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Abstract

The objective of this thesis is to calculate pion and quark masses in Ny = 2 lattice
Quantum Chromodynamics (QCD) along the chiral critical line using Wilson fermions.
This is done in order to relate results from lattice QCD simulations concerning the QCD
phase diagram to physical quantities. More concretely, the results are needed in the
investigation of the order of the chiral phase transition in the Ny = 2 chiral limit. This is
part of current research in the Imaginary Chemical Potential Project in the working group
of Professor Owe Philipsen, where the chiral critical line is mapped out. The pion and
quark masses were determined using CL?QCD, a lattice QCD program based on OpenCL.
All statistical analyses were done with the I'-method by Ulli Wolff.



Zusammenfassung

Ziel dieser Bachelorarbeit ist die Berechnung von Pion- und Quarkmassen in N; = 2
Gitter Quantenchromodynamik (QCD) entlang der chiralen kritischen Linie mit Wilson
Fermionen. Dies wird getan, um Ergebnisse von Gitter QCD-Studien iiber das QCD
Phasendiagramm mit physikalischen Groéflen in Verbindung zu bringen. Konkreter wer-
den die Resultate dieser Bachelorarbeit in der Untersuchung der Ordnung des chiralen
Phaseniibergangs im Ny = 2 chiralen Limes benttigt. Dies ist Gegenstand aktueller
Forschung im Imagindren Chemischen Potential Projekt in der Arbeitsgruppe von Pro-
fessor Owe Philipsen, wo die chirale kritische Linie numerisch vermessen wird. Die Pion-
und Quarkmassen wurden mithilfe von CL?QCD, einem auf OpenCL basierenden Gitter
QCD Programm, bestimmt. Alle statistischen Analysen wurden mit der I'-Methode von
Ulli Wolff durchgefiihrt.



1. Introduction

In physics, four types of fundamental interactions have been established: the electromag-
netic and the weak interaction, which may be unified to the electroweak interaction, the
strong interaction and gravity. The strong interaction only dominates within scales of
approximately 1 fm. The elementary particles of the strong interaction are quarks and the
mediators, the gluons. There are six different quark flavors, all coming with quarks and
antiquarks, and eight different gluons. The theory describing strong interaction is Quan-
tum Chromodynamics (QCD). It does so by introducing a new charge, the color charge.

Due to gauge invariance only colorless objects can be observed in nature. Because of the
strong interaction and the self-interaction of the gluons, which carry color charge them-
selves, quarks and gluons are never observed as free particles and are always confined into
bound states (confinement). Only under extreme conditions strongly interacting matter
undergoes a phase transition and forms a so-called Quark-Gluon-Plasma, in which quarks
and gluons are quasi-free [cf. Pinl4] p. v].

One possible way to form colorless objects are mesons. The most general definition of a
meson is an object consisting of quarks and gluons and having a baryon number of 0, i.e.
having exactly as many quarks as antiquarks. For the purpose of this thesis, it is sufficient
to define mesons as particles consisting of a quark-antiquark pair. These attract each other
by the exchange of gluons, which also leads to quark-antiquark creation and annihilation.
Since quarks carry color, while antiquarks carry anti-color, correct combinations of these
give colorless objects.

Mesons are classified using quantum numbers, i.e. spin, total angular momentum, par-
ity, charge etc. The lightest mesons are pions. In nature, there are three different types
of pions, charged pions 7%, which are anti-particles to each other and have a mass of
139.57018(35) MeV [Oli+14], and the neutral pion 7° with a mass of 134.9766(6) MeV
[Oli+14]. They consist of up- and down-quarks and -antiquarks. Another example of
mesons consisting of these types quarks are p-mesons. It is worth noting that the at-
traction via gluon exchange may lead to quark-antiquark creation and annihilation with
flavors different from up and down. Today, meson masses can in general be calculated
using the theory of QCD only numerically using the so-called lattice formulation. In this
thesis, pion and p-meson masses are determined, where the masses of p-mesons are only
calculated for the purpose of scale setting, i.e. to express the pion masses in physical units
and relate the results with "real world" QCD.

One might ask oneself what is meant by 'real world" QCD. QCD is a theory with
parameters being a priori free, i.e. parameters that can assume different values. In the
real world, these parameters assume special values, at least in certain energy scales. This is
referred to by "real world" QCD. Meson masses depend on these parameters and therefore,
for different parameters, pions and p-mesons have different masses. An important point
about this is that also the number of quark flavors and their masses may be chosen
differently. The number of quark flavors can be chosen directly and is chosen to be
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Figure 1.1.: (a) Columbia plot, (b) alternative Columbia plot for first order chiral phase
transition at Ny = 2, m,, q = 0, Fig. taken from |Pinl4, p. 56].

Ny = 2 in this thesis. Since the up- and down-quarks are the lightest quarks, they may be
identified by these two quark flavors. For technical reasons, these quarks (and antiquarks)
are also assumed to have the same mass, which is a good approximation, since the mass of
the next-heavier quark, the strange-quark, is approximately thirty times larger. However,
only the bare quark mass is a direct input parameter for calculations and the renormalized
quark mass has to be calculated. Since electroweak interactions are neglected in this thesis,
having mass-degenerate two-flavor QCD means that all pions 7% and 7° have the same
mass.

As the title says, the objective of this thesis is to calculate pion and quark masses
along the chiral critical line in the Ny = 2 QCD phase diagram. This phase diagram
is most commonly plotted with the temperature T against the chemical potential u. It
shows the different phases in which strongly interacting matter occurs. Its qualitative and
quantitative features are not completely known. Experimentally, one can investigate the
phase diagram in heavy ion collisions. Theoretically, it can be studied using lattice QCD
(LQCD) simulations. The reason for calculating pion and quark masses in this thesis is to
relate LQCD simulations concerning the chiral phase transition to physical parameters.

The chiral phase transition is the phase transition, in which chiral symmetry (cf. Sect.
2.3) is restored. The order parameter for this is the so-called chiral condensate (11)). The
knowledge of the chiral and deconfinement phase transitions at y = 0 for QCD with 3
flavors, i.e. u-, d- and s-quarks, where u- and d-quarks are mass-degenerate, is summarized
in the so-called Columbia plot in Fig. Ny = 2 means m,q < oo,ms = 0o, Ny =1
means M, q = 00, Mg < 00, Ny = 2+1 means my, q < 00, M < 00, My 4 # My, and Ny =3
means M, q = ms < 00. Therefore, the Ny = 2 QCD phase diagram is only the top line
in the Columbia plot. In this plot, the region of small quark masses on the left-hand side
is connected to the chiral phase transition, whereas the region of heavy quark masses in
the top right corner is related to the deconfinement transition. Between regions of first or-
der phase transitions and regions of crossover transitions there are universality class Z(2)
critical lines, at which there are second order phase transitions. For example, the chiral
critical line in the Columbia plot is the line which goes around the lower left corner. Note



that this is not the chiral critical line along which pion and quark masses are determined
in this thesis. This critical line will be introduced below.

To this date, the order of the chiral phase transition in the Ny = 2 chiral limit m,, 4 = 0,
ms = oo is not clear [cf. Pinl4, pp. 55-58], [cf. PP15, p. 2]. For a temperature T smaller
than the critical temperature T, chiral symmetry is broken spontaneously for vanishing
light quark mass m, 4 = 0 and (p¢)) # 0. At T > T, chiral symmetry gets restored and
() = 0 [see Phil0, p. 17]. If m, 4 > 0, chiral symmetry is broken explicitly by the
quark mass and (Y1) # 0 for all temperatures 7. There are two possible scenarios for
the order of the chiral phase transition in the chiral limit at = 0. Either it is of second
order and most likely in the universality class O(4) ((a) in Fig. or there is a first order
phase transition in the chiral limit ((b) in Fig. [1.1)). In the first case, there is a crossover
chiral transition for all m, q > 0, whereas in the second case, there is a first order chiral
phase transition at low light quark masses m, 4 < my .. At a certain light quark mass
My, d,c this region ends in a second order endpoint of universality class Z(2) and for higher
light quark masses m,, 4 > My 4. there is a crossover chiral transition. The second order
endpoint is also the endpoint at ms = oo of the chiral critical line in (b) in Fig. In
terms of the pion mass the two scenarios can be found in Fig.

20 O(4)
L >
mﬂ-yc my
lo 20Z(2)

Figure 1.2.: Scenarios for Ny = 2 chiral phase transition, Fig. taken from [Pin14, p. 56].

The order of the chiral phase transition in the Ny = 2 QCD phase diagram is studied in
the Imaginary Chemical Potential Project (IMuP) by Dr. Christopher Pinke and others
in the working group of Professor Owe Philipsen. Their work has been published in
[PP15]. Because of the so-called sign problem, which causes Monte Carlo algorithms (cf.
Sect. 6.1) to fail at g > 0, simulations in the IMuP are performed at purely imaginary
p = ip; € C, u; € R, and then, an analytical continuation in (u/T)? from (u/T)% < 0
to physical (u/T)? > 0 with g > 0 is performed, if needed. By doing so, one extends
critical points from g = 0 to lines at imaginary p. In the second scenario for the chiral
phase transition ((b) in Fig. this means that the Z(2) second order endpoint becomes
a Z(2) second order critical line in a plot of (u/T)? against m,q. This is the chiral
critical line along which pion and quark masses are calculated in this thesis. To the left
of this line, i.e. at lower m,, 4, there is the first order region and to the right of this line,
there is the crossover region. The critical line is the boundary between these regions. At
(n/T)% < (uW™/T)% = —72 /9, one has Roberge-Weiss endpoints, beyond which the phase
diagram becomes periodic [cf. Pinl4] pp. 85-89].

In previous LQCD studies, the critical value of the imaginary chemical potential a,
i.e. where the first order region terminates, has been determined for several values of
the hopping parameter £ := 1/(2am + 8), where a is the lattice spacing and m is the
bare quark mass (before renormalization), using coarse lattices with temporal extensions
N, = 4. This is shown in Fig. Note that because of k x 1/(am), the direction of
the k-axis is switched to agree with the previous description of the phase transition regions.
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Figure 1.3.: Chiral critical line plot with x = 1/(2am + 8) as x-axis taken from [PP15,
p. 4]. Note that p./T = pcaN;.

The objective of this thesis was then to use a physical parameter instead of the hopping
parameter for the x-axis in the plot in Fig. The quantities chosen for this are pion
and quark masses, since pions are the lightest free particles bound by QCD. As it turned
out in the course of this thesis, the chiral critical line still lies outside of the scaling region,
which exists in the vicinity of tricritical points at low masses in the phase diagram [cf.
PP15, p. 2]. Hence, quark masses are not determined for all points, as pion masses are
sufficient for the scale setting. Note that even though the simulations on the phase dia-
gram are performed at a temperature T' > 0 and possibly an imaginary chemical potential,
the simulations for the pion and quark masses are performed at 7' = 0 and p = 0, since
they are zero temperature and zero density, i.e. zero chemical potential, parameters. The
results for the pion masses from this thesis were used in [PP15] as a reference scale.

As in the studies by the IMuP, CLQQCDEL a lattice QCD program using OpenCIE]
developed by Dr. Matthias Bach, Dr. Christopher Pinke, and others, with Wilson fermions
was used and extended for the simulations in this thesis. All statistical analyses were done
using the I'-method by Ulli Wolff [Wol04], whereas fits have been done using gnuplotﬂ
All calculations in this thesis use natural units, where h = ¢ = kg = 1. Furthermore, in
computer simulations, all quantities have to be made dimensionless by a multiplication of
an appropriate power of the lattice spacing. This is referred to by lattice units.

"https://github.com/CL2QCD/c12qcd
®https://www.khronos.org/opencl/
3http://www.gnuplot.info
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2. Theory

In this chapter, the fundamental theory for this thesis, QCD, is introduced. An overview
of continuum QCD is given, which is then used to give an introduction to Lattice QCD.
The last section of this chapter will present some details on chiral symmetry, which are
needed for the calculation of quark masses in this thesis.

2.1. Continuum QCD

Quantum Chromodynamics can be defined via its action Sy, 4, A], which has a fermionic
part Sp[), 1, A] and a gluonic part Sg[A]. In Euclidean space, which can be obtained from
Minkowski space with a Wick rotation and is suitable for a numerical implementation on
a lattice, they read [see |GL10, pp. 26-31]

Pl 6,4 Z / a‘a $0(@) (30 +iAu@) +mPD) 0 0@) (22

—/dxtr (@) F ()] (2.3)
Fo(2) = 0uAy(2) — 0, Ay (2) + i[Au(2), Ay ()] (2.4)

where N is the number of flavors (N = 2 in the context of this thesis), « is a 4-dimensional
space-time vector, and the Einstein summation convention is used. Note that there are
only lower indices because all work in this thesis is done in Euclidean space. m{/) is the
mass of the quark with flavor f, 1»(/)(z) and (/) (x) are the fermionic and anti-fermionic
fields, and A, (z) are the gluon fields.

The fermionic part of the action can be derived by taking the Dirac action, requiring
invariance under local SU(3) gauge transformations and doing a minimal substitution with
the derivative becoming the covariant derivative [cf. |GL10, pp. 26-31]:

(@) = (@) = Q@) D(2) , $V (@) = oW (2) = D (2)Q(2)T, (2.5)
Au(x) = Al () = Q) Ay (2)Q(2)" +i(9,9(x)) =), (2.6)

where Q(z) € SU(3) for the complete context of this thesis. The gluonic part of the ac-
tion then is the kinetic and self-interaction part for the gluon fields. This means that the
fermionic fields become 3-dimensional vectors and the gauge fields become 3 x 3-matrices in
the space the SU(3) transformations act on, the so-called color space. The corresponding
indices are color indices. In total, the fermionic (spinor) fields have twelve components,
resulting from four components in spin space and three components in color space (for each
space-time direction). The gluon fields consist of four 3 x 3-matrices and they therefore
have 36 components. In the following thesis, greek indices always refer to space-time or
spin indices, while latin indices at objects with color components refer to their color in-
dices. Note that both, matrix-vector and index notation, are used throughout this thesis,
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but it is always clear in which notation an expression is.

In the continuum, a correlator is given by the path integral expression [cf. GL10, p. 18]

(0 02(7)01(0) [0} = | D1, DLA] SR A0,0(7). (), A0 [6(0),5(0), AO)]

(2.7)
Z = [ Dl ] DAy eSO, (2.8)
Dpd] = [[ T &P (@)a doP(@)a, DIA] = ] [[dAu@). (2.9)

z€R4 f,a,c z€ER4 W

O(7) and O1(0) are operators, whereas Os[t)(7), ¥ (1), A(t)] and O1[(0),4(0), A(0)] are
functionals of the fields at all space coordinates, but only at euclidean time 7 and 0 re-
spectively. |0) is the vacuum of QCD and Z is the partition function of the system.
An example for the operators are meson interpolators, where O1(0) = Of(0) creates a
meson at euclidean time 0 and Os(7) = O(7) annihilates the meson at euclidean time 7.
If one is able to calculate such a meson correlator, one can extract the meson mass out of it.

