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1
Introduction and

motivation

The interplay between particle physics and astronomy is one of the most

fascinating aspects in modern science. Current theories are formulated such

that they are consistent with relativity and quantum mechanics1.

Einsteins postulates of special relativity tells us, that the laws of physics

should be the same in all inertial frames2 and that the speed of light in

vacuo is a constant3, called c. In a burdensome but in the end magni�cent

work during 1905-1916 he formulated a much more general theory of rela-

tivity, which deals with accelerated frames and its connection to gravity. In

this theory not a force mediates interactions between to massive bodies, but

rather the curvature of spacetime. The theory of general relativity (GR)

will be illuminated in chapter 2.

The importance of �elds for the understanding of fundamental processes in

1For the references and further literature we refer to the corresponding chapters.
2Which is actually not that innovative, since it was already known in classical mechan-

ics, he merely expanded it for all known theories
3The speed of light ist: 299.792.458ms

1



Thermal evolution of massive compact strange objects 2

nature was one of the main discoveries in the 20th century. According to the

very succesful Standard Model of particle physics, the basic constituents

of matter are quarks and leptons, of which six of each are known to exist. An

interesting fact of quarks is that that they appear not to exist as free parti-

cles, the force glueing them together is so strong, that a single quark cannot

be extracted from a bound system. This feature is called quark-con�nement.

The particles transmitting this force are consequentially called gluons. On

the other side quarks can act as free particles in short time intervals inside

such a bound system4, this is what is meant by asymptotic freedom. Each

quark has three internal degrees of freedom, called colour. The theory of the

strong interaction, Quantum Chromodynamics (QCD), describes how

these coloured quarks and gluons interact. Quarks and leptons have spin 1
2
,

and thus are fermions, which means, they obey the Pauli exclusion principle.

The particles mediating the strong interaction, the gluons, are Bosons and

thus are particles with integer spin. Elementary particle physics and the

theory of the strong interaction will be discussed in greater detail in chapter

3 in section 3.2.

Strongly interacting matter as described by QCD plays a major role in the

understanding of astrophysical scenarios such as the Big Bang, Supernova

explosions and the inner structure and general properties of compact stellar

objects. To date there is no uni�ed theory describing the interaction at large

scales (GR) and very small scales (QCD) combined, therefore a physical de-

scription which connects general relativity and Quantum Chromodynamics

is still missing.

The properties of hadrons in ultradense and ultrahot matter and the search

for the decon�nement and chiral phase transition is pivotal for understand-

ing yet unclear key phenomena of the strong interaction. The possibility

to study matter for such large temperatures appearing under these extreme

conditions is possible within high-energy relativistic heavy ion collisions, per-

formed at the Large Hadron Collider at CERN and the Relativistic Heavy

Ion Collider at the Brookhaven National Laboratory, and future experiments

4A bound system would be a proton or a neutron for instance
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at the Facility for Antiproton and Ion Research at GSI will be designed to

study matter at high densities.

The use of e�ective models is however a way to achieve results which are

believed to be very close to what nature provides, i.e. what can be observed

or experimentally veri�ed. The main topic of this thesis connects a chiral

e�ective model, describing fundamental particles, to astrophysical phenom-

ena, mainly compact stars, but also the subject of Supernovae explosions and

compact star merger is discussed.

The study of an equation of state within an e�ective model and the search for

these phase transitions is fundamental to explore and understand the prop-

erties of an exploding star (Supernova) and its remnant, i.e. of ultradense

compact stellar objects within the theory of the strong interaction, because

the inner regions of the most massive compact stellar objects might be oc-

cupied by a decon�ned phase of quarks. Scenarios of possibility are either

hybrid stars, i.e. compact objects with an outer layer composed of nuclear

matter and with a core consisting of quark matter, or even pure strange

quark stars5.

The observations of the massive pulsars PSR J1614-2230 and of PSR

J0348+0432 with about two solar masses imply that the equation of state

constructing such relativistic stellar models has to be constrained respecting

these new limits.

To generate an appropriate equation of state an alternative framework to

the commonly used MIT bag model [1, 2] is the chiral Quark Meson model

[3, 4, 5], which is based upon the linear-σ model and both are well established

and respect important properties such as chiral symmetry breaking patterns

of QCD. The bosonic sector of the Quark Meson model contains scalar- and

vector �elds, which serve as stationary mediators to model the quark-quark

interaction. That is, only thermal �uctuations of quarks are considered.

