproduce the characteristic shape of the
chiral condensate in the IP. In this sense the test was successful, the identi�ed global
minima look similar to the analytical solution [9] as plotted in the right panel of Fig.
5.1 and described in Sec. 5.1. Directly at the phase transition from the HBP to the IP
the chiral condensate has a kink-antikink shape, while at larger µ it can be very well
parameterized by a cos function. When increasing the chemical potential the frequency
of the chiral condensate also increases while its amplitude decreases. This results in a
smooth second order transition to the SP. As already discussed in Sec. 7, only a discrete
subset of frequencies is allowed in a �nite periodic lattice and, consequently, only these
wavelengths are observed in the minimization. An important result from this test is
that one do not obtain a large amount of inhomogeneous minima but rather only a few
di�erent minima for �xed µ and T . Often, these local minima correspond to global
minima at slightly larger or smaller chemical potentials. This is a promising observation
as it increases the probability of �nding global minima.

8.2 The 2 + 1-dimensional Gross-Neveu model for σ(x) = σ(x1)

In the 1 + 1-dimensional GN model only a few local minima are observed, which is an
indication that one can �nd a global minimum via multiple local minimization with dif-
ferent starting points. With a restriction to one-dimensional modulations of the chiral
condensate σ(x) = σ(x1) one can more e�ciently compute the e�ective action (compare
Eq. (4.14)). Further, this reduces the space, in which the e�ective action needs to be
minimized, to Ns instead of N2

s independent variables σj. The number of local minima
in this space is probably also reduced. For the 2 + 1-dimensional GN model a variety of
starting points σ(0) for given chemical potential and temperature are used.

With this approach �rst order transition to inhomogeneous con�gurations and a larger
extension of the inhomogeneous region found via stability analysis or even a second IP,
has been extensively sought. Despite the e�orts of this thesis work, a di�erent picture of
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the phase diagram than from stability analysis (see Fig. 7.4) was not obtained. Exten-
sively, the lattice setup with rather larger lattice spacing aσ0 = 0.379 was investigated,
because the largest inhomogeneous region was obtained here (compare Sec. 7.2) and the
numerical cost is rather small. Here, a similar phase diagram as in Fig. 7.2 for both dis-
cretizations of the interaction term, i.e.W1 = W ′

1 andW1 = W ′′
1 , is obtained. For some µ

and T the results are cross-checked for �ner lattices with aσs0 = 0.174 and aσ0 = 0.237,
but here also additional inhomogeneous regions of the chiral condensate compared to the
stability analysis are not obtained. Therefore, another phase diagram is not presented,
rather interesting e�ects that can be only obtained in a minimization are described.

8.2.1 Local inhomogeneous minima within the homogeneous broken phase

Within the HBP, as depicted for aσ0 = 0.379 via the red dots in Fig. 6.4, several
inhomogeneous local minima of Se�[σ(x1)] are obtained. Deep within the HBP20 those
minima show a similar functional form as the analytical solution of the 1+1-dimensional
GN model (compare Fig. 5.1). In Fig. 8.1 one local minimum Σ(x1) of the e�ective
action at µ/σ0 = 0.6 and T/σ0 = 0.176 is presented, which is obtained at aσ0 = 0.237.
For the given chemical potential and temperature the relative di�erence of the action
evaluated at Σ(x1) to the action at the homogeneous, global minimum σ is around21

10−5. For aσ0 = 0.379 the line of instability together with the homogeneous calculations
in Fig. 7.2 seem to represent the phase diagram of the lattice theory. For W1 = W ′′

1 this
means that the observed triangular inhomogeneous region is an IP, which is connected
by phase transitions to the HBP and the IP. The line of instability, represented by
triangles, is equivalent to a true second order transition to the SP. Within the errors,
which are introduced in the Fletcher-Reeves algorithm (e.g. in Eq. (8.4)) and due to the
number of investigated points in the µ-T plane, the red squares in Fig. 7.2 correspond to
a transition from the HBP to the IP. In the discretization W1 = W ′′

1 a shrinking of this
relative di�erence is observed when increasing the chemical potential towards the phase
transitions at µ′, which is obtained for homogeneous σ, as described in Sec. 6.2. This has
been shown via several local minimizations at µ′ and slightly lower and larger values than
µ′. Around µ′ two (within the errors discussed above) degenerate global minima of the
e�ective action are obtained. One is an inhomogeneous shape with two kinks, similar
to the left panel of Fig. 8.2, the other is a homogeneous minimum. In contrast, for
W1 = W ′′

1 only inhomogeneous modulations deep within the HBP are observed, e.g. for
T = 0.176 one requires µ/σ0 < 0.8 to obtain inhomogeneous local minima.

20This should suggest that the given chemical potential and temperature is relatively far away from the
homogeneous phase boundary. For larger µ and T results depend on the chosen weight function for
the interaction term.

21The value of the relative di�erence depends on the choice of W1(x1 − y1). However, for the chosen µ
and T , the calculated relative di�erence is of the same order for both presented choices. In general
this is not the case.
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Fig. 8.1: Local minimum Σ of the e�ective action Se�[σ(x1)] at µ/σ0 = 0.6, T/σ0 = 0.176, i.e. within
the HBP. The minimum is obtained via local minimization on the lattice for aσ0 = 0.237. Similar
functional forms of the chiral condensate are obtained for both weight functionsW (x1−y1) = W ′1(x1−y1)
and W (x1 − y1) = W ′′1 (x1 − y1). One �nds |(Se�[Σ(x1)]− Se�[σ])/Se�[σ]| ≈ 10−5, where σ = const. 6= 0
is the global minimum for the given µ and T .

