
Numerical Relativity:
Exercises

Luciano Rezzolla

Summer Semester 2014

Listed below are the exercises that have been assigned during the course
and collected according to the lecture in which they were assigned. These
exercises can be solved independently or together during the exercise time.
Some of these questions could be part of the oral exam.
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Lecture I
1. Consider a three-dimensional hypersurface Σt representing the set of events hav-

ing the same value of the time cooridnate t. Given the one-norm Ωµ := A∇µt,
prove that ΩµΩµ = 1/gtt.

Lecture II
1. Let n be the unit timelike normal to Σt and γ, N are respectively the the pro-

jector operator orthogonal to Σt and along n, i.e., γµν = gµν + nµnν and
Nµ

ν = −nµnν . Show that it is possible to split a covariant tensor W of rank 2
by applying the projection tensor separately on each component of the tensor to
obtain

Wµν = Anµnν +Bµnν + nµCν + Zµν , (1)

where

A := WµνN
µν = Wµνn

µnν , Bµ := −γαµWαβn
β , (2)

Cν := −γανWβαn
β , Zµν := γαµγ

β
νWαβ . (3)

Further show that the decomposition (1) can be written in the so-called irre-
ducible form as

Wµν = Anµnν+Bµnν+nµCν+
1

3
Wαβh

αβγµν+W〈µν〉+γ
α
µγ

β
νW[αβ] . (4)

where W〈µν〉 is the trace-free, symmetric1 and spatial part of the tensor W ,
namely:

W〈µν〉 := γ α
µ γ κ

ν W(ακ) −
1

3
Wακh

ακγµν . (6)

2. Prove that if u is a timelike unit four-velocity (i.e., uµuµ = −1), the covariant
three-velocity defined as

vi = −
γiµu

µ

nµuµ
, (7)

has components given by

vi =
1

α

(
ui

ut
+ βi

)
. (8)

1I recall that it is possible to construct a symmetric or antisymmetric tensor from an arbitrary one, i.e.,

Z(µν) :=
1

2
(Zµν + Zνµ) , Z[µν] :=

1

2
(Zµν − Zνµ) , (5)

and that an arbitrary tensor can always be decomposed into its symmetric and antisymmetric parts,
i.e., Zµν = Z(µν) + Z[µν].
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3. Prove that the quantity W := αut is the Lorentz factor since it satisfies the
identity

W =
(
1− vivi

)−1/2
. (9)

Compare expression (8) with the equivalent expression in special relativity.

4. Recalling that the Schwarzschild solution in quasi-isotropic coordinates reads

ds2 = −
(

1−M/(2r)

1 +M/(2r)

)
dt2 +

(
1 +

M

2r

)4 (
dr2 + r2dΩ2

)
, (10)

compute the components of the one-form Ω, of the unit normal n, of the lapse
functionα, of the shift vectorβ, and of the three metric γ; for all tensors compute
both the covariant and the contravariant components.

Lecture III
1. The Misner-Sharp (1964) represents the simplest formulation of the Einstein

equations in spherical symmetry. Derive the expressions presented at the lec-
ture starting from the generic diagonal line element in spherical symmetry can
then be written in the form

ds2 = −a(r, t)2dt2 + b(r, t)2dr2 +R2
(
dθ2 + sin2 θdφ2

)
, (11)

where r and t are the radial and time coordinates is the Schwarzschild circum-
ference coordinate, i.e., 4πR2 :=

∫
2Σ

√
2g dσ, where dσ is the surface element

over the two-sphere 2Σ with metric determinant 2g.

2. Within a 3+1 split of spacetime, prove the following expression for the extrinsic
curvatureK

Lnγµν = −2Kµν , (12)

where γ is the metric associated to Σt and n the corresponding unit normal.

3. Consider a cylindrical 2-surface in an embedding Eucleadian space, e.g., R3.
Compute the components of the Riemann tensor and of the extrinsic curvature.
Compare with the results discussed in the lecture.