In this thesis we go beyond the so called mean �eld approximation by con-

sidering not only the vacuum �uctuations of quarks, but even thermal and

5The subject of pure strange stars has been discussed in great detail in my Master
thesis.



Thermal evolution of massive compact strange objects 4

vacuum �uctuations of the corresponding boson �elds. This has been carried

out in the SU(2) chiral Quark Meson model to full extend in chapter 4, where

we also study a combined renormalized approach.

Based on the results obtained, we �nd that the meson contributions are neg-

ligible in the SU(3) expansion, but renormalization needs to be taken into

account. The implementation of the divergent vacuum term in the SU(3) ap-

proach will be discussed and presented in chapter 5. Calculations for T 6= 0

(Supernova equation of state6), applicable for compact star merger and for

new born proto neutron stars, can be found at the end of chapter 5 in section

5.8. The results obtained look promising and are hence auspicious for future

works concerning such extreme astrophysical phenomena.

Calculations at T = 0 on the other side provide an equation of state for the

compact star sector, discussed in chapter 6. Because of the Pauli exclusion

principle, the particles- and �elds energies are far larger than the tempera-

ture the star might still have, so that a T → 0 approach is justi�ed. The

corresponding equation of state serves then as an input to solve the TOV

equations (chapter 2), whose solutions are the mass-radius relations of the

corresponding compact objects. Chapter 6 deals furthermore with the vari-

ety of compact star types the SU(3) Quark Meson equation of state is able

to deliver and, apart from the 2M� constraint, several constraints which also

need to be ful�lled. As for the technical part concerning chapter 4 and 5, the

thermodynamical properties have been calculated via the grand potential,

which itself will be derived from an e�ective Lagrangian using the path inte-

gral formalism7. From the grand potential all physically relevant quantities,

among them the equation of state, can be derived.

6Supernova matter formed prior to the formation of a compact stellar object, can be
found in the QCD phase diagram at high temperatures and densities, while compact star
matter is usually located at T = 0.

7This is commonly the more di�cult way, but, due to Lorentz invariance compared to
an approach via second quantization, preferrable.



2
Main features of

General Relativity

This introduction is based upon works from [6, 7, 8, 9, 10, 11, 12, 13]. A

more detailled introductional discussion on general relativity can be found

in (nearly) every textbook concerning general relativity. Nonetheless it will

be quoted were certain expressions have their origin.

Albert Einstein`s theory of general relativity is the basis to understand and

describe compact objects, which are among the main topics of this thesis.

White dwarfs, neutron stars and black holes owe their existence to this very

theory of spacetime, geometry and gravitation. Its foundations arise from a

few simple questions with important consequences.

i.) Why are we not happy with Newtons classical description of gravity?

ii.) If all bodies, no matter of what composed, su�er the same acceleration,

i.e. fall in gravitational �elds in precisely the same way, then their mo-

tion has nothing to do with their nature, but rather with the geometry

of spacetime?

iii.) What is the exact connection between gravity and acceleration?

5
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Figure 2.1: Non-uniform gravitational �eld and uniform acceleration, [11]

A decisive investigation of these questions is the basis to understand Ein-

steins theory of gravity.

First of all, Newtons theory is not Lorentz invariant, postulating an action

at a distance and an instantaneous propagation of the gravitational �eld to

every point in space. That implies that the speed of light (i.e. transmission

of information) c = ∞, which is (strangely enough) known to be a �nite

quantity (c = 299792459 m/s). Einstein found that Newtons theory of grav-

ity is a very special case of a much more general theory. According to special

relativity mass is just another form of energy: The famous E = mc2 equa-

tion. In a relativistic invariant theory, gravity would also couple to energy

(see section 2.1.1).

It is important that the inertial mass of a body is equal to its gravitational

mass1. Einstein concluded that there must be a close relation between in-

ertia and gravity itself. This is the famous idea of the falling elevator in

a gravitational �eld, say the earths one, when accelerated leading to the

immagination of being in an uniform gravitational �eld: One can not dis-

tinguish between acceleration and gravity. Beware, that this is only valid

1Usually paraphrased as: All bodies fall at the same rate in a gravitational �eld.
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locally, since the earths gravitational �eld is (nearly) spherically symmetric

(see �gure 2.1). In a non-uniform gravitational �eld the e�ects of gravity can-

not be eliminated by changing to a free falling coordinate system. Based on

this, Einstein formulated a generalized equivalence principle, which roughly

states, that physics in a free falling frame in a gravitational �eld is the same

as in an inertial frame in Minkowski space in the absence of acceleration.

