Numerical Relativity:
Exercises

Luciano Rezzolla

Summer Semester 2014

Listed below are the exercises that have been assigned during the course
and collected according to the lecture in which they were assigned. These
exercises can be solved independently or together during the exercise time.
Some of these questions could be part of the oral exam.



Lecture I

1. Consider a three-dimensional hypersurface X, representing the set of events hav-
ing the same value of the time cooridnate ¢. Given the one-norm (), '= AV ,t,
prove that Q,Q* = 1/g".

Lecture 11

1. Let n be the unit timelike normal to ¥; and -, IN are respectively the the pro-
jector operator orthogonal to ¥; and along n, ie., Y. = gu + nyn, and

N*#, = —n#n,. Show that it is possible to split a covariant tensor W of rank 2
by applying the projection tensor separately on each component of the tensor to
obtain
Wy = Anyny, + Byny, +n,C) + 2,4, @)
where
A=W, ,N* =W, n'n", By, = =% Wagn” 2)
C, = = Wsan?, Zyy = 'yo‘u'y*BUWag. 3)

Further show that the decomposition (1) can be written in the so-called irre-
ducible form as

1
W, = Anunl,—&—Bunl,+nMCV+§Wa/3hO‘57,W+W<W> —I—WO‘HVBVW[QQ] . @

where W, is the trace-free, symmetric' and spatial part of the tensor W/,

namely:
1
W(,uu) = IYMQ'YVKW(QR) - gWanhaK’yuu . (6)
2. Prove that if u is a timelike unit four-velocity (i.e., u#u, = —1), the covariant
three-velocity defined as
) it
o= e M)
nyub

has components given by

C}+6ﬁ. ®)

11 recall that it is possible to construct a symmetric or antisymmetric tensor from an arbitrary one, i.e.,

Q=

1 1
Z(pv) = 3 (Zyv + Zuy) i) = 3 (Zuv = Zuy) ()

and that an arbitrary tensor can always be decomposed into its symmetric and antisymmetric parts,
L, Zuw = Zuw) + L)



3. Prove that the quantity W = ou’ is the Lorentz factor since it satisfies the

identity
—-1/2

W= (1-v'v) 9)

Compare expression (8) with the equivalent expression in special relativity.

4. Recalling that the Schwarzschild solution in quasi-isotropic coordinates reads

5 1—M/2r)\ . MN* o as
0 =~ (Toaigon )0+ (14 37) @ v ey, a0

compute the components of the one-form (2, of the unit normal n, of the lapse
function «, of the shift vector 3, and of the three metric ~y; for all tensors compute
both the covariant and the contravariant components.

Lecture 111

1. The Misner-Sharp (1964) represents the simplest formulation of the Einstein
equations in spherical symmetry. Derive the expressions presented at the lec-
ture starting from the generic diagonal line element in spherical symmetry can
then be written in the form

ds* = —a(r,t)*dt* + b(r,t)*dr* + R* (d6” + sin® 0d¢°) | (11)

where r and t are the radial and time coordinates is the Schwarzschild circum-
ference coordinate, i.e., 4mR2 = f22 v/2gdo, where do is the surface element
over the two-sphere 23 with metric determinant 2g.

2. Within a 3+1 split of spacetime, prove the following expression for the extrinsic
curvature K
Zn'ﬂw = _QK/LV7 (12)

where -y is the metric associated to >; and n the corresponding unit normal.

3. Consider a cylindrical 2-surface in an embedding Eucleadian space, e.g., R®.
Compute the components of the Riemann tensor and of the extrinsic curvature.
Compare with the results discussed in the lecture.

4. Consider a 2-sphere in an embedding Eucleadian space, e.g., R3. Compute the
components of the Riemann tensor and of the extrinsic curvature. Compare with
the results discussed in the lecture.



Lecture IV

1. Prove that a, = D, In «.

2. Derive the Gauss—Codazzi equations

(3)

’Yﬂa FYVB ’Yp(; 'YU)\ R;wpo = Ra,@é)\ + KO«SK,BA - Koe)\K,B(S . (13)

3. Derive the Codazzi-Mainardi equations

Vpﬁ'yua'yy,\noRpul/a = DocKﬁ)\ - DBKQ)\ . (14)

4. Derive the Ricci equations

1
57°n° 1 Raspn = ZuKyuw = ~DyuDyar+ K, Ky (15)

5. (Optional) Given the conformal transformation 7;; = ¢%vy;;, Y7 = ¢~ 2~Y,
show that the second covariant derivative of the conformal factor is given by

DiD;j¢ = 8,0;¢ — I O,
and that the relation with the corresponding derivative in the physical metric is
given by
2 1
¢ ¢

In case you are curious, such an expression appears when splitting the three-
dimensional Ricci tensor into a part containing conformal terms and another one

.. o NG EF @5
containing space derivatives of the conformal factor, i.e., "R;; = R+ Rfj,
where

DiDj¢ = D;Djp+ ~8;09;¢ — ~7ij0° ¢ O .

