Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

Bernd R. Schlei, FAIR Synchrotrons
Introduction
Numerical Implementation of FOHS Elements

Manifolds of Co-Dimension 1 are numerically approximated best by:

- Line-Elements in 2 D → Contours
 - “DICONEX”
- Triangles in 3 D → Surfaces
 - “VESTA”
- Tetrahedrons in 4 D → Hyper-Surfaces
 - “STEVE”

Such Choices may lead to Size Correction Factors for the particular Tiling.

Bernd R. Schlei
2 Dimensions
DICONEX – Dilated CONtour EXtraction

1: Initial Distribution of “Active” Pixels.
2 / 3: Left / Right-Turning Vectors.
4 / 5: Dilated Contours.

Fast 3-Step Algorithm:
“Vectors – Connect – Shift”

B. R. Schlei,
SPIE Vol. 4794 (2002) 63;
Image and Vision Computing
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

Features of DICONEX Contours

1. Only **four** Pixel Neighbors have to be considered during DICONEX Contour Construction.

2. DICONEX Contours are **never** self-intersecting or degenerated!

4 Neighbors

Smoothing of DICONEX Contours:

Initially given Gray-Level Images provide additional Spectral Information, which allow the **Dislocation** of the Points, which support the DICONEX Contours:

Bernd R. Schlei
Example: Extraction of 1+1 D FOHS (Part 1)

Temperature Field
(Color Coded Gray-Level Image)

Objective: Provide FOHS for
\(T_{\text{Pixel}} = T_{\text{Fluid}} \geq T_f \approx 139 \text{ MeV} \).

Dilated Contours (DICONEX)
with Shifted Point Normal Vectors

Example: Extraction of 1+1 D FOHS (Part 2)

Dilated Contours (DICONEX) Shifted with Respect to Temperatures along Shifted Point Normal Vectors

Final 1+1 D Freeze-Out Hyper-Surface after Removal of unphysical Edges

3 Dimensions
VESTA – Volume-Enclosing Surface exTraction Algorithm

Fast 3-Step Algorithm: “Faces – Connect – Substitute”

1: Initial Voxel Faces and Voxel Face Centers.
2: Vector Cycle, connecting Voxel Faces.
3: Reduced Vector Cycle, connecting Voxel Face Centers. (Only N-Cycles with N = 3, 4, 5, 6, 7 are possible.)
4: Rendered VESTA Surface for Single Voxel.

Voxels, which are in Contact with another Voxel only through one single Edge may be disconnected or connected.

B. R. Schlei (Copyright © 2002 - 2009), Los Alamos Preprint LA-UR-02-7733.
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

VESTA - Surface Cycle Break-Up

3-Cycle

4-Cycle

4-Cycle

5-Cycle

7-Cycle

6-Cycle

6-Cycle

6-Cycle

6-Cycle

Such a Break-Up into Triangles allows for Point Dislocations!
Fluid Expansion and Cooling in HYLANDER-C (e.g., S+S @ 200A GeV)

DICONEX Contours enclose Pixels (Fluid Grid Points) with
\[T_{\text{Pixel}} = T_{\text{Fluid}} \geq T_f \approx 139 \text{ MeV}. \]

Note the Break-Up of ONE Contour into TWO Contours between Images \(t_7 \) and \(t_8 \).
While Building Temporal Correlations between the Contours, one may encounter Correspondence Problems.

Discontinue Approach. STOP!

Consider a Temporal Stack of Blob-Pixels (➔ Voxels). Use only Voxel Faces, which separate the Shapes Interior from its exterior Regions.

Rather Begin Here. GO!
While using the actual Temperature Values within a Voxel and one of its Neighbors, one may dislocate the Face Centers of the VESTA Surface with respect to T_f (or ε_f, or n_f, … etc.). This usually leads to a Surface Smoothing.