There is no experiment that can distinguigh a uniform acceleration from a

uniform gravitational �eld. Two immediate consequences of this are

• Clocks run slower in a gravitational �eld than in the abscence of gravity.

• Light is de�ected by a gravitational �eld just like matter is.

To understand the �rst statement, one can immagine two observers at the

top and the bottom of an elevator, sending light signals to each other. Once

the elevator accelerates upwards the observer at the bottom will receive the

signals at a higher rate than his counterpart. His interpretation will be, that

his clock runs slower than the upper located clock. The equivalence principle

states that one should observe the same situation in a gravitational �eld at

di�erent altitudes2.

To see the inevitability of the second assertion, imagine a light ray entering

the elevator horizontally through a window on the left hand side and exiting

again at the same height through a window on the right. Now imagine that

the elevator accelerates upwards, or according to the equivalence principle,

being put in a gravitational �eld. Then clearly the light ray that enters on

the left will exit at a lower point of the elevator than on the right. It follows

immediately that in a gravitational �eld the light ray is de�ected downwards

(see section 2.1.2).

Einsteins approach to �nd a modi�cated theory was to revsit the equivalence

principle of special relativity, the relation between inertial and gravitational

mass, and its relation to special relativity and accelerations. This key insight

led him to the realization that gravity should be described and understood

not as a physical external force like most of the other forces in nature, but

2The �rst statement can also be understood via the twin paradox of special relativity.
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rather as a manifestation of the geometry and curvature of space-time itself

(see section 2.1.3).

Einstein suggested three tests to verify his theory of a curved spacetime:

i.) Gravitational redshift

ii.) De�ection of light near masive bodies (Eddington 1919)

iii.) Perihelion shift of mercury

Einstein calculated the theoretical predictions for these e�ects, which have

been veri�ed with enormous accuracy. All these tests have in common that

they are carried out in empty space, with gravitational �elds that are to an

excellent aproximation stationary and isotropic, i.e. time independent and

spherically symmetric. The �rst aim of this chapter will be to motivate and

solve the vacuum Einstein equations under the simple assumptions of sta-

tionarity and isotropy (see section 2.2).

It might be interesting, that other tests have also been suggested and per-

formed, for example the time delay of radar echos passing the sun, which is

known as the Shapiro e�ect.

2.1.

From Special- to General Relativity

The need for a general relativistic theory of gravity is motivated by describ-

ing how and when Newtonian physics leads to no suitable results. As a

mathematical doorway for this thesis this section will provide a short review

of the Lorentz covariant formulation of special relativity, mainly to set the

notation and conventions that will be used throughout this thesis. This is

followed by a section on curvature and the need for tensor-like equations

leading eventually to the Einstein �eld equations.
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2.1.1.

Lorentz transformations

Based on the experimental results of Michelson and Morley the Einstein

postulates tell us that

i.) The laws of physics are the same in all inertial frames of reference.

ii.) The speed of light in free space has the same value c in all inertial

frames of reference.

The �rst postulate is already known from classical mechanics, Einstein merely

expanded it to all known physical theories.

The second one is crucial, since it states that the speed of light does not

change, neither when moving towards the source of light or moving away

from it. The outcome of this is, that the Galilei transformation is not the

correct one describing two systems of inertia. We can therefore expect to

learn something about the e�ects of gravitation by transforming the laws

of nature from an inertial cartesian coordinate system to other coordinates.

The correct transformation is called the Lorentz transformation, which leaves

invariant the proper time3 in Minkowski spacetime.