Several minimizations indicate that a decrease of the temperature at �xed µ reduces the
relative di�erence of the e�ective action for inhomogeneous modulations, such as Σ(x1),
compared to the global minimum. This supports an analysis from Ref. [37], where the
analytical solution from the 1 + 1-dimensional GN model [9] has been used as a one-
dimensional ansatz for the chiral condensate at T = 0 and with �nite baryon densities. In
this work, two parameters in this ansatz with Jacobi elliptic functions are minimized for a
given baryon density. The author �nds a degenerate phase, where such an inhomogeneous
modulation has the same minimizing energy density as the homogeneous minimum of the
e�ective action. Obviously, T = 0 cannot be investigated in this study due to the in�nite
extent of the temporal direction. However, an investigation of the limit T → 0 is possible.
When lowering the temperature at �xed chemical potential, a shrinking of the relative
di�erence θ = |(Se�[ς(x1)]−Se�[σ])/Se�[σ]| is observed, where σ = const. 6= 0 is the global
minimum and ς(x1) is an inhomogeneous local minimum corresponding to the second
smallest value of the e�ective action. For the lattice aσ0 = 0.237 withW1 = W ′

1 as weight
function for the interaction term this behavior will explicitly be studied. At µ/σ0 = 0.6
and T/σ0 = 0.263 an inhomogeneous kink-antikink minimum with θ ≈ 5.7 · 10−4 is
found. By �xing the chemical potential and decreasing the temperature to T/σ0 = 0.176
the modulation Σ(x1), as plotted in Fig. 8.1, θ ≈ 3.8 · 10−4 is obtained. By further
decreasing the temperature to T/σ0 ≈ 0.117 one �nds θ ≈ 3.0 · 10−4. However, a clear
functional behavior θ(T ) cannot be found. Nevertheless, a decrease in θ(T ) for T → 0
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Fig. 8.2: Global minima of the e�ective action obtained by performing multiple local minimizations
on the lattice with aσ0 = 0.379 and W1(x1 − y1) = W ′′1 (x1 − y1) for T/σ0 = 0.132. (left) µ/σ0 = 0.97.
(right) µ/σ0 = 1.11. The dashed line is a cos-function with the same frequency as the minimum.

is observed for several di�erent chemical potentials. Together with the analytical study
[37] one can conclude that for T = 0 there exists an degenerate ground state with an
homogeneous and an inhomogeneous minimum. One cannot clearly observe whether
such an degenerate phase exists also for �nite, but rather small T/σ0 < 0.1, since the
relative di�erence θ gets so small that the errors of the minimization, e.g. caused by the
terminating condition Eq. (8.4), are of the order of θ. Consequently, for low temperatures
the need for more and more precise minimizations and the increasing temporal extent
prevent a more sophisticated study within lattice �eld theory. Nevertheless, a study of
the whole phase diagram with the ansatz from the 1 + 1-dimensional GN model in one
spatial direction might lead to an IP degenerate to the HBP also at �nite temperature.

8.2.2 Global minima within the inhomogeneous phase at �nite a forW1 = W ′′
1

For W1 = W ′′
1 an IP is observed via stability analysis at �nite lattice spacing (see Sec.

7.2), which vanishes when applying the continuum limit. Via minimization one does not
obtain an extension of this IP nor a second phase with inhomogeneous chiral condensates,
which could possibly survive the continuum limit. However, the energetically preferred
functional form of the chiral condensate in the IP. Therefore, one should prefer to min-
imize the e�ective action at rather large aσ0 = 0.379, where the IP still covers a quite
large region in the µ-T plane. Surprisingly, the chiral condensate seems to behave as in
1 + 1 dimensions. The two resulting global minima are plotted in Fig. 8.2. At the phase
transition from the HBP an inhomogeneous chiral condensate with two kinks, as plotted
in the left panel of Fig. 8.2 for T/σ0 = 0.132 and µ/σ0 = 0.97, is observed. The chiral
condensate still has plateaus around its maxima and minima, albeit they are already
rather small. The amplitude of approximately 0.8σ0 is still quite large. When slightly
increasing the chemical potential, the chiral condensate continuously changes towards a
cos-like behavior. The chiral condensate at larger µ responds as in the 1 + 1-dimensional
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GN model. The frequency of the cos-waves increases in discrete steps due to the �nite
spatial extent, while the amplitude of σ decreases until it vanishes in a smooth second
order transition to the SP. The right panel of Fig. 8.2 shows the chiral condensate at
µ/σ0 = 1.11, i.e. slightly before the phase transition at µ′/σ0 = 1.134. The wavelength
of the condensate is now L/4, while the amplitude is around 0.31σ0.