Surface Tiles with all of their Components $t \leq 0$, or $r \leq 0$, have no meaning for 2+1 D Hydrodynamics. They are therefore removed.
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

FOHS and Normal Vectors

- \(d\sigma_\mu \) are the Normal Vectors for each FOHS Triangle; their Lengths are equal to their corresponding Triangle Area.
- \(\mathbf{x}_\mu \) are the Centers of Mass for each FOHS Triangle; all related Field Quantities are evaluated at these Points.

\[r \]

\[z \]

\[t \]

\[r \]

\[z \]

\[t \]

\[r \]
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

4 Dimensions
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

4D Analogies with 2D and 3D (Part 1)

The Generalization

DICONEX → VESTA → STEVE

has been quite straightforward.

(STEVE = Space-Time Enclosing Volume Extraction,
B. R. Schlei (Copyright © 2003 - 2009))

Toxel, Volumes, Volume Centers, … etc.
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

4D Analogies with 2D and 3D (Part 2)

2D: 4 Edges
3D: 6 Faces
4D: 8 Volumes
nD: 2^n Hyper-Faces

2D: 4 Line Segments
3D: 8 Triangles
4D: 16 Tetrahedrons
nD: 2^n Hyper-Triangles

Furthermore:

2D: 2 Pixels, which touch in only one Point may be connected or disconnected.
3D: 2 Voxels, which touch in only one Edge may be connected or disconnected.
4D: 2 Toxels, which touch in only one Face may be connected or disconnected.
nD: 2 Hyper-Voxels, which touch in only one Hyper-Edge may be connected or disconnected.
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

Time-Sequence of FOHS Projections

VESTA Rendering of FOHS in 2+1 D Hydrodynamics at fixed Times \((t_1 < \ldots < t_8)\).
NOTE: in the field of digital image processing, the y-direction is arranged from top to bottom, i.e., in negative spatial y-direction.

Numbering Convention:
always start with “0” !!!

2x2x2x2 Toxel
(time varying voxel)

Neighborhood

Sample Input File:
(W1 denotes ASCII)

<table>
<thead>
<tr>
<th>0-Site Position</th>
<th>Site Center ID:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5500000e-01</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

0-Site Positions (t/x/y/z) will be counted:
- from past to future (t)
- from left to right (x)
- from top to bottom (y)
- from front to back (z)

min/max values are measured always at the Site Centers !!!

More columns (# of columns>1) may be added for further field values at the given sites.

The first column will always be evaluated with respect to the above given iso-value.
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

Definition of FOHS 4-Normals

Freeze-Out Hyper-Surface Element 4-Normal: \[d\sigma^\mu = \sqrt{-g} \, dS^\mu, \quad \mu = 0, 1, 2, 3. \]

\[g = \det(g^{ik}), \quad \text{with} \quad g^{ik}, \quad \text{i.e., the “Metric Tensor”}, \quad \text{and} \quad dS^i = -\frac{1}{6} \varepsilon^{iklm} dS_{klm}, \]

where \(\varepsilon^{iklm} \) is the “Completely Antisymmetric Unit Tensor” of fourth rank.

Conversely, we also have \(dS_{klm} = \epsilon_{nklm} dS^n \).

The Projections of the Volume of a Parallelepiped are spanned by three 4-Vectors:

\[dx_1^\mu, dx_2^\mu, dx_3^\mu, \quad \mu = 0, 1, 2, 3. \]

They are given by the Determinants

\[dS^{ikl} = \begin{vmatrix} dx_1^i & dx_2^i & dx_3^i \\ dx_1^k & dx_2^k & dx_3^k \\ dx_1^l & dx_2^l & dx_3^l \end{vmatrix} \]

\[d\sigma_\mu \] points to the Exterior of an enclosed Space-Time Region.
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm

Movie: Example of a Propagating Surface

Initial Surface Tile

Final Surface Tiles
Numerical freeze-out hyper-surface extraction in four dimensions with the STEVE algorithm
Q & A