The principle of relativity states, that the proper time dτ 2 is invariant, be-

cause the speed of light in vacuo is a constant.

dτ 2 = c2dt2 − dx2 − dy2 − dz2 (2.1)

Now, a general Lorentz transformation contains rotation in space and a boost,

say in z-direction. Rotationally invariant laws can be written as vectors,

for instance Newtons law of force, ~F = m~a, or the centrifugal force, ~F =

m~ω × (~ω × ~r). The proper time can then be written as

dτ 2 = gµνdx
µdxν (2.2)

3Sometimes also called the invariant interval or line element
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where

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (2.3)

is the Minkowski metric and xµ = (x0, x1, x2, x3)T = (t, ~r)T a Lorentz 4-

vector. A Lorentz 4-vector transforms under a change of reference frame in

the same way as the coordinates do.

x′µ = Λµ
νx

ν (2.4)

where

Λµ
ν =


γ 0 0 −βγ
0 1 0 0

0 0 1 0

−βγ 0 0 γ

 (2.5)

is the boost matrix and γ = 1√
1− v2

c2

= 1√
1−β2

the Lorentz-gamma factor.

The condidition of invariance then is

dτ 2 = gµνdx
µdxν = gαβdx

′αdx′β = gαβΛα
µΛβ

νdx
µdxν (2.6)

A boost matrix Λµ
ν must satisfy the relationship assuring the invariance of

proper time (equation (2.2)), since this is valid for any dxα.

2.1.2.

From the equivalence principle to the equa-

tions of motion

What consequences arise from the equality of inertial and gravitational mass?

If all bodies su�er the same acceleration, gravity would be a pseudo- or �c-

tional force, such as the centrifugal force. This is weird, since mass, creating

a gravitational �eld, is responsible for this. The solution to this will be, that
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masses distort spacetime itself instead of acting through forces.

According to Newton, where x = vt and z(x) = −gt2

2
with g ' 9.81 m/s2

z(x) = −gx
2

2v2
(2.7)

deriving twice

z̈(x) = − g

v2
(2.8)

Classically it is therefore not possible that gravity equates curvature, since

the trajectory of an arbitrary particle would depend on an initial condition:

it's velocity.

According to Einstein then, all pseudoforces can be recognized as gravita-

tional forces, i.e. they just depend on a nearby mass distribution. Then

objects move forceless along the straightest line, a so called geodesic. In

general relativity the shortest connection between two points is no longer a

straight line, but a bended path. The equations of general relativity need to

respect that massive bodies generate curvature, i.e. a distortion of spacetime.

In a locally inertial frame the relativistic approach for a particles trajectory

along the coordinates ξA is

d2

dτ 2
ξA = 0 (2.9)

d2

dτ 2
ξA =

∂ξA

∂xµ
d2xµ

dτ 2
+
∂ξA

∂xν
∂ξA

∂xλ
dxν

dτ

dxλ

dτ
= 0 (2.10)

d2

dτ 2
ξA =

∂ξA

∂xµ

[
d2xµ

dτ 2
+
∂xµ

∂ξA
∂ξA

∂xν
∂ξA

∂xλ
· dx

ν

dτ

dxλ

dτ

]
= 0 (2.11)

d2

dτ 2
ξA =

d2xµ

dτ 2
+
∂xµ

∂ξA
∂ξA

∂xν
∂ξA

∂xλ
· dx

ν

dτ

dxλ

dτ
= 0 (2.12)

∂ξA

∂xµ
models the transformation from inertial- to accelerated system and can-

not be equal zero. Thus we see that indeed the equations of motion for a

massive particle in an arbitrary gravitational �eld are

ẍµ + Γµνλẋ
ν ẋλ = 0 (2.13)
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where the abbrevations

∂xµ

∂ξA
∂ξA

∂xν
∂ξA

∂xλ
= Γµνλ (2.14)

d2xµ

dτ 2
= ẍµ (2.15)

dxν

dτ

dxλ

dτ
= ẋν ẋλ (2.16)

were used. Γµνλ is called Christo�el symbol4, which is symmetric in its lower

indices. They are not tensor quantitative, since they spoil the transformation

laws5. The Christo�el symbols can be expressed in terms of the metric and

its derivatives.

Γλνµ =
1

2
gλκ
(
∂gνκ
∂xµ

+
∂gκµ
∂xν

− ∂gµν
∂xκ

)
(2.17)

These objects describes the pseudoforce in accellerated reference frames. The

path described by equation (2.13) is called geodesic, the extremal path in the

spacetime of an arbitrary gravitational �eld.

2.1.3.

Riemann curvature tensor

To derive Einsteins �eld equations the knowledge of how curvature is rel-

ativistically de�ned, is required. The so called Riemann tensor, equation

(2.18) describes curvature and is constructed by the metric and its �rst and

second derivatives, see [8], [9] or [14] for a more detailled derivation.