(3) 1. ~ - ~L ~ - ~ ~ ~
Rij = =53 00 iig + 0T + T appn + 3 (205, Tjppm + DT )
16)
. 1 L o o -
RSy = oz [0 (DiDyé + 30" Do) — 23046 D] a7)

(3)



Lecture V

1. Derive the form of the Hamiltonian and momentum constraints in a conformal
and traceless formulation of the Einstein equations.

2. Let V' be the volume enclosed by the three-dimensional surface 3 on a spacelike
hypersurface, so that the (proper) volume element is given by

V:/ NI (18)
>

where, as usual, v = det(v;;). The volume V' can be thought as the volume
delimited by a closed two-dimensional surface ., where .¥ is of course part of
a two-dimensional surface, say, ¥o. Show that the variation of V' in time when
. remains fixed is given by

0,V = —/ aK\ydz, (19)
b

where, as usual, « is the lapse and K is the trace of the extrinsic curvature. This
expression shows that a slicing with K = 0 is “maximal” in the sense that the
volume V is an extremal with respect to variations of the domain enclosed by

.

3. The “harmonic slicing” is the slicing requiring that the “harmonic condition”
Oz*=V,Viz®=0. (20)
holds only for the time coordinate 20 =t ie., that
O¢t=0. 2n
Show that this condition corresponds to the following prescription for the lapse
(0, — B'0;B) a = —a’K . (22)
4. The “minimal distortion condition” imposes that
Di%; =0, (23)
where?
Yij =064 — %'Yij@ =0 — %'Yij@kl'ykl = %’Yl/giﬂt%j ; (24)
is the metric distortion tensor and

1 1
Oij = 527 = 5055 (25)

Note that Eq. (7.132) of my book contains two (!) typos. The one reported here is the correct expression.



is the metric strain tensor. The “Gamma-freezing” shift condition, on the other
hand, imposes that o
oI =0. (26)
Show that - o 4 N
oI =297 | DX — T 58 — 6590;6| . 27)

and hence that the Gamma-freezing shift condition and the minimal-distortion
condition are equivalent up to terms involving the conformal factor and its deriva-
tives.

5. (Optional) Work out the conditions for a hyperboloidal slicing of the Minkowski
spacetime.

Lecture VI

No exercises for this lecture to allow people to catch-up with unsolved exercises. Note
that only the first 3 exercises for each lecture are expected to be solved. The rest is just
for fun.

Lecture VII

1. Assuming for simplicity that the flow is one-dimensional (i.e., for 4 = 0, 1) and
the spacetime flat, we rewrite the conservation equations for energy and linear

momentum
V. IT" =0. (28)
can be written in a Cartesian coordinate system as
O [(e+p®) W?| + 0, [(e+p) W] =0, (29)
O [(e+p) W?0] + 8 [(ev? +p) W?] =0, (30)

where u# = W (1,v) and W = (1 — v2)~'/2 is the Lorentz factor.
2. Linearize Eqgs. (29)—(30) by introducing perturbations of the type
e = ey + de, p=po+dp, v = vy + dv = v, (€2))
Show that the resulting equations satisfy a wave equation
Ode =0. (32)

What are the assumptions needed to derive Eq. (32)? What is the speed of prop-
agation of these waves?



3. The continuity and momentum equations can be written as
O (pW) + 0, (pWv) =0, (33)

Wy (W) + Wod,(Wwo) = fpih [0up + W200ip + W2020,p] . (34)

Show that these partial differential equations (that you can try to derive or take
as given) can be written as the following ordinary differential equations

dp 9 dv
B il — 11— =
(v =85 +olW0o(v =) + 17 =0, (35)
dv dp
2
O (1 — b E =
P (v =€) 22 + (1 —v) 3¢ = 0, (36)
after introducing the similarity variable ¢ :— x/t and the following differential
operators
__ (&) 4 ()4
o = (t & 0y = i) aE (37)
Lecture VIII

1. Show that across a discontinuity surface moving to the right the Rankine-Hugoniot
junction conditions

[pu*]n, =0, (38)
[T*]n, =0, (39)

where [¢] = ¢, — ¢», can be written as

J = paWava = pbWb’Ub, (40)
PahaW202 + pa = prho WivE + py 41
pahaW,fva = pbhbWbQUb 5 (42)

where v, 3 are the fluid velocities as measured in the shock rest frame.