Since this expression cannot be solved exactly in general, the standard procedure in
quantum field theory (QFT) is to evaluate this path integral using perturbation theory
after gauge fixing, which has not been done yet. However, due to the running coupling in
QCD, this procedure fails in QCD for small energies, since the contributions for the final
expression do not get smaller with increasing order (one often says that the coupling is
larger than 1). At high energies, one has asymptotic freedom with g — 0 for the energy
becoming infinite [cf.|GL10, pp. 67-68], i.e. the strength of the strong interaction becomes
less and less. Therefore, one needs to find another method to tackle a lot of problems with
high coupling in QCD and a very powerful one for this is the lattice formulation.

2.2. Lattice QCD

The fundamental idea of Lattice QCD (LQCD) is to move from a continuous space-time to
a discrete space-time. In order to be able to do calculations on a computer, one chooses a
finite space-time with periodic boundary conditions. The lattice spacing is by convention
called a and one uses the same lattice spacing for all spatial and temporal directions. All
spatial extensions of the lattice are chosen to be the same with IV lattice points in each
spatial direction, whereas the temporal extension can be different with N, lattice points
in the temporal direction. To summarize, the set of all lattice points is

A={neZ" |0<n; <N,—1Vi=1,23; 0<ng <N, —1}. (2.10)
Whenever it appears in an expression, n = (nj,ng,ns) is implied. Sometimes, n4 is also

referred to by n,.

The naive way to bring all expressions onto the lattice is by applying

zeRY w5 an,n € A, (2.11)
D) > 5-(¥lan + aft) — b(an — o) (2.12)

/d4a: —a'd", (2.13)

neA
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where [ is the unit vector of Z* in p-direction. The derivative is chosen symmetrically for
better convergence [cf. |GL10, p. 19]. From now on, a is dropped in all dependences.

As described in [Pinl4, p. 16], to move from continuum QCD to LQCD, the action has
to have a form such that

Speep = Sgep +aSt+a*Sa+ ..., (2.14)

thus meaning that for ¢ — 0 continuum QCD is recovered and for finite a discretization
errors, so-called lattice artifacts described by Si,.S9,..., occur. This means that there
are several possible ways to choose a lattice action, as long as they fulfill and
respect certain other requirements like gauge invariance. In the following two sections the
discretizations chosen in this thesis are presented.

2.2.1. The Wilson Gauge Action

Keeping the gauge fields A, (x) on the lattice would mean breaking SU(3) gauge symmetry
expicitly, which would produce meaningless results. Therefore, one has to introduce so-
called link variables Uy (n) 'living" on the links between the lattice points (cf. Fig. 2.1)),
which are elements of SU(3) and transform in a gauge transformation according to [see
GL10, p. 33]

Uu(n) = Uy(n) = Qn)Uu(n)Q(n + . (2.15)

Define U_,(n) via [see GL10, pp. 33-34]
U_u(n) =U,(n— )" . (2.16)

Together with (2.15)) the transformation of U_,(n) under a SU(3) gauge transformation
becomes

U_p(n) = U ,(n) = Qn)U_u(n)n — )" . (2.17)

Since they have the same transformation, the link variables act as gauge-transporters in
continuum QCD [see |GL10, pp. 34-36]. Note that U,(n) are 3 x 3-matrices in color-space
like A, (n).

In order to be able to build the gluonic (gauge) part of the action, a gauge-invariant
quantity has to be found. The easiest way to construct such a quantity is to define the

plaquette (cf. Fig.
V() 1= Up(n)U, (0 + @)U—u(n + i+ YU (n + ) (2.18)

such that the trace of U, (n) over the color indices is gauge invariant, which can be checked
easily using (2.15)), (2.16)), (2.17) and the cyclicity of the trace. With this, a possible choice
of the gauge action, the so-called Wilson gauge action, is [see GL10, p. 44]

g

SqlU] = 3 Z Z Re tre [l — Uy (n)], (2.19)
neA p<v
where 6
B = 7 (2.20)

is the inverse coupling and tr, is the trace over the color indices. It can be shown that the
Wilson gauge action becomes the continuum gauge action for a — 0 [see GL10, pp. 37-39].
The gauge invariance of the Wilson gauge action is obvious.
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Figure 2.1.: Sketch of lattice quantities taken from [Pinl4, p. 15|, lattice spacing a, link
variable U,(n), plaquette U, (m) and fermionic fields ¢ (k).

2.2.2. The Wilson Fermion Action

The naive discretization of the fermionic action can be written as [see |GL10, pp. 110-111]

S¥l, ¥, U] —a42 > > WV m)eDP(njm), MZ’ J(m )5, (2.21)

f=1nmeAab,a,p

Un(n)abOn+pm — U= (1) abOn—fm
DY (njm)ag = > (Yu)as w()abOn s 50 p(abnp + D 6050abnm ,  (2.22)

ab 7

where D) (n|m) is the naive lattice Dirac operator and ¢(/)(n) are the fermionic fields
'living" on the lattice points (cf. Fig. 2.1). As shown in [GL10| pp. 110-112] explicitly for
the massless case, the inverse of the naive lattice dirac operator, the quark propagator, for
free fermions has 16 poles for each fermion in contrast to only one pole in continuum QCD.
These poles are so-called fermion doublers and have to be removed from the theory for
meaningful calculations, since these fermion doublers do not even vanish in the continuum
limit. One way to do so is with so-called Wilson fermions. They introduce a counterterm %
as an addition to the mass, which removes the doublers in the continuum limit. As a result,

the Dirac operator and the fermionic part of the action become [see |GL10}, pp. 112-114]

+4

4

D (nfm) s = (mm . ) SaiOatdnm — — 3 (1= %)asUp(Wadnijim »  (2.23)
ab a 2a Pt

Fl, 0, U] = Za S 9D n)DU (nm)p P (m) . (2.24)

f=1 n,meA

This particular choice is called the Wilson Dirac operator and the Wilson fermion action.

To simplify, define the hopping parameter

1
K= S D) (2.25)

and rescale the fields via

Y m) = a2y 2y ), GD(m) - 0?22 G ) (2:26
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Kk=1/4

tk=1/8

K=

0
B=0 B=

Figure 2.2.: Sketch of k.(8) = ken(B) taken from [GL10, p. 207]. Dashed curves have
constant mass ratios, e.g. my/m, = const [cf. GL10, pp. 206-208].

such that [cf. (GL10, pp. 114-115]

Dmmmmfzgwwmm— 2: = V) apUu (1) abOn 1 fm (2:27)
a pn==x1

Fl, 9, U §j S gl D(nlm)yp (m) . (2.28)

f=1nmeA

Note that this rescaling differs from |GL10, pp. 114-115]. The rescaling here, however,
gives dimensionless fields. Since [S] = 1,[¢] = [¢], and obviously, from ([2:27), [D] = 1,
one has [¢)] = [¢] = 1. This is going to be needed for the implementation in a computer
program. Different discretizations include Staggered fermions, Domain Wall fermions,
Wilson Clover fermions, and Wilson Twisted Mass fermions [see |GL10, pp. 216-217, 243-
260].

As stated in [Pinl4, p. 18], the Wilson Dirac operator breaks chiral symmetry (cf.
Sect. 2.3) explicitly, thus resulting in additive renormalization of the quark mass mf.
This means that the renormalized quark mass vanishes at the critical value k.(8) of the
hopping parameter, which does only equal the naive critical value k = 1/8 for § — oo [see
Pinl4] p. 18]. A sketch of k.(8) can be found in Fig. The quark mass with additive
renormalization for a given x < k. becomes

7%m@@:;<i—%@0. (2.29)

One can find the value for k.(5) for a desired /5 by fitting literature values obtained by
so-called chiral extrapolations. However, this leads to relatively large errors if there are
not many values in the range of the desired § and it is therefore better to do the chiral
extrapolations for the desired 5 anew.

At the end of this section, the formulae for charge conjugation C and parity transforma-
tion P, under which the Wilson fermion action is invariant, are quoted and the formula
for the y5-hermicity of the Wilson Dirac operator is given. They will be needed in the con-
struction of meson interpolators in Sect. 3.1. All following formulae are taken from |GL10,
pp. 117-121].
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Charge conjugation is given by

¢D() & D) = oD ()"
$D(m) & oD () = D)’ (2.30)
Uu(n) S U, (n)° =U,(n)* | (2.31)
= S, 9, U] S Se, v, U] = Sp[p, 4, U], (2.32)

where C' is the charge conjugation matrix acting on space-time/spin indices, which is
defined by
CypCl=—yl, n=1,....4. (2.33)

With v5 = v1727v374 one finds
CysC™ = O30 = OnC™ 0 C ™ O C O C ™
=MWV = VBN =T (2:34)

where the anti-commutation relations for the y-matrices {fy,,, Wt = 20, 1ax4 have
been used. Since in the Wilson gauge action the real part is taken and the charge conju-
gation affects only the imaginary part of the link variable’s components, the Wilson gauge
action is also invariant under charge conjugation.

Parity transformation is given by

D) B o (n,n,)P = v (—n,n.)
dDm,nr) B o0 (0,n,)P = 0 (—nyn ) (2.35)
Ui(n,n;)(n) LN Ui(n,nT)P =Ui(—n — %, nT)T ,1=1,2,3,
Us(n,n7)(n) 2> Us(n,n,)" = Us(—n,n7) (2.36)
= Spl, 0, U] B Sply,0,UP = Sy, 4, U] . (2.37)

Again, the Wilson gauge action is also invariant under parity transformations [see |GL10,
p. 120].

~v5-hermicity of the Wilson Dirac operator reads
D' = ~v5D~s . (2.38)
Using to show that v5 = 5 1 (2-38) implies

(DT =Dy . (2.39)

2.2.3. The Lattice Path Integral

In analogy to the correlator in the continuum (2.7, the expression for a correlator in
LQCD is [see \GL10, pp. 39-41]

(O2(n,)01(0)) = ;/DW,?QM DU o~ SF[¥.,U]-5c[U]

02[w(n7)7 TZJ(TLT)’ U(nT)]Ol W(O), &(O)a U(O)] ) (2'40)
7 = /D[¢,1Z] D[U] e~ SrlbwU=SclU] (2.41)
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where now

D, 9= [ IT a6V e 6D ), D] = T] [[d0(x) . (242)

neA f,a,c neN K

such that for a finite lattice there is only a finite number of integration variables, which,
of course, introduces discretization errors. Details on these errors and how the contin-
uum is recovered can be found in [GL10, pp. 1-23] for the example of the Klein-Gordon
field. Unless indicated otherwise, the expressions in this thesis have discretization and
finite space-time errors implied. Note that the notation of the expectation value has been
switched from inside a vacuum bra-ket to angular brackets.

The partition function Z has a direct correspondence to statistical mechanics [cf. Phil0),
pp. 1-2, 10-11]:

Z =tr {e_lg] =tr {e_NT“Iﬂ = Ze_aNTE” ; (2.43)
n

where H is the Hamilton operator and T' = ﬁ is the temperature of the system, which
is the inverse of the temporal extension of the system in physical units in Euclidean space,
which is true for thermal field theory in general. {n} is a complete set of eigenstates of
H and E, is the corresponding energy. Note that here, the chemical potential is u = 0.
Since this thesis is about the determination of pion and quark masses, which are quan-
tities that are determined at T = 0, all calculations have to be done for large N, to be
precise for N; — oo (such that in the continuum limit a — 0 still aN; — co0). An infinite
temporal extension is, however, not possible on a computer, which means that one has
to approximate it. As a rule of thumb, in order not to see any finite temperature effects,
N: =~ 2N,, N; > 1 has to be used in simulations [cf. Pinl4] p. 22]. For analytical cal-
culations, however, the limit N, — 0 can be taken and these calculations can be used to
find formulae to extract meson masses from correlators (cf. Sect. 3.2). Also, calculations
at finite temperature have to be done using anti-periodic temporal boundary conditions
for the fermionic fields and periodic temporal boundary conditions for the link variables
(bosonic fields) [see [Phil0, p. 11]. These boundary conditions are, however, not important
for T'= 0.

To calculate an expression like (2.40) one first splits up the expectation value in a
fermionic and a gauge part [see GL10, pp. 103-104]. This can be done for any observable
A, which may equal the correlator in (2.40)), and reads

(A) = {Ar)c . (2.44)

The fermionic part of the expectation value is

(A)p = ZFI[U] / Dy, 4] ¢ SF WPV ALy, 6. U] | (2.45)
24l0) = [ DIy, ] & Srle301. (2.46)

Zp|U] is the fermionic partition function, which will be evaluated further after the sec-
tion on Wick’s theorem. Since different flavors do not mix in the action, the fermionic

expectation value factorizes in
Ny

(Ar =11y (2.47)
s
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if ] N, )
Al 9, U] = [[ AP 40,07, (2.48)
f=1
where
1 - — () () () -
A= — DD B D] 6 2nmen ¥ DD lm)ptD(m) 4 (1)1 (1) (F)
=g ) PO R [B,39, 01,
(2.49)
DY, ¢} = T [Tde (n)a dd(n)a (2.50)
neA ac ¢
and AV [w(f ) 4p(f) U] is a functional only of the spinors of quarks with flavor f.

The gauge part of the expectation value for any observable B, whose corresponding
functional only depends on the link variables, is

Z/D e SclUl z[U)BlU] . (2.51)

A standard procedure, and also the procedure used in this thesis, to calculate the
correlator is to first calculate the fermionic part of the expectation value analytically
using Wick’s theorem. Then, one creates gauge configurations using a hybrid Monte Carlo
algorithm (cf. Sect. 4) with the appropriate probability distribution e=5¢U1Z5[U]/Z. By
calculating the result for the fermionic part on the gauge configurations one finds an
estimate of the gauge part of the expectation value and thus the whole correlator.

Wick’s Theorem

Fermions obey anti-commutation rules for all combinations of f, f’, n,n’, a, o/, a,a’ [GL10,
p. 105]:

B e (') =~ () oD (o (2.52)
B e (') =~ () D) (2.53)
B e (1) = —0) (1) 0 (o (2.54)

In order to account for Fermi statistics, i.e. anti-commutation rules for fermions, fermions
are represented by Grassmann numbers. The definition of a set of Grassmann number 7;,
i=1,2,..., N, is that

77i77j = —njm Vi,j = 1,2,...,N . (255)

One can also introduce a Grassmann algebra with 2N generators n;,7;, it = 1,2,..., N,
which all anti-commute with each other:

Nin; = —Ngni Wiy =~ My =~ Vi, 5 =1,2,...,N . (2.56)
This short definition is taken from |[GL10, pp. 104-108], where more information on Grass-

mann numbers can be found.

For a gaussian integral with Grassmann numbers, there is the Matthews-Salam for-
mula [see GL10, p. 108]

N
Zp = /andﬁN ... dmjdn; exp (Z ﬁiMijnj) = det[M] . (2.57)
i,j=1
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This formula can be generalized to Wick’s theorem [see |GL10, pp. 108-109]

N
MirxMjy -+ MipMjn)F = /andﬁN oo dmdm 9 Mgy - M, 75,€XP (Z m‘Mijﬁj)
i,j=1
= (=)™ > sign(PY(M Viyip (M Vigjp, - (M Dij,
P(1,2,...,n)
(2.58)

where P are permutations of {1,2,...,n} and sign(P) is the sign of the permutation.