Rαβγδ =

(
∂2gαγ
∂xβ∂xδ

+
∂2gβδ
∂xα∂xγ

− ∂2gβγ
∂xα∂xδ

− ∂2gαδ
∂xβ∂xγ

)
(2.18)

+ gρσ
(
ΓργαΓσβδ − ΓρδαΓσβγ

)
To get in touch with such formulae, a two dimensional example (the curvature

of a sphere) has been calculated in detail in [5], however contraction leads to

4Sometimes also called a�ne connection.
5A more physical explanation is that due to the equivalence principle the local gravia-

tional �eld can be switched o� by going to a free falling inertial system.
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the following quantities of Rαβγδ

gαγRαβγδ = Rβδ (2.19)

is known as Ricci -tensor and

gβδRβδ = R (2.20)

is known as curvature scalar.

Note that for Rαβγδ = 0 a cartesian coordinate frame (a �at space) exists,

else the geometry is distorted.

2.2.

Einstein's Field Equations

The equations of Newton already tell us what possible path a particles takes

and how mass acts as a source of the gravitational �eld [9].

m
dr2

dt2
= −m~∇φ(~r) and ~∇φ(~r) = 4πGρ(~r) (2.21)

where G ' 6.67 · 10−11 m3/kgs2 is the gravitational constant. From special

relativity it is known that energy and mass are equivalent [11]. That means

that energy is also a source of a gravitational �eld. The equations have to

become tensorical: The �eld φ(~r) → gµν and the corresponding counterpart

on the other side of the equation is the energy momentum tensor Tµν .

The �eld equations can be derived via the metric gµν , which models the grav-

itational potential, and the Christo�el symbols, which model the pseudoforce

(remember section 2.1.2). The two contractions of Riemann, equation (2.19)

and equation (2.20) model the curvature and are themself derivatives of the

Christo�el symbols.

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.22)



Thermal evolution of massive compact strange objects 14

To ensure energy and momentum conservation, Tµν has to be divergenceless.

Note that the Ricci tensor, equation (2.19), is not divergenceless. Therefore

the Einstein equations contain a correction in form of a product of the metric

and the Ricci scalar, eq. (2.20). A brief examination of equation (2.22) tells

us, that indeed curvature equals a mass- and/or energy distribution.

Matter tells space how to curve. Space tells matter how to move.
John A. Wheeler [7]

Matter, energy and spacetime in�uence each other, therefore Einsteins �eld

equations are highly non-linear and exceedingly complicated to solve. There

are but a few solutions in closed form, of which one the most famous Schwarzschild

solution is. The Schwarzschild solution describes the metric outside a sper-

ically symmetric and static star and will brie�y derived in section (2.2.1).

For the interior structure of a spherically symmetric static star, the Tolman-

Oppenheimer-Volko� 6 equations, described in section (2.2.2), need to be

solved. The TOV equations are in particular interesting within this the-

sis.

Another possible solution of the Einstein �eld equations is for instance the

Kerr metric, descibing rotating stars, but not discussed within this introduc-

tion since beyond the scope of this thesis.

2.2.1.

Schwarzschild solution

The Schwarzschild solution has been the �rst solution of the Einstein �eld

equations. The solution has been found by the german astrophysicist Karl

Schwarzschild during his service in the �rst world war in 1916 and describes

a non-rotating, spherically symmetric mass in abscence of mass or energy,

i.e.: Tµν = 0, a so called vacuum solution.

The Minkowski line element in spherical coordiantes reads

ds2 = dt2 − dr2 − r2
(
dθ + sin2 θdφ2

)
(2.23)

6Usually abbreviated as TOV equations.
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Because of its radial symmetry every term can be multiplicated by a space

dependent function

ds2 = A(r)dt2 −B(r)dr2 − C(r)r2
(
dθ + sin2 θdφ2

)
(2.24)

A boundary condition is, that for r → ∞ the metric has to become the

Minkowski metric, meaning limr→∞A(r) = limr→∞B(r) = 1, so that A and

B can be replaced by exponentials.

The metric then reads

gµν =


eν(r) 0 0 0

0 −eλ(r) 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

 (2.25)

To solve the �eld equations 2.22 the next step is to calculate the thirteen

non-vanishing Christo�el symbols, which are �hidden� in the Ricci tensor.