2. Show that Egs. (40)—(41) can be re-written as

[72] = o, JQ:—[U[E’;];]], [hW] =0. (43)

3. Show that Eqs (43) can be combined in the famous Taub adiabat

[r*] = (h + h”) [#] | (44)

Pa Pb



Derive the Newtonian limit of Eq. (44) and show it leads to the Hugoniot adiabat

p] 1/1 1
Pl (1 2 , 45
[+ 2l =5 (5w @)

Lecture IX

1. Using the differential relation
W2dv + C—Sdp =0,
p

and exploiting the isentropic character of simple waves, derive the following
expressions for the Riemann invariants

1 1 s
J+ ==In to + C—dp = const. (46)

2 1—v p

and show that it is equivalent to
s 1 1
/ eipde = i§ In (1+Z> + const. “7
2. Using the junction conditions
Ui _ (pa - pb)(eb + pa) 7 (48)
(ea — ep)(€a + pov)

v = (Pa — pb)(€a + Db) 49)

(ea —ep)(ep +pa)’
and under the assumption of a highly relativistic shock, a cold fluid ahead of the
shock and an ultrarelativistic one behind the shock, i.e.,

€b
Wq > 1, Pa = 0, eqm Pas Pb = g’ (50)

show that the energy density in the shocked fluid scales like the square of the
Lorentz factor of the shock front (with respect to the unshocked fluid).

ey = 2Wie, . (51)
This is a result often used in astrophysical relativistic shocks.
3. Using the junction condition
J = p W Wi (Vg —vg) = ppe W W, (Vy — ), (52)

compute the mass flux .J such that the shock velocity V; is twice the velocity v,
in the unshocked region. Compare it with the corresponding Newtonian mass
flux. Which of the two is larger for the same value of v, ?



Lecture X

1. Show that the following definitions of energy-momentum tensor are equivalent

" = (e + p)u'u” 4 pg"” = phu'u” + pgh” ,
TH = Entn? + StnY + SYnt 4+ SH .

where F, S* and S*” are the Eulerian energy density, the momentum density
and the purely spatial energy-momentum tensor, respectively. Show also that the
following definitions are possible for these quantities

SHY = phW 2vHvY + pyH |
St = phW?2uH
E = phW? —p.

2. Show that the following identity holds when considering the left-hand side of the
conservative formulation of the momentum-density equation

0u(v=gT";) = 0:(y7S;) + il \/7 (8" = B'S;))].

Similarly, show that the right-hand side satisfies the following identity
L — (L qix 1 i
5 —gT ajg;w =v—4g 55 aj%‘k + ESiajﬁ — Eaj In o s

3. Show that the following identity holds when considering the left-hand side of the
conservative formulation of the energy-density equation

—V=gVu(T"n,) = 0.(VAE) + 0ily7(aS" - B'E)].

Similarly, show that the right-hand side satisfies the following identity

Y _gT,ul/v’unV =V —g (KWS” — SZ& In O[) .



Lectures XI-XII

1. Write explicitly the conservative formulation of the relativistic hydrodynamic
equations in the Valencia formulation

0(VIV) +0,(VTF) = 5.

where the vector of conserved variables U and the corresponding flux vector in
the i-direction F"* are given by

D oW av'D — 3D
U= S5 | = phW?2u; , F'= aSij — B'S; ,
E phW?2 —p aS’ — B'E

while the source vector has components
0
S=\7| 308"+ 5:0;8" — Edja
aSYK;; — S70;a
2. Show that gloabal order of local accuracy for three numerical solutions at reso-

lutions h, k = h/2 and v = k/2 is given by the simple expression

b =logy |R(h, h/2,h/4)].
where R(h, h/2,h/4) is the error ratio for the three resolutions.

3. Show that the second-order accurate finite-difference representation of the sec-
ond spatial derivative is given by

no_ oy 4oy
(e 2u]+uj,

A L+ 0(Az?).

5%11’: =

What is the expression for the third derivative agu’? ? What is the accuracy
order of your expression?

10



Lecture XIII

1. Considering the physical and conformal three metrics 7;; :}b“ﬁij with D; v, =
0 = D;#¥,, prove that the corresponding Ricci scalars R, I? associated with the
original, and the conformal 3-geometry are related according to the following
identity

R =y *R- %Dibw.

2. Prove that for any symmetric trace-free tensor U/ we have
D;UY = ¢~ "D;(y"U"Y) + (10 — n)U" D; In .

3. Given the longitudinal operator L defined as

. o 2
(LW)¥ .= 2DW7) — gWDkVV’f.

where W is a generic vector, show that the following identity holds
(LAY = = H(LB)".
Similarly, show that for 3; = ¢ ~*3; we have

(LB)i; = »*(LB)s; -

11