As it is already written in the Matthews-Salam formula, Zr can be computed by setting
M = —D and thus obtaining using (2.28))

Zp = [[ det[-D)] . (2.59)
f

Since this thesis works with two mass-degenerate quark-flavors (mass-degenerate up- and
down-quark), one finds
Zp = det[D]? (2.60)

where D = D" = D is the (Wilson) Dirac operator for both flavors.

With Wick’s theorem the fermionic expectation value of any product of fermion fields
can be evaluated by setting M = —D" and using (2.28)), e.g. [cf. |GL10, p. 114]

(W™ (n)ayy™ (m)/g>F = D, (n|m)ag , (2.61)

a ab

where the flavor index has been moved down because of the index for the inverse. D! is
called the quark propagator.

2.2.4. Scale Setting

As already stated in Sect. 2.2.2 for fields, quantities in a LQCD simulation on a computer
must be dimensionless. Hence, all observables in the lattice formalism use lattice units
with A = ¢ = kg = 1 and the multiplication of an appropriate power of a to be dimension-
less [see GL10, p. 63]. Therefore, a scale needs to be introduced to relate them to physical
values. This means equating some observable to its physical value and then solving for a,
which depends on the hopping parameter x and the coupling 5.

The first and easier, but rather crude method of setting the scale in this thesis is to
calculate the pion and p-meson mass for given simulation parameters and then equating
the mass of the p-meson to its physical value of 775.26(25) MeV [Oli+14]. However, this
causes issues, since the p-meson mass in lattice and physical units depends on the simu-
lation parameters. Besides, the pion mass in physical (natural) units in this scale setting
is limited by the mass of the p-meson. Therefore, the scale setting can only be used as a
rough estimate. However, when measuring the pion and p-meson masses one can compare
the value of the ratio my/m,, which is dimensionless and therefore does not directly need
scale setting, to the physical value of m,/m, = 0.180030(58), where the value of the mass
of the charged pion m, = 139.57018(35) MeV |Oli+14] has been used.
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The second and more precise method of scale setting is described in [Bor+12], where it
was first presented, and involves calculating a quantity wg, which is based on the Wilson
flow. This way was only pursued for four simulations, since their results were directly
needed by the IMuP. All other simulations were done only to extrapolate to the chiral
limit to find x.(8), for which a scale is not directly needed and therefore, the method via
m, together with the value of mr/m, is sufficient as an estimate. All calculations for the
scale setting using wgy have been done by Dr. Christopher Pinke, who then gave the results
to the author of this thesis in order to be able to calculate the pion and quark masses in
physical units.

2.3. Chiral Symmetry

The first part of this section works in continuum QCD with Ny flavors. Using vector

notation for the flavors in the spinors ¢ = (w(f DA ,w(f N f))T, vector transformations
=) =iy, (2.62)
= =y, (2.63)
and chiral or axial vector rotations
) = =Ty (2.64)
P = =y (2.65)

can be defined [see GL10, pp. 159-160], where T; are the generators of the group SU(Ny).
Note that the terms vector and axial vector transformations refer to the corresponding
Noether currents, which are vector and axial vector currents with regard to Lorentz trans-
formations [cf. GL10, pp. 159-160]. In fact, one could argue that (2.63) and (2.65) are no
vector or axial vector transformations because spinors for different quark flavors do not
mix with these transformations. However, in order to stay consistent with |[GL10, pp. 159-
160], the definitions above have been used here. The first vector transformation is
isospin symmetry generalized to Ny flavors and is a symmetry of the QCD action if the
masses of all quarks are equal (degenerate). The second vector transformation is a
symmetry of the QCD action for arbitrary masses. The corresponding conserved quantity
because of Noether’s theorem is the baryon number. For m{/) = 0, the chiral rotations
(2.64)) and (2.65)) are a symmetry of the action of QCD. If all symmetries are realized, i.e.
for m) = 0, the total symmetry group of the QCD action reads [see GL10, pp. 159-160]

SU(Nf)z x SU(Nf)g x U(L)y x U(1)a , (2.66)

where the indices L and R refer to the left- and right-handed components, in which spinors
can be splitted into. The indices V' and A refer to the vector and axial vector Noether
currents corresponding to and . Chiral symmetry itself can be summarized
by [see GL10, pp. 157-158]

{45, D} =0, (2.67)

where D = ~,(0, + iA,) is the massless Dirac operator in continuum QCD. The order
parameter of chiral symmetry is the chiral condensate [see Pinl4} pp. 10-11]

= TOlnZ
(W) = 55

(2.68)
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where T is the temperature, V' is the volume, Z is the partition function , and m
is the fermion mass. For more than one flavor, the derivatives with respect to the masses
add. In the following, QCD with two mass-degenerate flavors, i.e. Ny = 2, is always
assumed. For this, the generators T; can and are chosen to be the Pauli matrices ,
which are here referred to by 7%, a = 1,2, 3.

Chiral symmetry is broken in several ways. The QCD vacuum breaks the symmetry
SU(Nys)r x SU(N¢)r spontaneously [see |Pinl4, p. 11], even in the chiral limit. A finite
quark mass breaks chiral symmetry explicitly. In addition, on a quantum level the fermion
determinant is not invariant under the second axial vector rotation [see GL10, p. 160] and
therefore, chiral symmetry is broken. The symmetry gets restored in the chiral phase
transition. The fact that real world u- and d-quarks are light so that the explicit breaking
of chiral symmetry is small [see GL10| p. 268] leads to an approximate realization of chiral
symmetry in real world QCD. One can create partially conserved currents [see |GL10,
pp. 267-274]. For this, let

1-

P® = s (2.69)
1-

A = iw'yﬂfyy'aw . (2.70)

P® is the pseudoscalar interpolator and Aj; is the axial vector interpolator [cf. |(GL10,
p. 268].

The first relation, which will be used in this thesis, is the so-called partially conserved
axial vector current (PCAC) relation [see GL10, p. 270]:

0 (0] A (@) |7 (p = 0)) = dapmz Fre ™", (2.71)

where |7%(p = 0) is a pion state, M, is the pion mass, and Fy is the pion decay constant.
The index (7) at the axial vector field indicates that it is the renormalized axial vector field.

Closely related to this relation is the so-called nonsinglet axial ward identity (AWI) [see
GL10, pp. 272-173]
O A = 2m!M plra (2.72)

where m(") is the renormalized quark mass of the two mass-degenerate quarks. In Sect.
3.3, egs. (2.71) and (2.72) will be used to calculate the correlator in order to be able to
compute the so-called PCAC quark mass on the lattice.

The last relation, which comes from an expansion in small quark masses, is the so-called
Gell-Mann-Oakes-Renner (GMOR) relation [see (GL10, pp. 273-274]:

F2m? = —m(r)NfE(r) + (’)((m(’”))Q) = —2mMx) 4 (’)((m(’”))2) , (2.73)

where Ny = 2 was plugged in and (") is the renormalized condensate. Fy, m,, and m(")

are the same as before. This relation is only the leading term in m(") and has possible

corrections of O((m(")?) [see \GL10, p. 274], which are part of a systematic expansion in

small quark masses leading to an effective theory, the so-called chiral perturbation theory.
Note that also the PCAC relation and the AWI only hold for small quark masses.
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2.3.1. Chiral Extrapolations

Using (2.29) and the GMOR relation (2.73) one finds for small pion and quark masses
with the identification m((]f ) (B, k) = m") for QCD with two mass-degenerate quarks:

ax® 2y ax® 1 1 1 1 \?
pram” O =5 G wm)o\Gwm) )

(2.74)
This equation means that calculating (am,)? constant 3 for several x provides a possibil-
ity to determine (), which will be pursued in this thesis. Plotting (am;,)? against 1/x
and doing a linear fit in the range, where the GMOR relation can be applied, extrapolates
to the value of 1/k, where (am;)? = 0 implying m(” = 0. This value of & is denoted
kexr(B) (cf. Sect. 2.2.2). Note, however, that because of possible corrections of O((m(")?),
i.e. O((1/k — 1/kc(B))?), and because of the remaining a in the right-hand side of (2.74)),
there may be systematic uncertainties. One way to treat them is by using different linear
fits and a quadratic fit to extrapolate to (am,)? = 0 and using the difference of the results
to give an error estimate.

(amy)? = —

According to [Iwa+96], x. can also be determined using an extrapolation in the PCAC
quark mass, which is expected to give the same results for small Ny like in this thesis,

since Ny = 2. This method directly exploits by identifying am(gf )([3,/@) with the
PCAC quark mass. Therefore, the same extrapolation and determination of systematic
errors as for (am,)? for the PCAC quark mass also gives the critical value of the hopping
parameter, here denoted by k. q(f). These extrapolations are so-called chiral extrapola-
tions mentioned in Sect. 2.2.2 and their results can be used to calculate the renormalized
quark mass at any k at the same /3 (cf. ) Especially at high quark masses it is better
to calculate the renormalized quark mass by a chiral extrapolation and not by directly
using the PCAC quark mass.
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This chapter will detail the spectroscopic methods needed in this thesis. The first two
sections will present the analytical calculations for the fermionic part of meson correla-
tors (cf. ) and derive the formulae needed for the extraction of masses from meson
correlators with the definition of the effective mass. The last section of this chapter will
define the PCAC quark mass and present the analytical calculations for the fermionic path
integral of the correlator needed for its calculation.

3.1. Meson Correlators

In general, meson correlators may be written as
(O(n:)0(0)) (3.1)

where O and O are so-called meson interpolators. The corresponding operators O and Of
annihilate and create mesons [cf. |GL10, p. 124].

3.1.1. Non-Flavor-Neutral Mesons

At first, consider correlators of charged iso-triplet mesons (i.e. non-flavor-neutral mesons).
For these mesons, the interpolator may be written as [cf. (GL10, p. 125]

O(n) = U ()2 (n) . (3.2)

() (n) and 12)(n) are spinors of flavors fi and f, respectively at the lattice position n,
and I' is a combination of Dirac-y-matrices to obtain the quantum numbers of the desired
meson. To obtain the full correlators, O(m) also needs to be found. Since O corresponds
to Of and O(n) corresponds to O, it is obvious that

(@(fl)(n)w(fz)(n)f = U ()T (n) = £ ()T () (3.3)
= O(m) = U2 (m)Typ) (m) | (3.4)

where 4"y, = 4T has been used and sign changes have been neglected because only the
exponential decay is important for extracting meson masses [cf. GL10, p. 124]. Therefore,
the fermionic parts of the expectation value of the meson correlators read

(O(n)O(m))r = U )TV (n)y ) (m)TyU) (m)) . (3.5)
This expression can be modified further [cf. GL10, pp. 127-129:
<O(n)o(m)>F = Falﬁlrazgz <1Z(f1)(n)‘g11w(f2)(n)f31 Qz(fz)(m)cc“gw(fl)(m)52>F

Cc2

= ~Tau Loy (012 () 5, 012 (m)az) (1) (01 () 3,0 (m)en ) 1,
c1 c2

=-—Tup FQQBQD(_]%) (n\m)[gg; D(_f;) (m|n)gya,

c2C1

= —tr [[D}) (nm)T DL (mln)] - (3.6)
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The minus sign comes from the reordering of the Grassmann variables and as well
as Wick’s theorem have been used. Since this thesis works with mass-degenerate
flavors m{1) = m{2) one can use D(_ﬁ)(n\m) = D(_fl)(n|m) = D7 !(njm). Note that
the flavors f; and fo are identified with the lightest quarks, the u- and d-quarks. With
~5-hermicity and the cyclicity of the trace one finds

(O(m)O(m))r = ~tr [(D™(n]m)) 5T D~ (nm)Ts)] - (3.7)

Since {7,,75} = 0 (see (A.3)) and I' is just a combination of y-matrices, one has
v5I' = £I'y5. Neglecting the possible sign change the result for the fermionic part of the
expectation value of the correlator is

(O(mO(m))r = ~tr (D™ (n|m)) T3 D~ (nlm)Ts) (35)

3.1.2. Flavor-Neutral Mesons

Until now, only non-flavor-neutral mesons have been considered. Now, flavor-neutral
mesons described by an interpolator of the form

O(m) = == (B @) ) — 392 ()Tw U (). (39)
O(m) = ¢1§ (S (m)Dp U (m) — VD ()T (m)) = O(m) ,  (3.10)

will be considered. Corresponding to (3.5)) one finds

(OO r = 54 (3 DU () — G2 ()T ()
(@) ()T (m) — G (m) T2 (m) )
= (@YD (DU ()5 (m) D) (m))
(B )y () (st U2 (m) ¢
(U ()P ()5 () D) ()
(Y ()T (m) U2 (m) Dy f2><m>>

Using the same procedure as for (3.6)) for all expectation values, the fermionic part of
the expectation value of the correlator becomes

L\’JM—A

B!

&

). (3.11)

<0(n)é(m)>F:%(tr[ (@l tr LD (mlm)| = tr [PDY (nfm)T DL ()|
=t [0 () [ D mim) | — g [P D3 (nfm) e [P (mi)]

ttr [TD;}) (nfn) |t [DDL (mlm)| = o DD (nlm)T DL (min)] ) -
(3.12)

Again, since this thesis works with two mass-degenerate flavors, D(_fi) = D(_fi) = D!
can be applied. With vs-hermicity (2.39) and the cyclicity of the trace one finds

(O(m)O(m)r = ~tr [(D™" (nlm)) T3 D~ (nfm) s (3.13)

as for non-flavor-neutral mesons.
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3.1.3. Projection to Zero Momentum

For their final form, meson correlators first have to be projected to zero momentum via a
Fourier transformation of the operator O(n) [cf. (GL10, pp. 332-333]. The other operator
O(m) can be placed at the origin:

1 )
Op.nr) = =5 . Olnonp)e ™™, (3.14)

g ni,n2,n3

i3 > (O(n,n,)0(0)), (3.15)

g ni,n2,n3

(0(0,17)0(0)) =

where p = 0 has been used in the second line and N, is the size of the lattice in each
spatial direction as before. It is sufficient to only project one operator to zero momentum,
since, using the Fourier components of O(m), only the one with zero momentum gives non-
vanishing contribution because of the orthogonality of states with different momenta [see
GL10, p. 131]. In fact, holds for the fermionic as well as the gauge and the total
part of the expectation value. Now, according to the gauge part of the expectation

value (2.51)) has to be taken:

(0(0,n,)0(0)) =({0(0,n,)0(0)) r)c
== [ Plvjesel des( P
% S (D7 (mne]0) Ty D o 0)T3s] . (3.16)

Eq. (2.60) has been used for two mass-degenerate flavors. Now, a hybrid Monte Carlo
algorithm can be used to estimate the complete meson correlator.

3.1.4. Obtaining Meson Quantum Numbers

As stated before, I' is a combination of Dirac-y-matrices to obtain the quantum numbers
of the desired meson. In the following table a collection of I' for different mesons can be
found. Note that latin indices can always assume 1, 2 or 3 and 4 is used because all
calculations are done in Euclidean time.

State Jre T Particles

Scalar 0T 1, v fo, ao, K§, ...
Pseudoscalar 0=t 45, vav5 «F, 70, n, KPm, KO, ...
Vector 1= Yis Y4Yi p:t7 p07 w, K*7 ¢7
Axial vector 17T ;75 ai, fi, ...