Γrrr =
1

2
grr
(
∂grr
∂xr

+
∂grr
∂xr
− ∂grr
∂xr

)
=

1

2
grr∂rgrr =

λ′

2
(2.26)

The others are

Γrθθ = −re−λ (2.27)

Γrtt =
ν ′eν−λ

2
(2.28)

Γrφφ = −r sin2 θe−λ (2.29)

Γθθr = Γθrθ = Γφrφ = Γφφr =
1

r
(2.30)

Γttr = Γtrt =
ν ′

2
(2.31)

Γθφφ = − sin θ cos θ (2.32)

Γφθφ = Γφφθ = cot θ (2.33)
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The Ricci tensor is

Rλ
µλν = Rµν = ∂λΓ

λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓλνρΓ

ρ
µλ (2.34)

obeying the symmetries

Rrθ = Rrφ = Rtθ = Rtφ = Rθφ = 0

then applying

Γµµλ = ∂λ ln
√
|g| (2.35)

and the Ricci Tensor �nally becomes

Rµν =
∂2

∂xµ∂xν
ln
√
|g| − ∂λΓλνµ + ΓλναΓαλµ − Γανµ∂α ln

√
|g| (2.36)

After a non enlightening application of algebra one obtains the following

Rtt = −2

2
eν−λ

(
ν ′′ +

v′2

2
− ν ′λ′

2
+

2ν ′

r

)
(2.37)

Rrr = −1

2

(
ν ′′ +

v′2

2
− ν ′λ′

2
+

2λ′

r

)
(2.38)

Rφφ = −1 + e−λ
(

1 +
(ν ′ − λ′)r

2

)
(2.39)

Rθθ = sin2 θR22 (2.40)

Rµν = 0 (2.41)

The calculation of the Ricci scalar is a restorative calculation compared to

the calculation of the Ricci Tensor, however

R = gµνRµν = − 2

r2
Rφφ (2.42)

Since Rµν and gµν are diagonal, Gµν is too. Recalling that the Schwarzschild
solutions are vacuum solutions, i.e. Tµν = 0, the Einstein equations eventu-
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ally read:

Gtt = −λ
′

r
+

1

r2
− eλ

r2
= 0 (2.43)

Grr =
ν ′

r
− 1

r2
+
eλ

r2
= 0 (2.44)

Gφφ = ν ′′ +
ν ′2

2
− ν ′λ′

2
+
ν ′ − λ′
r

= 0 (2.45)

Gθθ = sin2 θR22 (2.46)

Gµν = 0 (2.47)

Integration of equation 2.43 yields re−λ− r = const = −rs and the functions

reduce to e−λ(r) = 1− rs
r

= eν(r) so that the line element �nally reads

ds2 =
(

1− rs
r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2) (2.48)

which satis�es the condition for an asymptotically �at space as required. This

equation describes the space outside a mass distribution7 and is only valid for

rs < r, else time and space twist their character. The integration constant

rs is derived by comparison with the Newtonian potential for r >> 1

φ(r) = −GM
r
' c2

2
(g00 − 1) (2.49)

φ(r) =
c2

2
(eν − 1) (2.50)

φ(r) = −c
2rs
2r

(2.51)

→ rs =
2GM

c2
(2.52)

where rs is the famous Schwarzschild radius. Table 2.1 shows di�erent values

of rs for di�erent atronomical objects.

7This is due to Tµν = 0, for an inner solution Tµν 6= 0, which will be discussed in the
following section 2.2.2
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Object M/M� Radius [km] Schwarzschildradius [km]

Earth 3 · 10−6 6400 9 · 10−6

Sun 1.0 7 · 105 3

White dwarf 1.2 10.000 3.6

Compact star 2.0 12 6

Table 2.1: General relativistic corrections of di�erent objects in the

Schwarzschild metric

2.2.2.