8.3 The isospin asymmetric 2+1-dimensional Gross-Neveu model

In principle, a minimization for non-vanishing µI might lead to di�erent results than the
stability analysis in Sec. 7.3. However, similar results as for the 2 + 1-dimensional GN
model are expected. Since increasing the isospin-like chemical potential disfavors the ex-
istence of inhomogeneous chiral condensates in the stability analysis and a minimization
of the e�ective action in the previous subsection does not exhibit a larger IP, a dedicated
investigation of the phase diagram for various µI is not very promising. An interesting
topic, which will be investigated in the future, is whether a degenerate, inhomogeneous
ground state remains at �nite µI for T → 0.
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9 Conclusion

In this thesis the possible existence of IPs in the 2 + 1-dimensional GN model was in-
vestigated in the large-Nf limit. Moreover, an additional isospin-like chemical potential
µI was introduced and, in a novel study, IPs for di�erent µI were investigated. There-
fore, two di�erent possibilities were proposed to naively discretize the GN model and
the numerical methods of this thesis were tested on the 1 + 1-dimensional GN model. A
stability analysis and a local minimization algorithm on the lattice for σ(x) = σ(x1) was
applied to study the phase diagram of these models.

In the 2 + 1-dimensional GN model an IP is found via stability analysis at �nite lattice
spacing in only one of the two applied naive discretizations of the interaction term (W ′

1

or W ′′
1 ). The IP strongly depends on the cuto� and vanishes in the continuum limit

con�rming the lattice study in Ref. [28]. A similar e�ect is observed in a complemen-
tary continuum mean-�eld study [29], where at �nite cuto� an IP occurs, that vanishes
when the cuto� is removed. Through minimization of the e�ective action, additional
inhomogeneous regions in the µ-T plane were not obtained compared to the stability
analysis. However, indications for a degenerate ground state at T = 0, where an inho-
mogeneous together with a translationally invariant chiral condensate are global minima
of the e�ective action, supporting the analysis in [37] are found. The in�uence of the
introduced isospin-like chemical potential disfavors the existence of IPs. This has been
studied via a stability analysis at relatively large lattice spacing in the discretization,
which favored the IP at �nite lattice spacing for vanishing µI . Although, at relatively low
µI/σ0 < 0.5 the IP persists but shrinks, and vanishes completely for larger µI . However,
all of these results are obtained for one-dimensional modulation of the chiral condensate
σ(x) = σ(x1). Due to Ref. [29] the stability analysis should not give di�erent results
in the continuum limit for higher-dimensional modulations, the phase diagram of both
models could change for a full minimization of the e�ective action. A full minimization
of the e�ective action for σ = σ(x), possibly also with other minimization algorithms, is
an interesting prospect for future investigations.

Recently, the existence of oscillating chiral condensates has been con�rmed in the 1 + 1-
dimensional GN model at �nite Nf , i.e. including quantum �uctuations. Hence, the
large-Nf limit, or equivalently the mean-�eld approximation, seems to retain important
information about the full QFT, which motivates further studies in the mean-�eld ap-
proach. In 1+1-dimensions the phase diagram of the isoNJL model for multiple chemical
potentials has been studied [12, 13], where several complex functional forms of scalar and
pseudo-scalar modes are obtained. These results further motivate the need for global
minimization of e�ective actions without a speci�c ansatz for the chiral condensate, as
it is possible within lattice �eld theory. The �ndings in this thesis raise open questions
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about the role of a cuto� relating to the existence of IPs, which this author will continue
to study in 2 + 1 dimensions. Since certain QCD-inspired models in 3 + 1 dimensions
require a cuto�, while QCD is renormalizable, such an investigation could clarify con-
cerns regarding the validity of their results as models for strongly-interacting matter. A
straightforward candidate for such a study could be the 2 + 1-dimensional NJL model,
which features a continuous chiral symmetry.

A long-term aim is a very e�cient reimplementation of the developed lattice techniques
to investigate a variety of QCD-inspired models in a �exible numerical framework. This
would allow the study of higher-dimensional modulations of the chiral condensate in
e�cient minimizations of the corresponding actions. Two 3+1-dimensional models, that
are much closer to QCD, are the NJL and the Quark-Meson model. IPs have so far been
mostly investigated via certain ansatzes for the chiral condensate [14, 15], e.g. with a
chiral density wave. A minimization of the e�ective action would, therefore, provide the
energetically preferred functional form of the condensate without an ansatz and, possibly,
an extension of the found IP or even the appearance of a disconnected, second IP. These
investigations can then straightforwardly be extended to explore the parameter space,
e.g the dependence of IPs on an isospin chemical potential or the inclusion of strange
quarks (as in Ref. [49]).
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A Properties of Se�

In order to perform lattice calculations of the GN model it is important to ensure that
the e�ection action (3.10) is real. As we introduced the bosonic �eld σ as a real �eld,
we only need to show that the determinant of the Dirac operator Q is real valued. In
1 + 1 dimension the proof is rather straight forward. In 2 + 1 dimensions, however,
we need to restrict the chiral condensate to spatial coordinates to obtain a real action
in the irreducible representations. In the respective sections, we will not denote the
dimensionality of spinor space. To keep notation simple, Q denotes the Dirac operator
in context of the respective Euclidean spacetime dimensions and fermion representation.

A.1 1 + 1 dimensions

The calculation in this section is valid for an irreducible fermion representation. The
bosonic �eld σ can depend on both coordinates, i.e. σ(x0, x1).