Tensor 1t~ vy hi, b1, ...

Table 3.1.: Table from |GL10, p. 126]. T" for the most important meson interpolators, .J is
the total angular momentum, P is parity and C' is charge conjugation, where
the classification using C' is for flavor-neutral interpolators only.

In CL2QCD, which was used for this thesis, meson correlators for twisted mass fermions
had already been implemented at the beginning of this thesis. The correlators for twisted
mass and Wilson fermions have the same structure if I' consists of an even number of
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~v-matrices different from 75 [cf. [Pinl4l, p. 24]. Therefore, I' = ~5 for pseudoscalar and
I' = ~47; for vector mesons were used being already implemented. For correlators with
free indices the result for each index as well as the average is given as output by CL?QCD.

3.1.5. Point Sources

As stated in |[GL10, pp. 135-136], the full propagator D~! is not sparse and consists of
O(10'?) complex numbers even though the Dirac operator D may have many vanishing
entries. Therefore, calculating with the complete propagator is not economical and one
has to introduce quark sources. The easiest way to do so is using point sources. Since each
entry Dil(n]m)gf connects a source point (m, /3,b) with a sink point (n, «, a), one column
of the propagator can be considered, i.e. just the parts from a fixed set of (mg, 5o, bo) [cf.
GL10, pp. 135-136]. This gives

D7 (nlmo)ag, = > D' (n|m)a S(mo’ﬁo’bo)(m)g, (3.17)
abg m,B,b ab b

where point sources
b
glmo-Pobo) () 5= S 0350 Obbo (3.18)

have been introduced. The source mg can be placed at the origin. When using point
sources, the correlators have to be evaluated for 12 sources, i.e. for all combinations of
(,Bo,bg) [Cf GLlO, Pp. 136—136]

In all of the following calculations, the source will be placed at 0. However, it is better
to use randomly placed sources in simulations. In order to average out fluctuations,
the correlators were calculated for eight different random positions for the source for each
gauge configuration in all simulations in this thesis. The temporal positions on the lattices
in these calculations then got shifted such that m,; = (mg); = 0 and n, is the temporal
distance between the source and the sink. After doing so, the eight calculations got
averaged yielding the results for the correlators for one gauge configuration.

3.1.6. The Pseudoscalar Meson: The Pion

For the pseudoscalar meson one finds I' = 5 (see Table :

O,o(n) = \}5 (ﬂ(n)'yg,u(n) — a?(n)’md(n)) . (3.19)

The quantum numbers P and C are checked for the flavor-neutral interpolator for 7° using
the transformations discussed in Sect. 2.2.2, since the classification with C' only strictly
holds for flavor-neutral interpolators:

Oro(n) EA 0,0(n)¢ = _\}5 (u(n)TC’%C*lﬁ(n)T - d(n)TC'yg)C*ch(n)T)

(a(n)su(n) — dm)ysd(n)) = Op(n) = C =+,  (3.20)

(a< 0, n7)747570u(—1, 1) — (=1, n7)147574d(—n, 1))

7 ( —n,n,)73y5u(-n,n,) = d(—n,n,)73y5d(—n, nr))
~Oo(-m,n;) = P=— (3.21)
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where u(n) = ¢¥®(n), d(n) = @ (n), the relation for the charge conjugation matrix
, and the anti-commutation relations for s and for all v, , which im-
ply 72 = l4x4, have been used. The interchange of the Grassmann variables during the
transposition cancels a minus sign in the charge conjugation. Using exact isospin sym-
metry, i.e. two mass-degenerate quarks, and , the fermionic part of the expectation
value of the correlator for the pseudoscalar meson, the pion, is for both, flavor-neutral and
non-flavor-neutral pions,

(O(n)Ox(m))p = —tr [(D~!(n|m)) 12D~ (n|m)13] . (3.22)

With 752 =1 (see (A.3))) and using point sources placed at m = mg = 0 one finds

(Ox(n)Ox(0))r = ) <—ZD1(nl0)a§o|2> : (3.23)

Bo,bo a,a

where the sum over the indices fy, by of the point sources is formally written before the
sum over a,a because in CL2QCD, the function called to calculate the correlator only
takes one point source (which has the structure of a spinor) and calculates the sum over
a, a, i.e. minus the spinor squarenorm. The summation over Sy, by is done by calling this
function 12 times, which is called a spin-color-wise computation in Sect. 5.2. This correla-
tor can now be implemented and calculated for various simulation parameters using .

3.1.7. The Vector Meson: The p-Meson
For the vector meson one finds I' = v47;,i = 1,2, 3 (see Table :

Opp(m) =~ (i u(m) = dln)yrd(m) (3.24)

As for the pion, the quantum numbers P and C' are checked for the flavor-neutral inter-
polator for p' using the transformations discussed in Sect. 2.2.2, since the classification
with C' only strictly holds for flavor-neutral interpolators:

1

O () S O () = == (ulm) () Tam)” = d(m) () ()
= -0p,(n)=C=—, (3.25)
Oy i(n) 7> 0o i(n)7 = —ji (a(—n,n)vaviu(—n,nr) = d(—n,n:)y5d(—n, n)

= -0y,(-n,n;)=P=—, (3.26)

where the relation for the charge conjugation matrix and the anti-commutation
relations for all v, , which imply 72 = l4x4, have been used. The interchange
of the Grassmann variables during the transposition cancels a minus sign in the charge
conjugation. Again, using exact isospin symmetry and , the fermionic part of the
expectation value of the correlator for the vector meson, the p-meson, is for flavor-neutral
and non-flavor-neutral mesons

(00,i(n)0ypi(m))p = —tr [(D_l(”|m))T74%’YsD_1(”|m)74’yz'75] . (3.27)
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Point sources are again placed at m = mg = 0 and the propagator is given as D~*(n|0) of
c1C2

for a point source (0,3, cz2) in the following way, where a,b,...,q € C3*3 are matrices in
color space:
a e J n
_ b f k o
D n|0)a g = 3.28
s ={e g 1 p 29)
d h m gq

In the following, tr always indicates a trace over spin-color indices and tr. always indi-
cates a trace only over color indices. The fermionic part of the expectation value of the
correlator in x-direction (i = 1) evaluates to

(0p1(n)0,1(0))F = — tr [(D_l(”\0))T’Y471’Y5D_1(nfo)%’h%}

=2 Re (trc {a*f +ole+cth+dig+to+kin+1fg+ mTp])
3 3
= Z 2 Z Re (a;@fClCQ + bimecm + Czlczhcwz + dzlczgq@
co=1 c¢1=1
+j:10200102 + k;chcwz + lzlcquICQ + mzlchqq) )

(3.29)
Similarly, one finds in y- and z-direction (i = 2, 3):

<Op72(n)op72(0)>F = 2 Re (trc [an —ble+cfh — dTg + jTo —kfn+ qu — mTpD , (3.30)
<Op’3(n)ép73(0)>F = tr, [aTa —bib+cfe—dfd—efe+ fo — ng +hth

+it5 — Ktk + 171 —me—nTn—l—oTo—pr—i-qTq} . (3.31)

As it can be seen from these correlators, the vector meson correlators can be evaluated
for all three co = 1, 2, 3 fixed and then, the results can be added to get the total correlators.
This is called a color-wise computation in Sect. 5.2. The formulae for the vector meson
correlator can now be implemented into a program and evaluated for different simulation

parameters using ((3.16]).

3.2. The Effective Mass

This section deals with the relation between the correlators and the masses of the particles
described by the correlators. All computations in this thesis are zero temperature calcula-
tions. Therefore, the zero temperature limit N, — oo, while a/N; — oo for the continuum
limit @ — 0 (cf. Sect. 2.2.3), has to be taken in order for the equations in this section
to be exact. It must then be verified in simulations that they took place at a sufficiently
large N, such that the results are within the behavior explained here and one does not
see temperature effects.

Starting with (2.40)) and taking the zero temperature limit, the path integral expression
for the correlator can be rewritten into the statistical mechanics expression (cf. (2.43)

lim (0(0,7,)0(0)) = 2~ tx [e~Nrn)ell ) emnrall OF] (3.32)

Nr—o0



3.2. The Effective Mass 23

where now O and O annihilate and create mesons with zero momentum and the euclidean
time transporter was used to bring the operator O from time an, to 0. The correlator
then becomes [cf. (GL10, pp. 4-6], [cf. Phil0, p. 10],

. _ ~(Nz—n-)afl () —nraf )t
lim <O(O,n7)0(0)> — lim Zm,n <m| e |n> <TL| e ‘m>

Nr=reo Nr—o0 7
o S (mIOn) (o] OF m) o= e el et
Nr—voo S eaN-EBn
= lim Zm,n (m| 0 In) (n| Of |m) o~ (Nr=n7)aAEm g—nraAEy,
Nr—o0 1+e*aNTAE1 —}-e*aNTAEQ T

AFE, = E, — Ey and FEj is the vacuum energy. Since in the limit N, — oo also a N, — oo
is implied, the denominator is equal to 1 and in the numerator only terms with E,, = Ejy
survive, which holds only for the vacuum. With the identification AFE,, — FE, the final
formula is
lim_(0(0,n,)0(0)) = 3| (0] O )| emn- (3.33)
Nr—o0 T o ’ ’

The effective mass ameg = ameg(n,) (a for lattice units) is defined by [cf. |GL10, p. 145]

limy, 00 (0(0,n7)O(0))
limy, 00 (O(0, 1, + 1)0O(0))

For n; — oo (3.33) turns into

=: g?meft(n) | (3.34)

lim (O(0,7,)0(0)) 222> ]<oy O|1)

’2
Nr—o0

e b (3.35)
|1) is the lowest state with (0] O [1) # 0, i.e. the ground state of the meson described by the

correlator, and Fj is its energy, which is equal to its mass m for zero momentum. Therefore,
it is obvious that for n, — 0o, ameg(n;) becomes constant and am = lim,,__, oo ameg(n,).

For a periodic lattice, which is realized in all simulations in this thesis, mesons can not
only propagate in n,, but also in (N, — n;) [cf. GL10, pp. 144-145], thus propagating
through the boundary. Hence, there is also a contribution from the second propagation
resulting in a total behavior described by a shifted hyperbolic cosine. Egs. and

(3.35) become

lim (0(0,n,)0(0)) Y= S| (0] O [ (oo g emeemmaBn) - (3.36)

N;—o0
The effective mass in this case is defined by [cf. GL10, p. 145]

o (amea(nr)) | g~ (Nr—nr)(amen(nz))

thT—wo <O(O¢ nT)O<O)

)
= - = . 3.37
thT_>OO<O(07 nT + 1)O(O)> e_(nT"’_l)(amcﬁ(nT)) —|— e_(NT_nT_l)(a‘mcﬂ(nT)) ( )
For n, — oo (3.36)) turns into
A A Nrnr—o0 A 2( —an.E —a(Nr—n,)E
(0(0,1:)0(0)) “2=25 [(0] O 1) (e7emr B 4 emelNrmnn) B ) (3.38)

where terms like e=@N7=77)En hayve been added to the original exponential terms to ac-

count for the mesons propagating in negative temporal direction. Note that the notation
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for the limit N, — oo has been changed to account for the appearance of N, in the right-
hand side of the equations. Therefore, the asymptotic behavior of the equations is meant.
Again, it is obvious that for n, — oo (while still having n, < N;), ameg(n;) becomes
constant and am = lim,,, o0 aMmeg(nr).

The effective meson mass can now be determined in a simulation (in lattice units) using
a fit in the range where ameg(n,) hits a plateau. Here one can assume that 0 < n, < N;
such that am =~ ameg(n;).

3.3. The PCAC Quark Mass

In this section, the fermionic part of the PCAC correlator, which is needed to determine the
PCAC quark mass and to be able to do a chiral extrapolation in it, will be calculated. Since
this section works explicitly with u- and d-quarks, the notation ¥ = u and @ = d will
be used. As stated in Sect. 2.3, the PCAC relation with the axial ward identity can be used
to calculate the PCAC quark mass on the lattice. For this, the pseudoscalar interpolator
and the axial vector field first have to be transformed into creation and
annihilation operators. Because 7% are the Pauli matrices and 1 = (u,d)’, one can
use the definitions

1 . 01
T+ = 5(7—1 + 'L7—2) = (O 0) ) (339)
_ 1 ) 0 0
T = 5(7'1 —ir?) = (1 0) , (3.40)

to find that

¢ = (0,u)”. (3.42)
Therefore, one finds using (2.69)) and (2.70)) [see GL10, p. 268]

P*(n) = P'(n) — iP*(n) = (a(n),d(n))y7" (u(n),d(n))" = d(n)ysu(n) , (3.43)
P~ (n) = P'(n) +iP*(n) = (a(n),d(n))ys7" (u(n), d(n))" = a(n)ysd(n) , (3.44)
Al (n) = Ay (n) — A7 (n) = (@(n), d(n))y 157 (u(n),d(n))" = d(n)ysu(n) ,  (3.45)
AL (n) = AL (n) + A5 (n) = (@(n), d(n) )y 57 (u(n),d(n))" = @(n)yuysd(n) . (3.46)

The index on the interpolators refers to the electrical charge of the mesons that are an-
nihilated by these operators. With Table and egs. and it is obvious that
these operators are meson interpolators annihilating a pion 7% and an axial vector meson
with charge +e, and creating the meson with the other charge, just that the index for the
axial vector interpolator here runs from 1 to 4.

Since the multiplicative renormalization connecting Aj, and A,(f)a is not important for
this calculation and a chiral extrapolation in the PCAC quark mass mpcac, can
be used with the meson interpolators from above to find that

oA, (n) = O#Ali(n) + i@MAZ(n)
= QmPCAC(Pl (n) + iPQ(n)) = 2mpcacP(n) , (3.47)
((0uA; () PF(m)) = 2mpcac(P™ (n)PT(m)) = 2mpcac(Ox(n)Ox(m)) . (3.48)
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The fact that P* are O, and O, has been used in the last step to clarify the connection.
Note that all equations have been put on the lattice, which implies a discretized derivative.
In order for these equations to make sense, m, = my has to be implied. Now, the source
gets fixed at the origin m = 0 as before and with this, the derivative can be pulled out of
the expectation value on the left-hand side of , which gives

Bu{ Ay () PF(0)) = 2mpcac(P(n)P*(0)) (3.49)

The derivative only acts on A,(n) because the source is fixed at m = 0. Projecting to zero
momentum using (3.15)) leads to

@L(A (0,n,)P*(0) N3 Z O nnT)P+(0)>
=L auAr (mnn) PHO))

g ni,n2,n3
= 2mpcac{P~(0,n,)P*(0)) (3.50)
94(A; (0,n,) P(0))
2(P=(0,n,)P*(0))
The fact that all spatial derivatives give a vanishing contribution because of the sum and
the periodic boundary conditions in all spatial directions has been used in the second line.