4. Consider a 2-sphere in an embedding Eucleadian space, e.g., R3. Compute the
components of the Riemann tensor and of the extrinsic curvature. Compare with
the results discussed in the lecture.
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Lecture IV
1. Prove that aν = Dν lnα.

2. Derive the Gauss–Codazzi equations

γµα γ
ν
β γ

ρ
δ γ

σ
λRµνρσ =

(3)

Rαβδλ +KαδKβλ −KαλKβδ . (13)

3. Derive the Codazzi-Mainardi equations

γρβγ
µ
αγ

ν
λn

σRρµνσ = DαKβλ −DβKαλ . (14)

4. Derive the Ricci equations

γαµγ
β
νn

δnλRαδβλ = LnKµν −
1

α
DµDνα+Kλ

ν Kµλ . (15)

5. (Optional) Given the conformal transformation γ̃ij = φ2γij , γ̃ij = φ−2γij ,
show that the second covariant derivative of the conformal factor is given by

D̃iD̃jφ = ∂i∂jφ− Γ̃kij ∂kφ ,

and that the relation with the corresponding derivative in the physical metric is
given by

DiDjφ = D̃iD̃jφ+
2

φ
∂iφ∂jφ−

1

φ
γij∂

kφ∂kφ .

In case you are curious, such an expression appears when splitting the three-
dimensional Ricci tensor into a part containing conformal terms and another one
containing space derivatives of the conformal factor, i.e.,

(3)

Rij =
(3)

R̃ij+
(3)

R̃φij ,
where

(3)

R̃ij := −1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃kj l

)
,

(16)
(3)

R̃φij :=
1

φ2

[
φ
(
D̃iD̃jφ+ γ̃ijD̃

kD̃kφ
)
− 2γ̃ijD̃

kφ D̃kφ
]
. (17)
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Lecture V
1. Derive the form of the Hamiltonian and momentum constraints in a conformal

and traceless formulation of the Einstein equations.

2. Let V be the volume enclosed by the three-dimensional surface Σ on a spacelike
hypersurface, so that the (proper) volume element is given by

V =

∫
Σ

√
γ d3x , (18)

where, as usual, γ = det(γij). The volume V can be thought as the volume
delimited by a closed two-dimensional surface S , where S is of course part of
a two-dimensional surface, say, Σ0. Show that the variation of V in time when
S remains fixed is given by

∂tV = −
∫

Σ

αK
√
γ d3x , (19)

where, as usual, α is the lapse and K is the trace of the extrinsic curvature. This
expression shows that a slicing with K = 0 is “maximal” in the sense that the
volume V is an extremal with respect to variations of the domain enclosed by
S .

3. The “harmonic slicing” is the slicing requiring that the “harmonic condition”

�xα = ∇µ∇µ xα = 0 . (20)

holds only for the time coordinate x0 = t, i.e., that

� t = 0 . (21)

Show that this condition corresponds to the following prescription for the lapse(
∂t − βi∂iβ

)
α = −α2K . (22)

4. The “minimal distortion condition” imposes that

DjΣij = 0 , (23)

where2

Σij = Θij −
1

3
γijΘ = Θij −

1

3
γijΘklγ

kl =
1

2
γ1/3Ltγ̃ij , (24)

is the metric distortion tensor and

Θij =
1

2
Ltγij =

1

2
∂tγij , (25)

2Note that Eq. (7.132) of my book contains two (!) typos. The one reported here is the correct expression.
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is the metric strain tensor. The “Gamma-freezing” shift condition, on the other
hand, imposes that

∂tΓ̃
i = 0 . (26)

Show that
∂tΓ̃

i = 2φ−2
[
DjΣ

ij − Γ̃i jkΣjk − 6Σij∂jφ
]
. (27)

and hence that the Gamma-freezing shift condition and the minimal-distortion
condition are equivalent up to terms involving the conformal factor and its deriva-
tives.

5. (Optional) Work out the conditions for a hyperboloidal slicing of the Minkowski
spacetime.