Proof of det Q[−σ] = det Q[+σ]

We start with the eigenvalue equation of the Dirac operator Q in irreducible fermion
representation

Q[+σ]fj = (+γν∂ν + γ0µ+ σ) fj(x0, x1, x2) = αjfj(x0, x1, x2) . (A.1)

In 1 + 1 dimension we can always de�ne the hermitian chirality operator γ5
22. Applying

−γ5 from the left and inserting γ2
5 = 12 leads to

(γν∂ν + γ0µ− σ)︸ ︷︷ ︸
=Q[−σ]

γ5fj(x0, x1, x2) = −αjγ5fj(x0, x1, x2) . (A.2)

Thus, if αj is an eigenvalue of QT [+σ], −αj is an eigenvalue of Q[−σ]. Consequently,

det Q[−σ] =
∏
j

(−αj) =
∏
j

αj = det Q[+σ] , (A.3)

where we have used that the number of eigenvalues is even. Note that Eq. (A.3) implies

Se�[−σ] = Se�[+σ] . (A.4)

Proof of det Q ∈ R
22This is possible, because the γ matrices can always be chosen to be proportional to the Pauli matrices.
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Complex conjugation of Eq. (A.1) leads to

(+γ∗0 (∂0 + µ) + γ∗1∂1 + σ) f ∗j (x0, x1, x2) = α∗jf
∗
j (x0, x1, x2) . (A.5)

In 1 + 1 dimension there exist two charge conjugation matrices C± that ful�ll (compare
e.g. Ref. [50])

C−γµC
−1
− = −γTµ , (A.6)

C+γµC
−1
+ = +γTµ . (A.7)

Applying C+ from the left and inserting 12 = C−1
+ C+ results in(

+γ†0 (∂0 + µ) + γ†1∂1 + σ
)
C+f

∗
j (x0, x1, x2) = α∗jC+f

∗
j (x0, x1, x2) . (A.8)

In general, the Euclidean γµ in 1 + 1 dimensions are hermitian. Thus, we identify

(+γ0 (∂0 + µ) + γ1∂1 + σ)︸ ︷︷ ︸
=Q[+σ]

C+f
∗
j (x0, x1, x2) = α∗jC+f

∗
j (x0, x1, x2) . (A.9)

Consequently, if αj is an eigenvalue of Q, also α∗j is an eigenvalue of Q. We conclude

det Q =
∏
k

α∗kαk =
∏
k

|αk| , (A.10)

i.e. we can express the determinant det Q as a product over absolute values of the complex
αj. It follows that

det Q ∈ R . (A.11)

A.2 2 + 1 dimension

The calculations in this appendix are valid for the 2 × 2 fermion representations (3.20)
and (3.21) and for the 4 × 4 fermion representation (3.24). Note that we restrict the
dependence of σ to the spatial coordinates, i.e. σ = σ(x1, x2).

Proof of det Q[−σ] = det Q[+σ]

We start with the eigenvalue equation for QT ,

QT [+σ]fj =
(

+ γ0∂0 − γ0µ− γ1∂1 − γ2∂2 + σ(x1, x2)
)
fj(x0, x1, x2) = αjfj(x0, x1, x2) ,

(A.12)
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where we have used ∂Tµ = −∂µ. The coordinate transformation u = −x0 leads to(
γ0∂0 + γ0µ+ γ1∂1 + γ2∂2 − σ(x1, x2)

)
︸ ︷︷ ︸

=Q[−σ]

fj(−u, x1, x2) = −αjfj(−u, x1, x2) . (A.13)

Thus, if αj is an eigenvalue of QT [+σ], −αj is an eigenvalue of Q[−σ]. Consequently,

det Q[−σ] =
∏
j

(−αj) =
∏
j

αj = det QT [+σ] = det Q[+σ] , (A.14)

where we have used that the number of eigenvalues is even. Note that Eq. (A.14) implies

Se�[−σ] = Se�[+σ] . (A.15)

Proof of det Q ∈ R

We start with the eigenvalue equation for Q,

Q[+σ]fj =
(

+ γ0∂0 + γ0µ+ γ1∂1 + γ2∂2 + σ(x1, x2)
)
fj(x0, x1, x2) = αjfj(x0, x1, x2) .

(A.16)

Complex conjugation leads to(
− γ0∂0 − γ0µ+ γ1∂1 + γ2∂2 + σ(x1, x2)

)
f ∗j (x0, x1, x2) = α∗jf

∗
j (x0, x1, x2) (A.17)

and multiplication of this equation with −γ0 to(
+ γ0∂0 + γ0µ+ γ1∂1 + γ2∂2 − σ(x1, x2)

)
︸ ︷︷ ︸

=Q[−σ]

γ0f
∗
j (x0, x1, x2) = −α∗jγ0f

∗
j (x0, x1, x2) .

(A.18)

Thus, if αj is an eigenvalue of Q[+σ], −α∗j is an eigenvalue of Q[−σ]. Consequently,(
det Q[−σ]

)∗
=

(∏
j

(−α∗j )
)∗

=
∏
j

αj = det Q[+σ] , (A.19)

where we have again used that the number of eigenvalues is even. Combining Eq. (A.14)
and Eq. (A.19) leads to (

det Q[+σ]
)∗

= det Q[+σ] , (A.20)

i.e. det Q ∈ R.
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B Poincaré symmetry

In this appendix we will present the Poincaré group in 1 + 1- and 2 + 1-dimensions and
its Rep. for bosonic (spin 0) and fermionic (spin 1

2
) �eld. Therefore, we neglect �avor ro-

tations and only concentrate on the Poincaré symmetry of one single �avor ψ. Poincaré
transformations are a combination of Lorentz transformations and spacetime transla-
tions. We only consider proper Lorentz transformations and discuss discrete spacetime
symmetries separately23. At �rst, we discuss general properties of Poincaré transforma-
tions in d dimensions.