(3.51)) is often used as the definition for the PCAC quark mass [cf. Pinl4] p. 19]. With the
symmetrically discretized derivative (2.12)), the PCAC quark mass in lattice units becomes

1 (A7 (0,1, +1)P*(0)) — (A7 (0,1, — 1)P*(0)) '

AMPCAC = (P=(0,n,)P*(0))

= MPCAC = (3.51)

(3.52)

Note that the expression on the right-hand side still depends explicitly on n., since (|3.51])
and are only valid for N,,n, — oo as for the effective mass. Besides, differs
from the corresponding formula in the paper used as a reference for the calculation of the
critical hopping parameter x.(3) [Iwa+96]. The difference can be explained by the factor
of my in the formula in [Iwa+96], which comes from carrying out the derivative using a
hyperbolic sine as an ansatz for the so-called AP-correlator.

In order to be able to implement the calculation of ampcac, the fermionic part of the
correlator with the axial vector interpolator in n,.-direction and the pseudoscalar interpo-
lator has to implemented, also referred to by the AP-correlator. Using (3.43) - (3.46) and
the same procedure as in Sect. 3.1, one finds

(Ag (m)P*(0)) p = (@(n)yay5d(1n)d(0)y5u(0))
- (7475)04151 (75)a252 <a(n)alclu(o)52 >u<d(0)°c“2d(n)51 >d
Cc2

= —tr [75D—1(0|n)74751)—1(n|0)} . (3.53)

The minus sign again comes from the reordering of the Grassmann variables and Wick’s
theorem ([2.58)) has been used in the third line. Using 7s-hermicity (2.39) and {v,,75} =0
the correlator becomes

(Ag () P*(0)) = tr [(D™!(n]0))fu D~ (n]0)] . (3.54)
With (3.28) and using point sources placed at 0, the explicit form of the correlator is

(Ag (n)PT(0))Fr = —2 Re (trc {aTc +b'd+elg+ fih+ 514+ ktm+nlp + quD . (3.55)
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Note that since no columns of the quark propagator are mixed, the correlator can in fact
be calculated spin-color-wise. Besides, the minus sign depends on the convention of the
Dirac matrices. Knowing that ampcac is positive, one can simply take the absolute value

when calculating (3.52]).



4. Numerical Methods

After the fermionic part of the expectation values for the correlators was calculated in
the last chapter, the first part of this chapter will detail the numerical methods, i.e. the
hybrid Monte Carlo algorithm, to calculate the gauge part of the expectation values. In
the second part of this chapter, the statistical method needed for analyzing the results of
the hybrid Monte Carlo algorithm and the methods for the extraction of masses from the
correlators will be introduced.

4.1. The Hybrid Monte Carlo Algorithm

In order to calculate the full expectation value for the correlators, one also has to calculate
the gauge part as in (2.51)), an integral over all possible gauge field configurations. Even
for small lattice sizes, it can consist of thousands or even millions of integration variables
and it usually cannot be done analytically. Because of the high dimensionality of the
integral, one can only use importance sampling methods to estimate the integral. This is
generally realized with a Monte Carlo (MC) algorithm, which creates a so-called Markov
chain consisting of a set U,, of N gauge configurations distributed in the phase space of
all gauge configurations according to the probability measure

%e_SG[U] det[D]? , (4.1)

where (2.60) has been plugged in for Zp[U]. The estimate for the gauge part of the
expectation value for an observable B as in (2.51)) then becomes [cf. (GL10, p. 73]

(Blo~ Y BIU:]. (42)

For N — oo (4.2) becomes exact. The relative error of the result of such an algorithm (i.e.
an observable computed using a Monte Carlo simulation) is roughly o 1/v/N [see |GL10,
pp. 93-94].

One way to include the fermion determinant in the probability measure and therefore
have dynamical fermions is the hybrid Monte Carlo (HMC) algorithm. As stated in Sect.
3.1.5, the Dirac operator has O(10'?) entries. This makes a direct evaluation of det[D]
impossible because it would need O((10'2)!) operations. In the HMC algorithm, the action
gets therefore rewritten into [see |GL10, pp. 187-199]

SenlU. ¢, 6" = SalU] + ¢! (DD "' U]¢ (4.3)
such that the probability distribution becomes
%e*SG[U] det[D]? = e~ elU,0,01] (4.4)

where ¢ and ¢! are so-called pseudofermion fields, which are bosonic fields. They are
related to the fermion determinant via [cf. GL10, pp. 187-188], [cf. Pinl4, pp. 29-30]

det[D]2 = det[DD1] / D[g|D[41] e~ (PPN "6 (4.5)
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The cyclicity of the trace and ~s-hermicity (2.38) have been used to find [see|GL10, p. 187]
det[D]* = det[D'] = det[y5Ds] = det[D] (4.6)
= 0 < det[D]? = det[D] det[D'] = det[DDT] . (4.7)

The second equation also ensures that (4.1)) is real and non-negative for two mass-degenerate
quark flavors and can thus be interpreted as a probability measure. In fact, this holds for
any even number of mass-degenerate quark flavors [see (GL10| p. 187].

One then constructs a fictitious classical molecular dynamics system with a Hamiltonian
H = %PQ + Seff, where P are the conjugate momenta to U and elements of su(3) consisting
of 8 real-valued entries (for 3 colors, otherwise su(N.) with (N, x N, — 1) entries) for
each lattice position and direction P = P,(n) [see Pinl4, p. 31]. In the first step of
the HMC algorithm, P and ¢ are generated with the distributions exp(—(D~'¢)TD~1¢)
and exp(—%Pz) respectively. A given configuration (U, P) then gets evolved to a new
configuration (U’, P’) over a time 7 according to the Hamilton’s equations of motion [see
Pinl4, p. 31]

St _

P=— =F 4.
50 , (4.8)

U=P (4.9)

using the leapfrog or the second order minimal integration scheme [Td06]. F' = Fg + Fr
is the force term and has contributions from gauge and from fermion terms [cf. [Pin14,
p. 31]. One can control the accuracy of the integration with the number of integration
steps I and, therefore, a minimal step size A7 = 7/1. At the end of each evolution step,
one accepts the new configuration with a probability

Pace = min(1,exp(H[P',U’] — H[P,U))) . (4.10)

In order to improve the algorithm, one typically chooses a different number of integra-
tion steps for the gauge and fermionic contributions to the force, i.e. more steps for
the gauge part, which is numerically cheaper to calculate, a technique called multiple
timescales [Urb+4-06]. Since the inversion of the Dirac operator, which has to be used in
order to calculate det[D], gets more expensive with decreasing quark mass, one can use
mass preconditioning |[Has01], which uses det[D] = jii[[ﬂ det[A], thus introducing a new
Dirac operator A with a higher quark mass, i.e. a lower kK = Kk}, than the & for D, which
is therefore cheaper to invert. Using multiple timescales for the different fermions leads
to a less expensive integration.

The inversion of the Dirac operator is done using a Krylov solver, usually either with the
Conjugate Gradient (CG) algorithm, which in its original version only works for positive
definite symmetric matrices, or the Bi-conjugate Gradient Stabilized (Bi-CGStab) algo-
rithm, which works on any matrix, but may not always converge. For further information
see |GL10, pp. 138-141], |[Pinl4, pp. 32-33].

This short introduction to HMC has been oriented by [Pinl4, pp. 29-30]. For more
details see also [GL10, pp. 185-199].
4.1.1. Generation of Gauge Configurations

In order to create gauge configurations, which in the case of CL2QCD is done using the
executable hmc, one first needs to initialize the link variables either all to 133 (cold start)
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or to random matrices in color space (hot start). Then, the HMC algorithm gets started.
At the beginning of a simulation, the configurations generated, i.e. the Markov chain,
do not follow the equilibrium distribution . Therefore, one has to perform usually
around one thousand steps until one can start evaluating the observables, which is also
often referred to by measuring the observables. A good estimate to when the system of the
link variables is in equilibrium is the expectation value of the plaquette. The procedure
of reaching the equilibrium distribution is called thermalization.

Since the acceptance rate P,p, depends on the number of integration steps for the differ-
ent contributions to the force and also on whether or not mass preconditioning is applied,
it has to be tuned for the HMC algorithm to give good results. In the context of this
thesis, it is tuned so that 70% < Pace < 80%. The tuning can be done at the end of the

thermalization, when the Markov chain is already almost in equilibrium.

After thermalization and tuning, the configurations for evaluating the observables can
be produced. Usually, one uses different seeds of the pseudo random number generator
(PRNG) needed in several steps of the HMC algorithm to be able to start multiple dif-
ferent HMC chains running in parallel on different CPUs or graphical processing units
(GPUs) to decrease the total simulation time, i.e. to produce multiple different Markov
chains at the same time.

One does not evaluate the observables on all configurations that are visited by the HMC
algorithm, since the step from one configuration to another is too small to ensure uncorre-
lated configurations. Thus, using all configurations would result in a high autocorrelation
and an error that may be underestimated (see Sect. 4.2 for more details). For this thesis,
it turned out that evaluating the observables, i.e. the correlators discussed in Sect. 3, for
every b0th configuration gives acceptable autocorrelation times.

After sufficiently many gauge configurations for measurement have been generated, one
can evaluate the observables of interest. The results of these evaluations are then analyzed
using statistical methods discussed in Sect. 4.2. Afterwards, one has to check that the error
as well as the autocorrelation time is small enough. If not, more simulations have to be
performed.

4.2. Statistical Analysis and Fits

4.2.1. The I'~-Method

The T'-method (I'M) by Ulli Wolff is a method for the statistical analysis of the results
of Monte Carlo simulations allowing more exact error estimates than binning techniques,
especially with regard to autocorrelation. To do so, it calculates an estimate of the auto-
correlation function. A detailed description of the original method can be found in [Wol04].
There is also an improved version with a 7y, bias correction presented in [SSVH]E], but
even though this program has been used as it is being used in the working group, the
correction has not been used in the context of this thesis.

!This is the given citation with the proposal for the improvement. For the code with a description see
http://www-zeuthen.desy.de/alpha/public_software/UWerrTexp.html
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The objective of the I'-method is to calculate a function f of primary observables with
exact statistical mean values A, [see |Wol04, p. 2]

F=f(A1,As, .. ) = f(Aa) . (4.11)

In order to estimate the function, A, gets estimated using a (H)MC algorithm by a%",
where i = 1,2,..., N, is the number of the Monte Carlo configuration in each Markov
chain and r = 1,2,..., R refers to the number of statistically independent replica [see
Wol04, p. 3], for example from running multiple HMC chains in parallel as described in
Sect. 4.1.2. The autocorrelation function is then defined by [see [Wol04, p. 3]

((ag" — Aa)(a}” — Ag)) = 65T ap(j — ) (4.12)

and only depends on the distance in time in the Markov chain j—i. The notation (-) in this
discussion of the I'M is used to refer to an "ensemble of identical numerical experiments
with independent random numbers and initial states" [see Wol04, p. 3].

The per replicum mean is defined as

1,
an, =-—> al’ (4.13)
Ny i=1
such that
_ 1 &
aq = — Y N,a, (4.14)
N r=1

is the estimator of A, [see Wol04, p. 4]. The estimator for F' is given by [see (Wol04, p. 5]

F = f(aa) . (4.15)
Using
o
Cas = > Tap(t) (4.16)
t=—00
the covariance matrix for F' is
Cr =Y fafsCasp , (4.17)
af
where o7
— . 4.18
fOé aAa ( )
The error is given by
27 c
o2 = %w = FF . (4.19)
There,
vr = fafsTas(0) (4.20)
a7B
is the effective 'naive’ variance relevant for F' and
1 o0
T =5 — 3, D fafslap(t) (4.21)
UF t=—o00 a75

is the integrated autocorrelation time for F' [see [Wol04, p. 6]. As stated also there, for
no autocorrelations 27, p = 1 (4.19)) is the standard error and for a purely exponential
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behavior, I'o5(t) o< exp(—[t|/7), the autocorrelation time 7 is related to the integrated one
by Tint,p = T + O(171). Besides, only N/ (27int, ) of the estimates contribute to a smaller
statistical error [see [Wol04, p. 6].

The I'M estimates the autocorrelation function for the primary observables a, and for
F by [see Wol04], pp. 7-9]

= _ ir = i+tr =
Fop(t) = N~ Ri & 2 (ay aa)(aﬁ ag) , (4.22)
Tr(t) = fafslas(t) (4.23)
a7B
where
= 1 — — — - - -
o~ ﬁ(f(al,ag, coylo F he, ) — flar, a2, .. 00 — oy 2)) (4.24)
T'oa(0)
o T ) 42
h ’ (4.25)
such that the estimators for vg and Cr become
op =Tp(0), (4.26)
= = W =
Crp(W) = lrF(o) +22Fp(t)] . (4.27)
t=1

W has to be chosen such that the total (i.e. the sum of the statistical and the systematic
error) relative error of the estimate of the error p

(St‘)ta(:-F) ~ %mw (exp( W/T)+2 W/N> (4'28)

is minimized. The error estimate then is

0% = : (4.29)

which is evaluated at optimal W. Denoting errors of quantities with §(-) and using [see
Wol04} p. 9]

C? (4.30)

together with error propagation from (4.19)) and ( -, one finds

567) = 5 7o \/W“ \/W% G (4.31)

The exact quantities have been used at the beginning of the calculation and have been
replaced by the estimated quantities at the end in order to give an estimate of the error
of the error.
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The estimate of the integrated autocorrelation time and its error are [see [Wol04, p. 10]

- Cp(W
Fur = ZF) (4.32)
ZUF
= = W 3— in
O(Tint, ) = 27__int7F\/( i 2N Tint ) ; (4.33)

where, in contrast to the corresponding eq. (42) in [Wol04} p. 10], in the last expression
the estimate Tin¢, 7 has been plugged in on the right-hand side in order to be able to give
an estimate. Each expression is to be evaluated at the optimal W from above.

The I'M is available for Matlab without [W0104]EI and with the 7eyp, bias correction ISSVlllﬂ
A standard call is [see Wol04, pp. 17-19]

[value,dvalue,ddvalue,tauint,dtauint,Q] = ...
UWerr (Data,Stau,Nrep,Name,Quantity,P1,P2,...)

Data is a matrix with the rows being a%" for i,r fixed and all values of «, Stau is a value
needed for the algorithm of finding W and can in the context of this thesis just be left at
its default value 1.5, Nrep = [N1, No, ..., N,], Name is the name in the title for the gener-
ated plots, Quantity is the reference @fun of a function fun, which resembles f(A,) from
(4.11), and P1,P2, ... are optional additional parameters for fun. value is the estimate
of F according to , dvalue is the estimate of o according to , ddvalue is the
estimate of §(g ) according to , tauint is the estimate of 7y according to ,
dtauint is the estimate of 6(7int,r), and Q describes how well the per-replicum estimates
f(al,), where only r is fixed, are agreeing with each other [see Wol04, p. 7].

As stated before, the function used is in fact a modified version of the I'M with Teyp
bias correction, but it is called in a way such that it only performs the standard analysis
described here.

4.2.2. Fits

The standard method for fitting a set of data points {(z;,y;,0;)}, where o; is the error
on the y; values corresponding to z; and i = 1,2,..., N, to a fitting function f(z) is by
minimizing [see [Youl2, p. 20]

Eoy <y —f(x»)? | (4.34)

i=1

The value of x?/Npor, where Npor is the number of degrees of freedom in the fit, gives
a first idea of whether a fit is good or not. Since a fit minimizes x?, a high value of
x%/Npor > 1 indicates that the data points are not on the fitted function within their
errors. When x%/Npor < 1, there might be some over-fitting, i.e. there are too many fit
parameters and the data is over-described. However, this is not the case in this thesis,
since e.g. the data produced for the effective and PCAC quark masses is often very good.
Ideal is a value of x?/Npor ~ 1.