Lecture VI
No exercises for this lecture to allow people to catch-up with unsolved exercises. Note
that only the first 3 exercises for each lecture are expected to be solved. The rest is just
for fun.

Lecture VII
1. Assuming for simplicity that the flow is one-dimensional (i.e., for µ = 0, 1) and

the spacetime flat, we rewrite the conservation equations for energy and linear
momentum

∇µTµν = 0 . (28)

can be written in a Cartesian coordinate system as

∂t
[(
e+ pv2

)
W 2
]

+ ∂x
[
(e+ p)W 2v

]
= 0 , (29)

∂t
[
(e+ p)W 2v

]
+ ∂x

[(
ev2 + p

)
W 2
]

= 0 , (30)

where uµ = W (1, v) and W = (1− v2)−1/2 is the Lorentz factor.

2. Linearize Eqs. (29)–(30) by introducing perturbations of the type

e = e0 + δe , p = p0 + δp , v = v0 + δv = δv , (31)

Show that the resulting equations satisfy a wave equation

�δe = 0 . (32)

What are the assumptions needed to derive Eq. (32)? What is the speed of prop-
agation of these waves?
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3. The continuity and momentum equations can be written as

∂t(ρW ) + ∂x(ρWv) = 0 , (33)

W∂t(Wv) +Wv∂x(Wv) = − 1

ρh

[
∂xp+W 2v∂tp+W 2v2∂xp

]
. (34)

Show that these partial differential equations (that you can try to derive or take
as given) can be written as the following ordinary differential equations

(v − ξ)dρ
dξ

+ ρ[W 2v(v − ξ) + 1]
dv

dξ
= 0 , (35)

ρhW 2(v − ξ)dv
dξ

+ (1− vξ)dp
dξ

= 0 , (36)

after introducing the similarity variable ξ :− x/t and the following differential
operators

∂t = −
(
ξ

t

)
d

dξ
, ∂x =

(
1

t

)
d

dξ
. (37)

Lecture VIII
1. Show that across a discontinuity surface moving to the right the Rankine-Hugoniot

junction conditions

JρuµKnµ = 0 , (38)
JTµνKnν = 0 , (39)

where JφK = φa − φb, can be written as

J := ρaWava = ρbWbvb , (40)

ρahaW
2
a v

2
a + pa = ρbhbW

2
b v

2
b + pb , (41)

ρahaW
2
a va = ρbhbW

2
b vb , (42)

where va,b are the fluid velocities as measured in the shock rest frame.

2. Show that Eqs. (40)–(41) can be re-written as

q
J2

y
= 0 , J2 = − JpK

Jh/ρK
, JhW K = 0 . (43)

3. Show that Eqs (43) can be combined in the famous Taub adiabat

q
h2

y
=

(
ha
ρa

+
hb
ρb

)
JpK , (44)
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Derive the Newtonian limit of Eq. (44) and show it leads to the Hugoniot adiabat
s
ε+

p

ρ

{
=

1

2

(
1

ρa
+

1

ρb

)
JpK . (45)

Lecture IX
1. Using the differential relation

W 2dv ± cs
ρ
dρ = 0 ,

and exploiting the isentropic character of simple waves, derive the following
expressions for the Riemann invariants

J± :=
1

2
ln

(
1 + v

1− v

)
±
∫
cs
ρ
dρ = const. (46)

and show that it is equivalent to∫
cs

e+ p
de = ±1

2
ln

(
1 + v

1− v

)
+ const. (47)

2. Using the junction conditions

v2
a =

(pa − pb)(eb + pa)

(ea − eb)(ea + pb)
, (48)

v2
b =

(pa − pb)(ea + pb)

(ea − eb)(eb + pa)
, (49)

and under the assumption of a highly relativistic shock, a cold fluid ahead of the
shock and an ultrarelativistic one behind the shock, i.e.,

Wa � 1, pa ≈ 0, ea ≈ ρa, pb =
eb
3
, (50)

show that the energy density in the shocked fluid scales like the square of the
Lorentz factor of the shock front (with respect to the unshocked fluid).

eb = 2W 2
a ea . (51)

This is a result often used in astrophysical relativistic shocks.