In general, we de�ne a Poincaré transformation by its application on spacetime vectors,
i.e.

x′ = T (Λ, a)x = Λx+ a . (B.1)

for spacetime vector a = (a0, . . . , ad−1)T. The Lorentz transformation Λ is element of
SO(d). An in�nitesimal Lorentz transformation is given by

Λµν = δµν + εµν (B.2)

with arbitrary small parameters εµν = −ενµ.

Now we consider Reps. U(Λ, a) of the Poincaré group on other vector spaces. They
inherit the group structure from the T (Λ, a). The elements U(Λ, a) can be written as

U(Λ, a) = e−
i
2
εµνMµνe−iaµPµ = 1− i

2
εµνMµν − iaµPµ + . . . , (B.3)

whereMµν denote the anti-symmetric generators for Lorentz transformations. These are
rotations in Euclidean spacetime. Pµ denote the generators for translations and aµ is
the parameter for the translation. Mµν and Pµ form a Lie algebra, the Poincaré algebra,
whose commutation relations are given by

[Mαβ, Mγδ] = i (δβγMαδ + δαδMβγ − δαγMβδ − δβδMαγ) , (B.4a)

[Pα, Pβ] = 0 , (B.4b)

[Pα, Mβγ] = i (δαβPγ − δαγPβ) . (B.4c)

The generators are24

Mµν = i (xµ∂ν − xν∂µ) + Sµν , Pµ = −i∂µ , (B.5)

23In Euclidean spacetime it is possibly to de�ne the Lorentz transformations as a product of proper
transformations, i.e. with determinant 1, and a discrete Z2-symmetry. This discrete symmetry can
e.g. be chosen as parity or time reversal.

24The generators are chosen such that we obtain transformation on scalar and fermionic �elds. One
can also obtain the spacetime transformation (B.1). Then each of the Mµν has a matrix structure in
spacetime.
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where Sµν is a spin structure that vanishes for scalar �elds (spin 0). In general, it ful�lls
Sµν = −Sνµ.

Accordingly, a scalar �eld φ transforms under Lorentz transformations as

φ′(x′) = U(Λ, 0)φ(Λx) = e−
i
2
εµνMµνφ(Λx). (B.6)

Considering only in�nitesimal transformation, we can expand this expression and neglect
O(ε2) corrections to obtain

φ′(x′) =

(
1− i

2
εµνMµν

)
[φ(x) + εµνxν∂µφ(x)]

= φ(x) +
1

2
εµν (xµ∂ν − xν∂µ)φ(x) + εµνxν∂µφ(x) = φ(x), (B.7)

where in the last step we use the anti-symmetry of the parameters εµν and relabel the
summation indices. As we can express general Lorentz transformations via in�nitesimal
transformations, we obtain the expected invariance of scalar �elds25. One can perform
the same calculation for translations U(1, a) and obtain

φ′(x′) = φ′(x+ a) = φ(x). (B.8)

Fermion �elds (spin 1
2
) transform under Poincaré transformations as

ψ′(x′) = U(Λ, 0)ψ(Λx) = e−
i
2
εµνSµνψ(x) (B.9)

with parameters ωµν = −ωνµ. Here, in the last step we already used the transformation
behavior (B.7). The generators Sµν are constructed with Reps. of the Dirac algebra
(3.12)

Sµν =
i

4
[γµ, γν ] . (B.10)

In general, the spinor transformations U are constructed such that they ful�ll the identity

U−1(Λ)γµU(Λ) = Λµνγν , (B.11)

which can be shown by considering in�nitesimal transformations.

25Note that besides the additional spin structure Sµν this transformation behavior also holds for higher
spin �elds. Since we just showed the invariance under the scalar part of the transformation, we will
directly apply this behavior for higher spin �elds as a convention. Rather, we focus on the spin
structure of the generators.
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B.1 1 + 1 dimensions

The Lorentz transformation Λ is an element of SO(2). SO(2) is a lie group and its
elements O can be expressed by

O = eiθσ2 = cos(θ)12 + i sin(θ)τ2 , (B.12)

where τ2 is the second Pauli matrix and θ is a real parameter. Hence, the group elements
are connected continuously and can be represented by iterative application of in�nitesi-
mal transformations.

In 1 + 1 dimensions an irreducible Rep. of the Dirac algebra is given by (3.13). Hence,
we only have one independent generator S01 = − τ3

2
. The transformation behavior of

fermion �elds (B.9) can be explicitly written as

ψ′(x′) = e
i
2
ε01τ3ψ(x). (B.13)

With parameter ε = ε01 the transformation matrix is given by

e
i
2
ετ3 =

 e
iε
2 0

0 e−
iε
2

 , (B.14)

which is just a rotation of the components of ψ.