®https://www.physik.hu-berlin.de/de/com/ALPHAsOft
3http://www-zeuthen.desy.de/alpha/public_software/UWerrTexp.html
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Another important quantity to measure the goodness of a fit is denoted by ) and given
by [see [Youl2, p. 26]

1 oo
- - (Npor/2)-14-y4 4.35
Q T (Noor/2) /><2/2y v, (4.35)
where I'(x) is the Euler gamma function [see Youl2) p. 59]. 0 < @ < 1 gives the proba-
bility that "given the fit, the data could have occured with a y? greater than or equal to
the value found" when assuming Gaussian noise on the data [see Youl2, p. 26]. A value
of @ =~ 0.5 is considered to be optimal.

Fitting procedures give an error estimate of the fit parameters. Details on how this
is done using the covariance matrix are given in [Youl2, pp. 23-29]. One important
thing to keep in mind when using gnuplotﬁ as in this thesis is that it gives out the
asymptotic standard error instead of the proper error on the fit parameters [see [Youl2,
p. 62]. Therefore, one has to divide the asymptotic standard errors given out by gnuplot
by what it calls FIT_STDFIT, which is equal to \/x?/Npor [see Youl2, p. 62].

4.2.3. The Effective Mass from the ['-Method

First, define C(n;) = limy, 0 (O(0,n,)O(0)) and recall that the limit is realized in all
simulations by having N, ~ 2N,. Then, the first step in extracting a meson mass from a
meson correlator is applying periodicity (cf. (3.38)) to find that C(n,;) = C(N; —n;). Let
N; be even, which is true for all simulations in this thesis. Thus, one sets (C(n.)+C(N;—
n:))/2,0 < n; < N;/2 as C(n.) to average out fluctuations. C'(0) and C(N,/2) are not
replaced because there is no correlator position with which they can be averaged. This is
done for every result for the correlators given out by the executable inverter using the
gauge configurations from the HMC algorithm. To ensure that all correlators are positive,
since possible sign changes have been neglected in the calculation and they are supposed
to be strictly positive according to (3.33)) and (3.36]), C'(n,) is replaced by |C(n,)| for all
0<n;<N;/2.

With z := e®e#("r) > 10 < n, < N, — 1, since ameg(n,) > 0, (3.37) becomes

__Cly) e e
g C(nT + 1) - x—nT—]_ +x—(NT—nT—1)
"+ a7
e — (4.36)
where 7 = N;/2 — n,. Rewriting gives
f@)=r@ 42z~ (@ +277) =0, (4.37)

which means that finding ameg(n,) corresponds to finding the absolute zero of f(z), where
x > 0. This can be done using Newton’s method [see BS80, pp. 782-783], which converges
quadratically, i.e. it doubles the number of significant figures every iteration. With

f(z)= rr(zT 2 — R T - x_T_l) (4.38)

and by setting xg = r, i.e. the value for a purely exponential behavior, cf. (3.34]), one can
iterate

a1 = Ty — 4.39
+ 7 (4.39)

“http://www.gnuplot.info
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Figure 4.1.: Effective mass plot and fit for pion at (8, k) = (5.2420, 0.1650).

to find x with good precision. In the context of this thesis there have been two ways im-
plemented for the iteration to stop. Either when |f(x,,)| < 1071° or when |z,11 — Zm| <
10719, thus ensuring that the iteration will stop at a precision better than the accuracy of
the HMC algorithm. Since f(x) = f(1/x), there are two x, where f(z) = 0. In order to
be sure that the effective mass is positive, ameg(n,) = [In(z)| > 0 is set, where z is the
result of Newton’s method. This method of finding ameg(n,) has been programmed in
Matlab in the course of this thesis. It can be passed as the argument for fun to the I'M, so
that ameg(n;) is computed for every 0 < n, < N;/2 using the I'M and the pre-averaged
correlators from the HMC calculation.

After ameg(n,) has been calculated it gets plotted against n, and fitted to a constant
in the region, where it is constant within its errors, using gnuplot. The goodness of the
fit has to be evaluated using x?/Npor and Q, thus validating that the limit n, — oo
is approximately fulfilled and the fit to a constant is valid. It might be appropriate to
exclude values of ameg(n;) at high n, ~ N;/2 from the fit because of large errors that
can occur in this region. The fit gives the mass am of the meson in lattice units with its
(corrected) error. An example plot and fit for the pion mass at (3, k) = (5.2420, 0.1650)
generated in the course of this thesis can be found in Fig. In this plot one can see
that the effective mass hits a plateau at a distance of n, = 8 from the source to the sink
keeping in mind the periodic boundaries. Therefore, a fit has been performed from n, = 8
to ny = 15. The I'M together with fits using gnuplot gives good results for meson masses
with very small (relative) errors of only around 0.02% in the case of Fig.
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Figure 4.2.: PCAC quark mass plot and fit at (8, k) = (5.2420, 0.1650).

4.2.4. The PCAC Quark Mass from the I'-Method

In order to calculate ampcac, the AP-correlator as well as the pseudoscalar meson cor-
relator have to be implemented. Since ampcac has to be constant at least for large n.;
and (P~(0,n,)PT(0)) = (O:(0,n,)0,(0)) follows a shifted hyperbolic cosine behavior
(see (3.38)), one can conclude from that 04(A; (0,n,)P*(0)) also has to follow
this behavior. Because of the derivative, C(n,) = (A7 (0,n,)P*(0)) = —(A; (0, N, —
n.)PT(0)) = —C(N, — n,) must hold for the AP-correlator. Therefore, the correla-
tor results from the HMC calculation can be pre-averaged replacing C'(n,) with (C(n.) —
C(N;—nz;))/2for 0 < n; < N;/2for even N;. C(0) and C(N,/2) stay the same as before.

The pseudoscalar meson correlator gets pre-averaged and replaced by its absolute value
as described in Sect. 4.2.3. As for the pseudoscalar meson correlator, C(n;) gets replaced
by |C(n;)| for all 0 < n, < N,/2 to ensure that ampcac > 0, since there is a possible
minus sign for 74 depending on the convention and |C(n.)| is strictly monotonically de-
creasing for 0 < n, < N,/2 because of the hyperbolic sine behavior.

Eq. (3.52)) has been implemented as a function into Matlab, where the left-hand side of
(3.52)) is in fact ampcac(n,), so that it can be passed as fun to the I'M, thus calculating
ampcac for every 0 < n, < N,/2 using the pre-averaged correlators from the HMC cal-
culation.

As stated in Sect. 3.3, (3.51) and (3.52)) are strictly speaking only valid for N, n,; — oo
as for the effective mass. The limit N, — oo is approximated by N, ~ 2N,, whereas the
limit n, — oo manifests itself in the simulation with ampcac(n,) becoming constant for
large n,, but still N, > n,. Therefore, one can find the true PCAC quark mass ampcac
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by plotting ampcac(n,) against n, and fitting it similar to meson masses using gnuplot.
An example plot and fit for the PCAC quark mass at (8,x) = (5.2420,0.1650) can be
found in Fig. As for the meson mass in Fig. ampcac(ny) hits a plateau at a
distance of n, = 8 from the source to the sink and it can be fitted from n, = 8 to n, = 15.
This gives good results for PCAC quark masses with very small (relative) errors of only
around 0.04% in the case of Fig.



5. Implementation in CL2QCD

This chapter will give an introduction to the LQCD program used in this thesis, CL2QCD,
and describe the implementation of correlators.

5.1. Description of CL2QCD

All simulations in this thesis were performed with CLQQCHH a LQCD program based on
OpenClﬂ Therefore, it is able to use both, CPUs and GPUs, which are particularly well
suited for LQCD, efficiently and achieves very good performance. CL2QCD was developed
by Dr. Matthias Bach, Dr. Christopher Pinke, and others [Phi+14].

An OpenCL program consists of a host program which executes the OpenCL functions,
so-called kernels. The host program of CL?QCD is written in C++11 and contains the
algorithm logic, parameter handling and similar functionality, whereas the OpenCL kernels
do the actual calculations in the simulations [see Pinl4, pp. 43, 53]. An example for an
OpenCL kernel is a meson correlator. The executables of CL2QCD used in this thesis are
hme, which was used to create gauge configurations using a HMC algorithm, and inverter,
which was used to evaluate the correlators on the gauge configurations. CL?QCD has
the CG and the Bi-CGStab Krylov solvers implemented. More detailed information on
CL2QCD can be found in [Pin14] and [Phi+14].

5.2. Implementation of Correlators

There are three correlators of interest in this thesis: the pseudoscalar (pion) and vector (p)
meson correlators and the PCAC correlator, for which the AP- and the pseudoscalar me-
son correlator have to be implemented and calculated. Meson correlators for the scalar,
pseudoscalar, vector and axial vector (with C' = —1) mesons had already been imple-
mented at the beginning of this thesis using an even number of y-matrices different from
5 for twisted mass fermions and can therefore be used with pure Wilson fermions (cf.
Sect. 3.1.4). The only correlator that had to be implemented newly in CL2QCD was the
AP-correlator. However, in the work of this thesis, all correlator implementations got
restructured and optimized. Since test-driven development [Bec02] is being used in the
working group, tests for all meson correlators as well as the AP-correlator have been con-
structed and implemented.

Depending on their explicit structure, i.e. if the different spin components for the source
mix, correlators can be calculated spin-color-, i.e. for fixed spin and color index of the
source in the quark propagator in the calculation in the kernel, or color-wise, i.e. for fixed
color index of the source in the quark propagator in the kernel. This means that for a
spin-color-wise computation only one column with 12 entries of the complete propagator is
passed to the kernel and for a color-wise computation 4 columns are passed to the kernel.

!CL?QCD is available as a git through https://github.com/CL2QCD/c12qcd.
’https://www.khronos.org/opencl/
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The fixed indices are summed over by executing the kernel for every value they can assume
and summing the result. The pseudoscalar meson correlator and the AP-correlator are
calculated spin-color-wise, whereas all components of the vector and axial vector meson
correlators as well as the scalar meson correlator are calculated color-wise.

In test-driven development, implementations are done while constantly writing tests.
In order to be able to do so, a Mathematica notebook has been written that enables the
calculation of the correlators for a given test matrix as a quark propagator spin-color- or
color-wise depending on the correlator. Using these results and Boostﬂ different tests for
all correlators have been implemented in CL2QCD.

The actual calculation of the correlators in an OpenCL kernel can be summarized by
Algorithm |1} where C'(n;) is the meson correlator with fixed spin-color- or color-index of
the source after fourier transformation and ¢(ni,ng,n3,n;) is the meson correlator with
fixed spin-color or color index of the source according to (3.23), (3.29), (3.30), (3.31) and
(13.55)):

Algorithm 1 Correlator calculation in an OpenCL kernel.

Input: D~!(n|mg) for point source mq with fixed spin-color or color index
Output: C(n,)v0<n, <N, -1
1: for0<n,<N;—1doC(n;)=0
2 for 0 < nqy,no,n3 < N, —1do
3 Calculate c¢(ny,ng,nz, n;)
4 C(n;) < C(n:) + c¢(n1, n2,ng,n;)
5: end for
6 C(n,) «+ C(n,) - 4x%/N3
7: end for

The factor 4k? comes from the rescaling of the fields and the Dirac operator
and the division by N2 comes from the Fourier transformation. C(n,) then gets
calculated for all values of the fixed indices. The results are added and given as the output
for the correlator.

After all correlator kernels have been implemented and successfully tested, they can
be used by the executable inverter to calculate the correlators on gauge configurations
created using the executable hmc. The executable inverter writes all correlators into a
single output file. The quantum numbers in this file indicate the meson described by the
correlator and, for the AP-correlator, the quantum numbers for the axial vector and the
pseudoscalar meson are given.

The complete procedure for the correlator implementation can be summarized by two
steps. One first calculates the fermionic part of the expectation value analytically and
projects the correlator to zero momentum. Afterwards, one implements the analytic result
for spin-color- or color-wise calculation in OpenCL kernels with test-driven development.
This implementation may be used to calculate the total correlator and extract the meson
or PCAC quark masses for given simulation parameters according to the procedure given
in Sect. 6.1.

3http://www.boost .org
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6. Simulations

In this chapter, the simulation procedure will be explained and the results of the simula-
tions, which were performed in the course of this thesis, will be presented and discussed.

6.1. Procedure

All simulations have been performed with N, = 16 and N, = 32, i.e. a lattice of size 163 x
32, on GPU nodes on LOEWE—CS(ﬂ and L-CSCE] using CL2QCD. Each node provides
four GPUs and therefore, there was a multiple of four Markov chains in the production
of the gauge configurations in each simulation. The simulation details for all simulations
can be found in Table The procedure of calculating the pion and p-meson mass as
well as the PCAC quark mass for given lattice parameters (3, ) can be summarized by
the following steps:
1. Create gauge configurations using the executable hmc.

a) Thermalize from hot with ~ 1000 HMC steps.

b) Tune acceptance rate to 70% < Ppee < 80%.

c¢) Produce gauge configurations for evaluation of correlators.

i. Use different PRNG seeds to run multiple Markov chains concurrently.

ii. Save gauge configuration every 50 steps in each Markov chain.

2. Evaluate correlators on gauge configurations using the executable inverter.

a) Use eight sources per gauge configuration placed on different random positions
and average the result.

3. Extract masses from correlators using ['M.
4. Fit mass curves using gnuplot.

The gauge configurations were created by Dr. Christopher Pinke and the author of this
thesis (see Table [A.1)). The calculation of the correlators and the analyses of the results
were performed only by the author of this thesis.

The calculation of the critical value of k.(f) for a given 8 can be done with the following
steps:

1. Roughly estimate r.(/5) using a fit/interpolation of literature values.

2. Calculate amy, ampcac and am, at increasing values of x with the same 3, thus
reaching the regime, where these masses are small. Use am, to set approximate
scale and m,/m, as a guidance value to see when the chiral limit is approached.

"https://csc.uni-frankfurt.de/index.php?id=loewe-hw
“http://www.green500.org/sites/default/files/SC14-bof-1csc.pdf
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3. Plot (am;)? and ampcac with their errors against 1/x.

4. Fit (amy)? and ampcac to a linear function in the region where they are (approxi-
mately) linear to find k.(5).

5. If x?/Npor and Q of the linear fit indicate non-linear contributions estimate the
systematic error in k() using further quadratic fits, which usually give a lower
error, and linear fits at masses that are not the smallest ones measured, which
usually give an upper error.