3. Using the junction condition

J := ρaWaWS
(V

S
− va) = ρbWbWS

(V
S
− vb) , (52)

compute the mass flux J such that the shock velocity Vs is twice the velocity va
in the unshocked region. Compare it with the corresponding Newtonian mass
flux. Which of the two is larger for the same value of va?
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Lecture X
1. Show that the following definitions of energy-momentum tensor are equivalent

Tµν = (e+ p)uµuν + pgµν = ρhuµuν + pgµν ,

Tµν = Enµnν + Sµnν + Sνnµ + Sµν .

where E, Sµ and Sµν are the Eulerian energy density, the momentum density
and the purely spatial energy-momentum tensor, respectively. Show also that the
following definitions are possible for these quantities

Sµν = ρhW 2vµvν + pγµν ,

Sµ = ρhW 2vµ ,

E = ρhW 2 − p .

2. Show that the following identity holds when considering the left-hand side of the
conservative formulation of the momentum-density equation

∂µ(
√
−gTµj) = ∂t(

√
γSj) + ∂i[

√
γ(αSij − βiSj)] .

Similarly, show that the right-hand side satisfies the following identity

1

2

√
−gTµν∂jgµν =

√
−g
(

1

2
Sik∂jγik +

1

α
Si∂jβ

i − E ∂j lnα

)
,

3. Show that the following identity holds when considering the left-hand side of the
conservative formulation of the energy-density equation

−
√
−g∇µ(Tµνnν) = ∂t(

√
γE) + ∂i[

√
γ(αSi − βiE)] .

Similarly, show that the right-hand side satisfies the following identity

−
√
−gTµν∇µnν =

√
−g
(
KijS

ij − Si∂i lnα
)
.

9



Lectures XI-XII
1. Write explicitly the conservative formulation of the relativistic hydrodynamic

equations in the Valencia formulation

∂t
(√
γU

)
+ ∂i

(√
γ F i

)
= S ,

where the vector of conserved variables U and the corresponding flux vector in
the i-direction F i are given by

U =


D

Sj

E

 :=


ρW

ρhW 2vj

ρhW 2 − p

 , F i :=


αviD − βiD

αSij − βiSj

αSi − βiE

 ,

while the source vector has components

S :=
√
γ


0

1
2αS

ik∂jγik + Si∂jβ
i − E∂jα

αSijKij − Sj∂jα

 .

2. Show that gloabal order of local accuracy for three numerical solutions at reso-
lutions h, k = h/2 and γ = k/2 is given by the simple expression

p̃ = log2 |R(h, h/2, h/4)| .

where R(h, h/2, h/4) is the error ratio for the three resolutions.

3. Show that the second-order accurate finite-difference representation of the sec-
ond spatial derivative is given by

∂2
xu
∣∣n
j

=
unj+1 − 2unj + unj−1

∆x2
+O(∆x2) .

What is the expression for the third derivative ∂3
xu
∣∣n
j

? What is the accuracy
order of your expression?
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Lecture XIII
1. Considering the physical and conformal three metrics γij = ψ4γ̄ij withDiγjk =

0 = D̄iγ̄jk, prove that the corresponding Ricci scalars R, R̄ associated with the
original, and the conformal 3-geometry are related according to the following
identity

R = ψ−4R̄− 8

ψ5
D̄iD̄

iψ .

2. Prove that for any symmetric trace-free tensor U ij we have

DjU
ij = ψ−nD̄j(ψ

nU ij) + (10− n)U ijD̄j lnψ .

3. Given the longitudinal operator L defined as

(LW )ij := 2D(iW j) − 2

3
γijDkW

k .

where W i is a generic vector, show that the following identity holds

(Lβ)ij = ψ−4(L̄β)ij .

Similarly, show that for β̄i = ψ−4βi we have

(Lβ)ij = ψ4(L̄β̄)ij .
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