Discrete symmetries

For completeness, we additionally mention improper discrete symmetries. The parity
inversion P is de�ned by

(x0, x1)T → (x0,−x1)T , ψ(x)→ γ0ψ(x) , ψ̄(x)→ ψ̄(x)γ0 . (B.15)

From this we can conclude that ψ̄ψ is a scalar, while a term ψ̄γ5ψ is pseudoscalar, i.e.
it is multiplied by −1 under P . Time reversal is then equivalent to the application of
(B.14) with the angle π and P , which is element of the Lorentz group (see Eq. (B.12)).
Explicitly, time reversal is given by

(x0, x1)T → (−x0, x1)T , ψ(x)→ γ1ψ(x) , ψ̄(x)→ ψ̄(x)γ1 . (B.16)
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B.2 2 + 1 dimensions

In 2 + 1 dimensions the Lorentz transformation Λ is element of SO(3). Elements R ∈
SO(3) can be expressed by

R = eiθjTj (B.17)

with three parameters θj and generators

T0 = i


0 0 0

0 0 −1

0 +1 0

 , T1 = i


0 0 1

0 0 0

−1 0 0

 , T2 = i


0 −1 0

+1 0 0

0 0 0

 . (B.18)

The commutation relation between the generators are

[Ti, Tj] = iεijkTk (B.19)

with the three-dimensional Levi-Civita symbol. From this property of the generators one
can directly see that elements of SO(3) are rotations on a three-dimensional vector space,
since Eq. (B.19) is the commutation relation of orbital angular momentum operators.

One can obtain the same relation by considering general Reps. U(Λ, a), as de�ned in
Eq. (B.3). We have now three independent generators for Lorentz transformations Mµν

and three generators for spacetime translations Pµ. One can unambiguously map the
matrix-valued Mµν to vectors

Lα = −εαβγ
2
Mβγ ↔ Mαβ = −εαβγLγ . (B.20)

The Poincaré algebra (B.4) translates to

[Lµ, Lν ] = iεµνρLρ , (B.21a)

[Pµ, Lν ] = iεµνρPρ , (B.21b)

[Pµ, Pν ] = 0 , (B.21c)

i.e. the generators of Lorentz transformations Lα ful�ll the algebra of angular momentum
operators.

Fermion �elds transform as
ψ′(x′) = e−

i
2
εµνSµνψ(x) (B.22)

where we now have three independent generators

Sµν =
i

4
[γµ, γν ] . (B.23)
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As the Sµν depend on the Rep. of the Dirac algebra (3.12), the transformation behavior
of spinors will di�er between irreducible representations, such as (3.20) and (3.21), and
reducible ones, such as (3.24).

2-component fermion representations

In the irreducible, 2× 2 Reps. (3.20) and (3.21) the generators Sµν are given by

S01 = −τ1

2
, S02 =

τ3

2
, S12 = −τ2

2
. (B.24)

They ful�ll the algebra of SU(2). Note that the algebra of SU(2) and SO(3) are equivalent
and given by (B.19). Consequently, the matrices

U = e−
i
2
εµνSµν = e

i
2
ετ (B.25)

are elements of SU(2). We de�ne ε = (ε01, ε12,−ε02)T and τ = (τ1, τ2, τ3)T in the last
step to choose a standard basis of SU(2) generators.

As well known (see e.g. Ref. [51]), SU(2) is a double cover of SO(3), which is equivalent
to the Lorentz group. This can be demonstrated via comparison of transformations
(B.25) and (B.17) for rotations around the x1 axis (θ0 = 0, θ2 = 0 and ε0 = 0, ε2 = 0).
Considering a rotation of 2π in Euclidean spacetime we have for a spacetime vector a
and a spinor ψ

a′(x′) = ei2πT2a(x) =


+ cos(2π) 0 − sin(2π)

0 1 0

+ sin(2π) 0 + cos(2π)

 a(x) = a(x) (B.26a)

ψ′(x′) = e
i
2

2πτ2ψ(x) =

 + cos(π) + sin(π)

− sin(π) + cos(π)

ψ(x) = −ψ(x) . (B.26b)

Thus, after a full rotation around the x1-axis the spinor is not mapped to itself. How-
ever, as one can easily see from the above calculation, performing a rotation with angle
4π results in ψ′(x′) = ψ(x). In general, a spinor rotates through half the angle that
the spacetime vectors rotates through. This is responsible for a topological distinction
between SU(2) and SO(3). Increasing a rotation angle by 2π leads to U → −U , R→ R.
Since U and −U both correspond to the rotation R, there is a two to one mapping of
elements of SU(2) to elements of SO(3).
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This is closely connected to the existence of two independent irreducible Reps. for the
Dirac algebra (3.12). Indeed, if one restricts the angles of rotation in (B.25) and (B.17)
to [0, 2π), we still obtain the complete group of Lorentz transformation on spacetime
vectors. To regain the complete group of spinor (SU2) transformations one can use a
second basis of generators τ ′ = (−τ1,−τ2,−τ3)T in addition to the set of Pauli matrices
de�ned in Eq. (B.25). Both generator basis are not not equivalent but ful�ll both the
Dirac algebra (3.12) and the SU(2) algebra (B.19) (modulus a factor 1/2).

4-component fermion representations

In the reducible Rep. (3.24) the generators Sµν are given by

S01 = 12 ⊗−
τ1

2
, S02 = 12 ⊗

τ3

2
, S12 = 12 ⊗−

τ2

2
. (B.27)

Consequently, the spinor transformation (B.22) takes the form of

U = e−
i
2
εµνSµν = e

i
2
12⊗ετ . (B.28)

with ε = (ε01, ε12,−ε02)T and τ = (τ1, τ2, τ3)T. Using the matrix exponential we can
rewrite

U =

 e
i
2
ετ 0

0 e
i
2
ετ

 , (B.29)

where the 2 × 2 blocks are again elements of SU(2). As for four-component spinors we
have axial transformations similar to Eq. (3.28) for Nf �avors, we can apply these to
obtain the full SU(2) symmetry, even with a restriction to the parameters ε ∈ [0, 2π).