6.2. Results

6.2.1. Verification of Procedure

In order to make sure all parts of the programs work, the first simulations were performed
recalculating the results of [Eic+99] for pion and p-meson masses. The chiral extrapolation
here was done for the PCAC quark mass and the pion mass to cross-check both procedures,
whereas in [Eic+99| it was done only for the pion mass. Because of high computational
expenses, only simulations for K = 0.1560, 0.1565,0.1570 and not for k = 0.1575 have been
performed. All simulations used 5 = 5.6. More details can be found in Table The
simulation results can be found in Table [6.1]

K Neonf amy Fit Reference value

0.1560 142  0.44844(77) (12,15) 0.4452+32
0.1565 105 0.39546(109) (11,15) 0.4016%32
0.1570 145 0.34828(122) (11,15) 0.3486™77

K am, Fit Reference value

0.1560 0.53616(106) (12,15) 0.53451%
0.1565 0.48865(142) (11,15) 0.4966 70
0.1570 0.46525(199) (11,15) 0.4600779

K My /M Reference value ampcCA Fit
p CAC

0.1560 0.8364(22) 0.833(5) 0.067250(114)  (8,15)
0.1565 0.8093(33) 0.809(15) 0.053795(130)  (7,15)
0.1570  0.7486(42) 0.758(11) 0.041200(112) (8, 15)

Table 6.1.: Simulation results for recalculation of [Eic+99|, ncons is the number of gauge
configurations for the k values for all correlators, reference value is the result
from the paper and fit is the fit range. 0.11 < XQ/NDOF < 1.04 and 0.38 <
Q@ < 0.98 was found for all fits.

As one can see from the simulation results, they agree with the results given in |[Eic+99].
It is worth noting that, even though the simulations performed in this thesis have less than
198 gauge configurations, which was the number of configurations in [Eic+99|, the errors
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Figure 6.1.: Chiral extrapolation of (am;)? for recalculation of [Eic+99)], k..(8 = 5.6) =
0.158513(29).

here are smaller. One reason for this is autocorrelation, since firstly, every 25th trajec-
tory was analyzed in [Eic+99] with autocorrelation times ranging from 7, = 17(5) to
Tint = 33(22) and secondly, they have only been analyzed using blocking techniques. Ap-
parently, the error estimation by the I'M produces a better error. Autocorrelation times
for these simulations range from 7, = 0.31(7) to 7ine = 0.95(35) for every 50th configura-
tion passed to the I'M, i.e. T, = 16(4) to 7ine = 48(18) in time in the Markov chain. Since
the upper limit is reached only at one n, for the pion mass at x = 0.1565 in the fit range
and all other values of 7, < 1 for the first timescale, one can say that autocorrelation
does not play a very important role and was treated by the I'M appropriately.

With these results one finds k. (8 = 5.6) = 0.158513(29) for the chiral extrapolation of
(am,)? (Fig. , whereas the value from the paper using all pion masses at x =0.1560,
0.1565, 0.1570, 0.1575 is ke (6 = 5.6) = 0.158507fﬁ, and Kcq(8 = 5.6) = 0.158604(13)
for the chiral extrapolation of ampcac (Fig. . Therefore, one can say that the values
of the extrapolations of (am,)? agree within their errors and, since the result from the
extrapolation of ampcac is very close to the value, the cross-check confirms the result,
even though it is not directly within the error from the fit. The fact that x?/Npor = 18.55,
Q = 0 for the chiral extrapolation of (am,)? and x?/Npor = 6.48, Q = 0.01 for the chiral
extrapolation of ampcac is induced by the small errors in the masses from the I'M and
the fits of the mass curves. However, since the results of these simulations agree with the
results from [Eic+99] within their errors, one can say that all parts of the programs work
and the systematic errors of the extrapolations do not need to be analyzed.

Using m, = 775.26(25)MeV to set the scale one finds estimates of m, and mpcac given
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Figure 6.2.: Chiral extrapolation of ampcac for recalculation of [Eic+99|, k¢ q(8 = 5.6) =
0.158604(13).

in Table Together with the values for my/m, from Table one can see that the
simulations in fact were performed at heavy pion and quark masses far away from the
chiral limit. This contributes to a (systematic) error on k.(8 = 5.6).

K a [fm] my [MeV]  mpcac [MeV]

0.1560 0.13647(28) 648.4(18)  97.24(17)
0.1565 0.12437(37) 627.4(25)  85.35(21)
0.1570 0.11842(51) 580.3(33)  68.65(19)

Table 6.2.: Simulation results in physical units, where m, = 648.4(18) MeV means m, =
(648.4 £ 1.8) MeV.

6.2.2. Pion Masses Along the Chiral Critical Line

In order to relate LQCD simulations concerning the chiral phase transition and the chiral
critical line to the point of simulation in the QCD phase diagram, pion masses were needed
by the IMuP for the simulation parameters (5,x) = (5.2420,0.1650), (5.1500,0.1700),
(5.0519,0.1750), (4.9519,0.1800). These simulation points lie on the chiral critical line in
the Ny = 2 QCD phase diagram for specific values of the chemical potential. The exact
simulation details can be found in Table The results for am, and am, can be found
in Table Autocorrelation times in the fit ranges assume values from 7, = 0.35(9) to
Tint = 1.08(46) with most being around 7 =~ 0.6 in a scale, where 50 steps in the Markov
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chains is a time of 1. Therefore, it can be assumed that autocorrelation has been treated
appropriately by analyzing every 50th configuration with the I'M.

(ﬁv H) TNconf amsr Fit am,p Fit
(5.2420,0.1650) 372 1.04213(22) (8,15) 1.14622(45) (8,15)
(5.1500,0.1700) 400 1.00586(22) (8,15) 1.13157(55) (9,15)
(5.0519,0.1750) 400  0.96545(20) (8,15) 1.11678(60) (8, 15)
(4.9519,0.1800) 305 0.90764(42) (5,15) 1.09052(160) (7,14)

Table 6.3.: Simulation results for pion and p-meson masses. Fit always refers to the fit
range of the mass to the left. 0.20 < x2/Npor < 1.01 and 0.42 < Q < 0.99 for
all fits.

The results for m,/m, and the scale setting methods, where the scale setting using
m, was done by the author of this thesis and the scale setting using wo was done by Dr.
Christopher Pinke, can be found in Table and Table Already from these tables
one can see that setting the scale using m, = 775.26(25) MeV is not very exact, since m,
does depend on the simulation parameters, which can be seen from Table The fact
that the lattice spacing a decreases for decreasing 3 in the scale setting using m,,, whereas
it should in fact be increasing for decreasing [ as for the scale setting using wy [cf. [Pin14,
p. 16], further supports the statement that using m, for scale setting only gives a rough
estimate. The scale setting using wg is much more accurate.

(B, k) My /My a [fm] m, [MeV]
(5.2420,0.1650)  0.90919(41)  0.29175(15)  704.86(39)
(5.1500,0.1700)  0.88891(48)  0.28802(17) 689.13(43)
(5.0519,0.1750)  0.86449(50)  0.28425(18)  670.21(45)
(4.9519,0.1800) 0.83230(128) 0.27757(42) 645.25(102)

Table 6.4.: Simulation results with scale setting via m, = 775.26(25) MeV. Note that
mz/m, does not depend on the scale setting and is only listed here as a guidance
for the distance to the physical points.

(8, k) wp/a a [fm] my [MeV]  m, [MeV]
(5.2420,0.1650)  0.64801(16) 0.27083(278) 759.30(780) 835.14(858)
(5.1500,0.1700)  0.60973(10) 0.28783(295) 689.59(707) 775.77(796)
(5.0519,0.1750)  0.58381(7)  0.30061(308) 633.74(649) 733.08(752)
(4.9519,0.1800)  0.56738(5)  0.30932(317) 579.02(594) 695.68(720)

Table 6.5.: Simulation results with scale setting via wg [cf. Bor+12].
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Figure 6.3.: Chiral phase transition in the Ny = 2 QCD phase diagram with m, as x-axis
using m,, scale setting.
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Figure 6.4.: Chiral phase transition in the Ny = 2 QCD phase diagram with m, as x-axis
using wy scale setting.
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The plots for the chiral phase transition can now be made using m, instead of k as the
x-axis. Since there are two possible scale settings, Fig. [6.3]is the one with the scale setting
using m,, and Fig. is the one with the scale setting using wgy. Note that mf (@), Wilson .
the pion masses from the simulations. As stated in the introduction, the values for (u/T)?
for these points come from the IMuP and have been published in [PP15|, in which the
chiral phase transition is studied and where also the values for m, from this thesis using
wy for scale setting have been used. (1™ /T)? = —72/9 is the Roberge-Weiss endpoint of
the chiral phase transition [cf. Pinl4, pp. 85-89]. The pion masses lie on the Z(2) chiral
critical line, where there is a second order chiral phase transition in the N; = 2 QCD
phase diagram. In the plot, to the left of the chiral critical there is a first order chiral
phase transition and to the right of the plot there is a crossover chiral phase transition.

6.2.3. Chiral Extrapolations and Quark Masses Along the Chiral
Critical Line

As it turned out in the course of this thesis, pion masses are sufficient to set the scale.
This is because the simulation points do not lie within a scaling region around tricritical
points at low masses in the QCD phase diagram (cf. Chapter 1), since pion masses along
the chiral critical line for Wilson fermions and N, = 4 range between 579(6) MeV and
759(8) MeV (cf. Table [6.4). Therefore, the quark masses have only been determined for
(B,k) = (5.2420,0.1650), (5.1500,0.1700), (5.0519,0.1750) using a chiral extrapolation.
As a reference, a fit to a polynomial with a degree of 6 to literature values published
between 1989 and 1998, since more recent studies could not be found in the range of S,
was performed to interpolate between them by Dr. Christopher Pinke. Due to the age
of the studies and the limited computational resources at that time, the errors are large.
Besides, there were not many values of k.(f) in the vicinity of the £ values that are of
interest in this thesis. Using to calculate amy and the scale-setting via wg from the
simulations for the pion masses the estimates for x.(f) and mg can be found in Table
Note that, since it did not imply much more effort, also the value of k.(5 = 4.9519) and
the quark mass at (3, k) = (4.9519,0.1800) have been fitted.

(B, k) ke(B) amyg mg [MeV]

(5.2420,0.1650)  0.1705(16) 0.098(29)  72(21)
(5.1500,0.1700)  0.1756(13) 0.094(22)  65(15)
(5.0519,0.1750)  0.1822(8)  0.113(13)  74(8)
(4.9519,0.1800) 0.1885(16) 0.125(24)  80(16)

~— — — —

Table 6.6.: Results for quark masses using a fit to literature values.

For the chiral extrapolations, there have been simulations performed at 0.1635 < k <
0.1698 for 8 = 5.2420, at 0.1700 < k < 0.1743 for § = 5.1500 and at 0.1750 < x < 0.1788
for B = 4.9519. The setup was a lattice with N, = 16 and N, = 32 and every 50th
configuration was used for correlator calculation. Exact simulation details can be found
in Table [ATT] The results for am, and ampcac can be found in Tables [6.7], [6.§ and [6.9}
Autocorrelation times range from 7,y = 0.34(6) to Tiny = 1.34(44) for 5 = 5.2420, from
Tint = 0.31(8) to 7ine = 1.88(66) for 5 = 5.2420 and from 7ip = 0.36(7) to Tin, = 0.92(28)
for 8 = 5.0519 in the fit ranges with most around 7, =~ 0.6 in a timescale, where 50
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steps in the Markov chain equal a time of 1, and the upper limits are only assumed rarely.
Therefore, it can be said that autocorrelation was properly treated by only taking every
50th gauge configuration for analysis and using the I'M for error estimation.

K Neonf amq Fit aAMpCAC Fit

0.1635 400  1.13037(21) (8,15)  0.27900(13)  (10,15)
0.1640 400  1.10219(23) (8,15)  0.26335(11)  (8,14)
0.1645 400  1.07275(22) (8,15)  0.24757(12)  (8,13)
0.1650 372  1.04213(22) (8,15)  0.23159(10)  (8,15)
0.1660 400  0.97067(26) (8,15)  0.19785(11)  (9,15)
0.1680 400  0.77914(29) (7,15)  0.12394(10)  (9,15)
( (7,15) (7,15)

( (7,15) (7,15)

( (7,15) (8,15)

(7,15) (7,15)

0.1690 400  0.62392(38) 0.079182(95)
0.1693 320  0.55883(76)
0.1695 201  0.50013(74)
0.1698 329  0.37312(151)

0.063632(174)
0.051035(158)
0.028796(210)

Table 6.7.: Simulation results for pion and PCAC quark masses for chiral extrapolation at
B = 5.2420. 0.13 < x?/Npor < 1.20 and 0.30 < @ < 1.00 for all fits.

K Neonf amq Fit ampCAC Fit
0.1700 400 1.00586(22) (8,15) 0.20330(9) (8,15)
0.1705 400 0.97316(24) (8,15)  0.18817(10) (9,15)
0.1710 400  0.93671(24) (9,15) 0.17270(9) (8,15)
0.1715 400  0.89814(25) (8,15)  0.15684(10) (9,15)
0.1720 400 0.85373(25) (8,15)  0.14022(10) (9,14)
0.1730 400  0.74414(31) (8,15)  0.10391(11) (9,15)
0.1735 292 0.66249(61) (7,15) 0.081442(146) (7,15)
0.1740 183  0.54482(113) (7,15) 0.054651(229) (7,15)
0.1743 154  0.39652(155) (6,15) 0.028974(232) (6,15)

Table 6.8.: Simulation results for pion and PCAC quark masses for chiral extrapolation at
B = 5.1500. 0.08 < x?/Npor < 0.99 and 0.44 < @ < 1.00 for all fits.

K Neonf amq Fit aMpCAC Fit

0.1750 400 0.96545(20) (8,15)  0.17663(8)  (8,15)
0.1760 400 0.90130(19) (6,15)  0.15027(7)  (7,15)
0.1770 400 0.82301(24) (7,15)  0.12203(8)  (7,15)
0.1775 320 0.77500(36) (7,15)  0.10649(12)  (7,15)
(27) (7,15) (7,15)
(46) (6,15) (6,15)
(67) (6,15) (7,15)

0.1780 400 0.71763(27 0.089723(75)
0.1785 202  0.64099(46 0.070204(115)
0.1788 320 0.57746(67 0.056235(153)

Table 6.9.: Simulation results for pion and PCAC quark masses for chiral extrapolation at
B =5.0519. 0.20 < x?/Npor < 0.63 and 0.76 < Q < 0.99 for all fits.



6.2. Results 47

In order to give an idea of the distance to the physical point, am, was measured, m,/m,
was computed and m, = 775.26(25) MeV was used for scale setting. Note that the physi-
cal value of m,/m, is 0.180030(58). The results can be found in Tables|6.10}|6.11|and [6.12]

K am,, Fit My /M, a [fm] mx [MeV]  mpcac [MeV]
0.1635 1.22360(39) (8,15) 0.92381(35) 0.31144(15) 716.19(36) 176.77(9)
0.1640 1.19820(42) (8,15) 0.91087(38) 0.30498(15) 713.14(38)  170.39(8)
0.1645 1.17369(45) (9,15) 0.91400(40) 0.29874(15) 708.59(39)  163.53(8)
0.1650 1.14622(45) (8,15) 0.90919(41) 0.20175(15) 704.86(39)  156.64(7)
0.1660 1.08518(50) (8,15) 0.89448(48) 0.27621(16) 693.45(44)  141.35(8)
0.1680  0.92032(66) (8,15) 0.84660(69) 0.23425(19) 656.33(58)  104.40(9)
0.1600 0.79136(83) (8,15) 0.78841(96) 0.20142(23) 611.23(77)  77.57(10)
0.1693 0.73620(146) (8,15) 0.75898(183) 0.18741(38) 588.41(143)  67.00(19)
0.1695 0.69640(159) (7,15) 0.71816(196) 0.17725(41) 556.76(153) 56.81(18)
0.1698 0.60638(362) (7,15) 0.61532(444) 0.15434(93) 477.04(345)  36.82(27)

Table 6.10.: Simulation results in physical units for pion and PCAC quark masses at § =
5.2420. 0.22 < Xz/NDOF < 1.95 and 0.06 < @ < 0.98 for all fits for am,.