Discrete symmetries

In Refs. [35, 36] explicit Reps. for discrete spacetime transformation on four-component
fermion �elds are discussed. Due to the four-component spinor space we have one degree
of freedom each in the Rep. of parity inversion Pξ and time reversal Tη. Parity inversion
is de�ned as

(x0, x1, x2)T → (x0, x1,−x2)T , ψ(x)→ 1

2
[(1 + ξ)γ2γ4 + i(1− ξ)γ2γ5]ψ(x) (B.30)

and time reversal is given by

(x0, x1, x2)T → (−x0, x1, x2)T , ψ(x)→ 1

2
[(1 + η)γ0γ4 + i(1− η)γ0γ5]ψ(x). (B.31)

The complex phases ξ, η can be set to 1 for simplicity. The GN model is invariant under
these discrete spacetime transformations.
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C Naive lattice discretization of fermions in the Gross-

Neveu model

In this section we discuss the naive discretization of fermion �elds in one spatial di-
mension, i.e. D = 1, and the necessity of a non-diagonal modi�cation term in the GN
interaction term (4.4). The generalization to more than one dimension is rather straight-
forward. A more detailed discussion can be found in Refs. [16, 17, 42]. This chapter is
mainly inspired by App. A in Ref. [16].

C.1 Free fermions

We de�ne the Fourier transforms of the fermion �elds in the x1-direction as

χ(n0, x1) =
1√
Ns

∑
k1

χ̃(n0, k1)eik1x1 , χ̄(n0, x1) =
1√
Ns

∑
k1

˜̄χ(n0, k1)eik1x1 . (C.1)

Similar to the discussion in Sec. 4 the fermion �elds are regularized by plane waves in the
temporal direction and naively discretized in the spatial direction according to Eq. (4.1)
and Eq. (4.3) for D = 1. The discrete momenta k1 are chosen such that the boundary
conditions in x1 direction are periodic. They ful�ll −π ≤ k1a ≤ π, i.e. they are in the
�rst Brillouin zone. Inserting the Fourier transformation in the action (4.3) after setting
D = 1 we obtain

Sfree[χ̄, χ] =
Nt∑

n0=−Nt+1

∑
k1

˜̄χ(n0, k1)

(
γ0(iωn0 + µ) + γ1i sin(k1a)/a

)
χ̃(n0, k1) ,

where ωn0 are frequencies de�ned in Eq. (4.1). In the continuum limit the sum over
k1 is restricted to values, where | sin(k1a)a| � 1. These regions of these contributing
momenta, denoted by R(m) with m = 0, 1, are in the neighbor of the roots of sin(k1a),
which we de�ne as

k
(m)
1 =

π

a
m , m = 0, 1 . (C.2)

De�ning the fermion �elds in these regions of contributing momenta as χ(m)(n0, k1) =

χ̃(n0, k1 + k
(m)
1 ) for |k1a| � 1 we can approximate the action, neglecting second order

corrections in a, by

Sfree[ ˜̄χ, χ̃] =
Nt∑

n0=−Nt+1

1∑
m=0

∑
k1∈R(m)

˜̄χ(n0, k1)

(
γ0(iωn0 +µ) +γ1i(−1)mk1

)
χ̃(n0, k1) . (C.3)

This calculation is an example for the fermion doubling problem, as we obtain an ad-
ditional fermion �avor for the naively discretized spatial direction. Generalized to D
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naively discretized spacetime dimensions one would obtain 2D fermion �avors instead of
only one in the continuum theory. Another issue with the fermion doublers is that they
do not follow the standard Dirac equation. We have an additional minus sign in front of
the γ1 matrix for m 6= 0. For free fermions this is not a problem, as these minus signs
can be eliminated by the transformations of the �eld coordinates, i.e.

χ̃(m) = (γ0)mψ̃(m) , ˜̄χ(m) = ˜̄ψ(m)(γ0)m (C.4)

with m = 0, 1.

C.2 Naive lattice discretization of the Gross-Neveu model

The action of the 1 + 1-dimensional GN model for Nf = 2 in our hybrid approach is
given by

Sσ[χ̄, χ, σ] = Sfree[χ̄, χ] +
Nt∑

n0=−Nt+1

∑
x1

χ̄(n0, x1)σ(x1)χ(n0, x1) +
NfNt

λ

∑
x1

σ2(x1) ,

(C.5)

where we restricted the bosonic �eld σ to depend only on the spatial coordinate. In this
chapter we will show that this discretization describes a continuum theory di�erent from
the GN model. Thus, we again express the action (C.5) in terms of Fourier transforms

Sσ[ ˜̄χ, χ̃, σ̃] =Sfree[ ˜̄χ, χ̃] +
Nt∑

n0=−Nt+1

∑
k1

∑
k′1

˜̄χ(n0, k1)σ̃(k1 − k′1)χ̃(n0, k
′
1)

+
NfNt

λ

∑
k1

|σ̃(k1)|2 , (C.6)

where we used Eq. (C.1) and the Fourier transform of the bosonic �eld, de�ned by

σ(x1) =
1√
Ns

∑
k1

σ̃(k1)eik1x1 (C.7)

As in Sec. C.1 only fermionic momenta in the regions R(m) contribute in the continuum
limit. However, there is no such suppression for the σ modes. Consequently, we rewrite
the interaction term in Eq. (C.6)

Nt∑
n0=−Nt+1

∑
k1,k′1

∑
m,m′

˜̄χ(m)(n0, k1)σ̃(mm′)(k1 − k′1)χ̃(m′)(n0, k
′
1) (C.8)
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with the de�nition
σ̃(mm′)(k1) = σ̃(k1 + k

(m)
1 − k(m′)

1 ) . (C.9)

Note that the �eld coordinates χ̃(m) do not obey the standard kinetic term for fermion
�elds and can be related to the usual fermionic �eld coordinates by Eq. (C.4). We express
the interaction term (C.8) in terms of ψ̃(m)

Nt∑
n0=−Nt+1

∑
k1,k′1

∑
m,m′

˜̄ψ(m)(n0, k1)(γ0)mσ̃(mm′)(k1 − k′1)(γ0)m
′
ψ̃(m′)(n0, k

′
1) . (C.10)

The terms with m = m′ describe the interaction of the GN model. However, we obtain
two additional terms, i.e.

Nt∑
n0=−Nt+1

∑
k1,k′1

[
˜̄χ(0)(n0, k1)σ̃(01)(k1 − k′1)γ0χ̃

(1)(n0, k
′
1)

+˜̄χ(1)(n0, k1)γ0σ̃
(10)(k1 − k′1)χ̃(0)(n0, k

′
1)
]
. (C.11)

These terms are non-scalar in spin space and we obtain an interaction between di�erent
fermion doublers. Hence, they are not part of the GN model.

To derive a correct naive lattice discretization of the GN model, it is important to
note that the correct interaction terms are proportional to σ̃(mm). As only fermion
modes in the regions R(m) contribute and the additional, non-scalar interaction terms
are proportional to

σ̃(10)(k1 − k′1) = σ̃(01)(k1 − k′1) = σ̃(k1 − k′1 + π/a) , (C.12)

one can eliminate the terms (C.11) by replacing σ̃(k1 − k′1) with W̃1(k1 − k′1)σ̃(k1 − k′1)
in Eq. (C.6). In principle, one could choose any weight-function W̃1, which ful�lls

W̃1(k1 − k′1)→ 1 for k1 − k′1 ≈ k
(0)
1 = 0 and W̃1(k1 − k′1)→ 0 for k1 − k′1 ≈ k

(1)
1 = π/a.

In our work we apply two choices for W̃1(k1 − k′1), i.e. a soft momentum cuto�

W̃ ′
1(k1 − k′1) = [1 + cos(k1a− k′1a)] /2 (C.13)

and a hard momentum cuto�

W̃ ′′
1 (k1 − k′1) = Θ

( π
2a
− |k1 − k′1|

)
, (C.14)

where Θ(x) is the Heaviside function de�ned as

Θ(x) =


0 x < 0

1/2 x = 0

1 x > 0

. (C.15)
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Fig. C.1: The proposed weight functions W̃ ′1 and W̃ ′′1 as functions of the bosonic momentum k1 − k′1.

Both functions are plotted in Fig. C.1 for (k1 − k′1) > 0, since both functions are sym-
metric around the origin. Besides one could choose any weight-function, that ful�lls the
properties describes above, W̃ ′

1 and W̃
′′
1 are extreme choices in terms of how to suppress

high bosonic momenta. While both yield the correct continuum result, W̃ ′
1(k1− k′1) sup-

presses the wrong interactions at k1−k′1 = π/a relatively crudely at �nite a. In contrast,
W̃ ′′

1 (k1 − k′1) vanishes completely near k1 − k′1 = π/a.

The modi�ed action in spacetime coordinates is given by

Sσ[χ̄, χ, σ] =

(
Sfree[χ̄, χ] +

Nt∑
n0=−Nt+1

∑
x1,y1

χ̄(n0, x1)W1(x1 − y1)σ(y1)χ(n0, x1)

)
+
NfNt

λ

∑
x1

σ2(x1) , (C.16)

where W1 is the inverse Fourier transform of W̃1. For W̃ ′
1 and W̃ ′′

1 the inverse Fourier
transforms are given by Eq. (4.12) and Eq. (4.13), respectively. These calculations can
rather straightforward be generalized to D dimensions by consideration of

W̃D(k− k') =
D∏
j=1

W̃1(kj − k′j) (C.17)

before Fourier transforming the interaction, as has been done in Eq. (4.5) and Eq. (4.6)
for W ′

D and W ′′
D. In Ref. [16, 17] a similar procedure has been performed in 1 + 1 di-
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mensions, where also the temporal direction has been treated with a lattice discretization.

As we have explicitly discussed, the choiceW1(x1−y1) = δ(x1−y1) does not describe the
GN model, but has additional non-scalar interaction terms (e.g. Eq. (C.11)). However,
in the limit Nf → ∞ we obtain qualitatively similar results to W ′′

1 for the 1 + 1- and
2 + 1-dimensional GN model. In the continuum limit W1(x1 − y1) = δ(x1 − y1) seems
to give the same phase diagram as W ′

1 and W ′′
1 . This unexpected behavior is subject of

current investigation.
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