K am, Fit My /M a [fm] my [MeV]  mpcac [MeV]
0.1700 1.13157(55) (9,15) 0.88891(48) 0.28802(17) 689.13(43)  139.28(7)
0.1705 1.10563(53) (8,15) 0.88019(48) 0.28142(17) 682.37(43)  131.94(8)
0.1710  1.07534(62) (9,15) 0.87108(55) 0.27371(19) 675.32(48)  124.43(7)
0.1715  1.04378(57) (7,15) 0.86047(53) 0.26567(17) 667.09(47)  116.49(8)
0.1720  1.00545(75)  (9,15) 0.84910(69) 0.25592(21) 658.28(57) 108.12(8)
0.1730  0.91839(85) (8,15) 0.81027(83) 0.23376(23) 628.17(67)  87.72(10)
0.1735 0.85369(155) (7,13) 0.77603(158) 0.21729(41) 601.63(124) 73.96(14)
0.1740 0.76777(226) (7,11) 0.70961(256) 0.19542(58) 550.14(199) 55.18(24)
0.1743  0.66393(451) (6,14) 0.59723(469) 0.16899(12) 463.01(364)  33.83(28)

Table 6.11.: Simulation results in physical units for pion and PCAC quark masses at § =
5.1500. 0.32 < XQ/NDOF < 1.13 and 0.34 < @ < 0.93 for all fits for am,.

K am,, Fit M /My a [fm] mx [MeV]  mpcac [MeV]
0.1750  1.11678(60) 0.86449(50)  0.28425(18)  670.21(45)  122.62(6)
0.1760  1.06552(73) 0.84588(61) 0.27121(21) 655.78(52)  109.33(6)
0.1770  1.00796(69) 0.81651(61)  0.25656(20) 633.01(52)  93.86(7)
0.1775 0.96940(140) 0.79946(122) 0.24674(37) 619.79(97) 85.16(10)
0.1780 0.92551(117) 0.77539(103)  0.23557(31)  601.13(82) 75.16(7)
0.1785 0.86778(187) 0.73865(168) 0.22088(49) 572.65(132)  62.72(11)
0.1788  0.82083(277) 0.70351(252) 0.20893(71) 545.40(196)  53.11(15)

Table 6.12.: Simulation results in physical units for pion and PCAC quark masses at § =
5.0519. 0.25 < x?/Npor < 0.85 and 0.52 < Q < 0.97 for all fits for am,.
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Using these results, chiral extrapolations of (am,)? and ampcac have been performed.
Even using only the lowest three masses, linear fits had x?/Npor >> 1 for all extrapola-
tions. Consequently, the errors from the fits could not be used as errors for x.(3) because
of the systematic uncertainties mentioned in Sect. 2.3.1, while the results themselves could
be used. Quadratic functions through the points with the three lowest masses have been
calculated as part of the error analysis. Since the resulting x.(3) was lower in all cases, the
difference in the results were used as lower errors. One could also have used quadratic fits
through the four points with the lowest masses, but this showed to produce smaller errors
in all cases and therefore, the larger errors were used. For upper errors, linear functions
through the points with the second and third smallest masses have been calculated and
the difference of the resulting value for k.(3), which was higher than the value for k.(f)
from the fit of three points in all extrapolations, were used as upper errors. The plots for
B = 5.2420 can be found in Figs. [6.5 and All other plots show the same behavior with
the slope becoming monotonically smaller for higher values of 1/x and are therefore not
shown here. The results of the extrapolations can be found in Table

Extrapolation of (am)? Extrapolation of ampcac

5 Ker(B) x?/Npor  Q Keq(B) x*/Noor @

52420 0.170216%93,  51.15  0.00 0.170225792  43.28  0.00
51500 0.1748127272  534.22  0.00 0.1748067222  479.62  0.00

5.0519 0.18035972  150.32  0.00 0.18021571%  90.20  0.00

Table 6.13.: Results for k.(8). x?/Npor and Q refer to the linear fits using the 3 points
with the lowest masses.

A comparison plot of the results for k.(/3) with the values obtained from the fit of lit-
erature values can be found in Fig. All results have less errors than the predictions
from the fit. For § = 5.2420 and 5.1500 the results are within the errors of the predictions.
For 8 = 5.0519 the result is much lower than the prediction and not within the errors.
However, the fact that the slope in the plots get monotonically smaller for higher 1/k,
thus indicating a rapid decrease in mass when approaching k.(/3), supports the result for
ke(B = 5.0519) found in the course of this thesis. More simulations in the regions of small
PCAC quark and pion masses would decrease the errors for all chiral extrapolations. Since
the simulation expenses for the HMC algorithm get much larger in this region because
of the inversion of the Dirac operator, which is more expensive for lower quark masses, a
compromise had to be found and no more simulations were performed.

The results for the quark masses using (2.29)) and the scale setting via m, and wg from
Sect. 6.2.2 can be found in Tables [6.14] and [6.15]

(B, k) mg [MeV], m, scale my [MeV], wy scale
(5.2420, 0.1650) 62.8171:09 67.667 152
(5.1500,0.1700) 55.47271 55.501332
(5.0519,0.1750) 58.93% 402 55.7372:03

Table 6.14.: Results for quark masses using the chiral extrapolation of (am)2.
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Figure 6.7.: Comparison of chiral extrapolation results with fit to literature values.

B,k mg |[MeV|, m, scale m, [MeV], wq scale
q p q

(5.2420,0.1650) 62.91+1:05 67.771157

(5.1500, 0.1700) 55.40+2% 55.4473-19

(5.0519, 0.1750) 57.407 114 54.271 10

Table 6.15.: Results for quark masses using the chiral extrapolation of ampcac.

Using these results, the plot for the chiral phase transition with the chiral critical line,
Figs. and can be made with the quark mass as the x-axis. Again, there are two
plots, one with the scale setting using m, (Fig. and one with the scale setting using

wo (Fig. .
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6.3. Discussion

After having reproduced the results from [Eic+99], it can be said that the simulation
procedure and all programs work. Using the I'M and fits as a method for the statistical
analysis and mass extraction from the correlator results has proven to produce small errors
while taking into account auto-correlation effects of the HMC algorithm.

The pion masses along the chiral critical line were determined with a relative error of
around 1% for the more exact scale setting using wg, which is a very high accuracy. In this
context, it also needs to be said that even though the errors given in the Tables and
are smaller for the m, scale setting than for the wg scale setting, the error for the m,
scale setting only includes the uncertainty in m, = 775.26(25) MeV and in the simulation
results for the masses. A systematic error coming from the fact that this method of setting
the scale itself is not very exact is not included. Therefore, the results from the wg scale
setting are much more reliable. They show that the pion mass decreases on the chiral
critical line for Wilson fermions at N, = 4 with increasing (/7).

The results for the quark masses from both chiral extrapolations agree very well within
their errors. However, with relative errors ranging from 2.8% to 11.2% for the wq scale
setting, they could not be determined with an accuracy as high as for the pion masses.
This is because of the systematic errors in the chiral extrapolations due to non-linear terms
contributing to (am,)? and ampcac. Even though these contributions were found, chiral
extrapolations with new simulations have proven to produce less and more controllable
errors than a fit to literature values, especially since a lot of the reference studies are not
recent.

Comparing the scale setting methods for the quark mass, one notices that for the
scale setting using m,, the quark mass at (5,x) = (5.1500,0.1700) is lower than at
(8,k) = (5.0519,0.1750), which is unexpected as a lower bare quark mass should im-
ply a lower (renormalized) quark mass. This is also the behavior in terms of the pion
mass (cf. Table . However, using the scale setting via wyq, this problem is resolved and
the quark mass at k = 0.1700 is higher than at x = 0.1750. It is worth noting that espe-
cially at (8, k) = (5.0519,0.1750) the quark mass has a rather large lower error. A better
estimate of k.(8 = 5.0519) could improve this and result in a lower quark mass at these
parameters. This comparison of the scale setting methods shows that the one using wq is
much more precise and gives better results as can be expected. Using this scale setting
and the results for the quark masses, the chiral critical line in Fig. [6.9] agrees qualitatively
with the chiral critical line in Fig. with the pion and quark masses becoming smaller
when going to larger (u/T)%. Tt can therefore be said that pion and quark masses along
the chiral critical line in the Ny = 2 QCD phase diagram were determined successfully
giving consistent results. Even though the pion masses are sufficient as a scaling for the
quark masses could not be applied, the quark masses still give a good cross-check for the
results for the pion masses and confirm the results qualitatively.

In all plots for the chiral phase transition, there is a second order phase transition of
universality class Z(2) at the points drawn in the diagrams on the chiral critical line.
To the left of this line there is a first order region for the chiral phase transition and to
the right of this line there is a crossover region. This indicates a first order chiral phase
transition in the Ny = 2 chiral limit m, 4 = 0, m; = 0 at least for Wilson fermions on
coarse IV, = 4 lattices.



7. Summary

In this thesis, pion and quark masses along the chiral critical line in the Ny = 2 Quantum
Chromodynamics phase diagram have been calculated. To do so, after an introduction to
QCD and lattice QCD, meson correlators, the effective mass and the PCAC quark mass
with its corresponding correlators, have been introduced. In order to be able to calculate
quark masses, the critical hopping parameter has been defined. The fermionic parts of
the expectation values of the studied correlators have been calculated. An overview of
the hybrid Monte Carlo algorithm for the simulation of the gauge part of the expectation
values has been given together with the statistical methods for the analysis, where the
I'-method has been used, as well as the fits needed for the extraction of masses from the
correlators. The LQCD program CL2QCD and the implementation of correlators in it
have been described. At last, the results of the simulations and, therefore, the pion and
quark masses have been presented and discussed.

The results of this thesis were used by the Imaginary Chemical Potential Project in
[PP15] to relate LQCD simulation parameters, which describe where the chiral critical
line in the Ny = 2 QCD phase diagram at imaginary chemical potential is, to pion masses.
They indicate that at least for Wilson fermions on coarse N, = 4 lattices the chiral phase
transition in the Ny = 2 chiral limit is of first order. Further studies of the chiral phase
transition with higher values of N, > 4, i.e. less coarse lattices, could enable a better
comparison to continuum QCD and eventually, for high values of N, a continuum extrap-
olation. However, such studies would require increasing computational effort.

As stated before, even though it turned out in the course of this thesis that the pion
masses are sufficient, the determined quark masses offer a good cross-check. Besides, the
values of the critical hopping parameter found enable the calculation of quark masses in
future simulations, either directly or as an estimate by using them together with literature
values in an interpolation to find k.(5) at another value of 8. Further simulations at high
values of k for the chiral extrapolations for smaller errors as well as a chiral extrapolation
to find k(8 = 4.9519) would improve these possibilities.






A. Appendix

A.1. Dirac and Pauli-Matrices

The conventions for the Euclidean Dirac matrices used in this thesis are:

00 0 —i 0 00 —1 0 0 —i 0
loo —i o o o1 o0 lo o o0
M=lo i 0o o[> ]o 10 o™i o o ol
i 0 0 0 100 0 0 —i 0 0
0 0 -1 0 1.0 0 0
0 0 0 -1 0 -1 0 0
m=l_y o o o PvEMRBH=, 4 1 (A.1)
0 -1 0 0 0 0 0 1

Note that 4 and therefore also 75 differ from the conventions used in [GL10, pp. 330-
331] by an overall minus sign. This, however, does not change the validity of the Euclidean
anti-commutation relation

{’Y;u'YV} = 26/11/]14><4 ) (AZ)
the relations for the 5 matrix
{7M775} = 07 ’YEQ) = ]14><4 y (A?))
the relation for the inverse
W= = (A4
and the relation for charge conjugation
CyuC™' = =71, (A.5)

where p = 1,2,3,4 and C is the charge conjugation matrix, cf. Sect. 2.2.2. All these
relations are taken from [GL10, pp. 330-331]. As it was shown in Sect. 2.2.2, one finds

CysC L =71, (A.6)

The conventions used for the Pauli matrices in this thesis are as in [GL10, p. 329]:

0 1 0 —1 1 0
01—7'1—(1 O>’02_72_<i OZ>7U3_73_<0 _1>- (A-7)

A.2. Simulation Details

All simulations were performed on lattices with N, = 16 and N, = 32 using CL?QCD
and saving every 50th gauge configuration in the Markov chains for correlator calculation
after thermalization. The correlators were calculated for 8 different random sources per
gauge configuration giving the average as the result for each gauge configuration. All
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HMC calculations have been tuned to an acceptance rate of 70% < P < 80%. The
gauge configurations have been produced by Dr. Christopher Pinke and the author of
this thesis on LOEWE-CSC and L-CSC, whereas all correlator calculations on the gauge
configurations were done on LOEWE-CSC by the author of this thesis. The simulation
details can be found below.

B K Ttherm  Tconf RKmp Nchains

5.6000 0.1560 1000 142 - 4
5.6000 0.1565 1000 105 -
5.6000 0.1570 850 145 -
5.2420 0.1635 1000 400 -
5.2420 0.1640 1000 400 -
5.2420 0.1645 1700 400 -
5.2420 0.1650 1700 372 -
5.2420 0.1660 1000 400 -
5.2420 0.1680 2000 400 -
5.2420 0.1690 1000 400 -
5.2420 0.1693 950 320 -
5.2420 0.1695 800 201 -
5.2420 0.1698 900 329  0.1640
5.1500 0.1700 1000 400 -
5.1500 0.1705 1000 400 -
5.1500 0.1710 1000 400 -
5.1500 0.1715 1200 400 -
5.1500 0.1720 1200 400 -
5.1500 0.1730 2000 400 -
5.1500 0.1735 1150 292 -
5.1500 0.1740 1000 183 -
5.1500 0.1743 900 154 0.1685
5.0619 0.1750 2000 400 -
5.0619 0.1760 2000 400 -
5.0519 0.1770 1600 400 -
5.0519 0.1775 1000 320 -
5.0519 0.1780 1050 400 -
5.0519 0.1785 1000 202 -
5.0519 0.1788 1000 320 0.1725
4.9519 0.1800 1000 305 -

00 W R 00 R R R 00 I 00 B R R R R 00 R 00 R R R R R R R R s

—
D

Table A.1.: Simulation details.

In the table, Tiherm is the number of HMC thermalization steps, nconf is the number
of configurations for measurement, kpp is the x value for mass preconditioning, where
'—" indicates no mass preconditioning and N¢hains is the number of Markov chains using
different PRNG seeds in the creation of gauge configurations after thermalization.
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