The Tolman-Oppenheimer-Volko� equations

To determine the inner solutions of spherically symmetric astrophysical ob-

jects Tµν 6= 0. The solutions of the �eld equations 2.22 are then used to de-

scribe compact stars, and are called the Tolman-Oppenheimer-Volko� equa-

tions (TOV). An �ordinary� star is born due to the gravitational collapse of

a interstellar cloud of gas. The thermal pressure counterbalances gravity and

the star reaches a stable con�guration for a relatively long time. The con-

ditions for the stability of a nonrotating spherically symmetric (�ordinary�)

star are

dp =
dF

A
=

dF

4πr2
where dF = −G · dm ·m(r)

r2
(2.53)

These considerations lead to

dp

dr
= −Gρ(r)m(r)

r2
(2.54)

dm

dr
= 4πr2ρ(r) (2.55)

The above derived equations describe non relativistic Newtonian stars.

After the star has consumed all its nuclear fuel it eventually explodes in a

SN Type II, assuming it was massive8 enough. The remnant is called a com-

8Mstar ≥ 8M�
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pact star9. Compact stars have to be described by general relativity due to

their enormous e�ects on the surrounding spacetime. The TOV equations

have �rst been derived in 1939 by Tolman, Oppenheimer and Volko� [15].

Unlike as in the Schwarzschild solutions the energy momentum tensor will be

considered �nite. For isotropic, static and spherically symmetric mass dis-

tributions and metric Tµν adopts the hydrodynamical form, since the matter

within a compact star can be treated as a relativistic �uid10.

Tµν =
(
ρ+

p

c2

)
uµuν − pgµν (2.56)

For the star to be in hydrodynamical equilibrium: uµ = (u0,~0) and g00(u0)2 =

c2, fron which follows that (u0)2 = c2g00. The energy momentum tensor then

reads

Tµν =
(
ρ+

p

c2

)
c2g00δµ0δν0 − pgµν =


ρ0c

2eν(r) 0 0 0

0 peλ(r) 0 0

0 0 pr2 0

0 0 0 pr2 sin2 θ


The condition for hydrodynamic equilibrium requires that the covariant deriva-

tive of the enery momentum tensor vanishes

DµTµν =
1

2
~∇ ln(g00) +

1

ρc2 + p
~∇p = 0 (2.57)

After rearranging the terms

dp

dr
= −1

2
ν ′(r)

(
ρ(r)c2 + p(r)

)
(2.58)

This equation is already in similar shape as 2.54, only v′(r) has to be de-

termined by the Einstein equations 2.22. The procedure is similar to the

Schwarzschild case and shall therefore be presented abbreviated. Main dif-

ferences compared to 2.43, 2.44 and 2.45 are that the right-hand side of these

9See chapter 6 for a more detailled description of a stars life and death.
10Note that no electrical or magnetical �elds are considered.
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equations is, unlike as in the Schwarzschild case, �nite:

Gtt = eν−λ
(
−λ

′

r
+

1

r2

)
− eν

r2
= −8πG

c4
ρeν (2.59)

Grr = −ν
′

r
− 1

r2
+
eλ

r2
= −8πG

c4
peλ (2.60)

Gφφ = −1

2
r2e−λ

(
ν ′′ +

ν ′λ

2
− ν ′λ′

2
+
ν ′ − λ′
r

)
= −8πG

c4
pr2 (2.61)

Furthermore, Gθθ yields exactly the same as in the Schwarzschild case (see

eq. 2.46) and can hence be adopted. Solving for ν ′ and substituting into

equation 2.58 yields

dp

dr
= −(ρc2 + p)

[
m(r) + 4πG

c4
p(r)r3

]
r2 − 2m(r)r

(2.62)

It can be seen that for m(r) << r and p << ρc2 the equation reproduces the

Newtonian limit, namely equation 2.54 and can therefore be considered as a

correct general relativistic generalization. Mass conservation, equation 2.55,

is valid without any corrections. Rearranging expression 2.62 gives

dp

dr
= −Gε(r)m(r)

(cr)2

(
1 +

p(r)

ε(r)

)(
1 +

4πr3p(r)

m(r)c2

)(
1− 2Gm(r)

c2r

)−1

(2.63)

where the three general relativistic correction factors can be distinguished

from the Newtonian case:

The �rst correction factor implies that gravity does not only act upon a

energy-mass distribution but also on its pressure.

The second one tells that not only the mass, but every single entry from Tµν

contributes to the gravitational �eld, i.e. energy is a source of gravity,

so that pressure generates even more pressure.

The third one re�ects the di�erence between Newtonian gravity and the

gravitational �force� due to general relativity. This accounts for the

additional factor in the denominator.
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Note that the right-hand side of the equations 2.62 and 2.63 is negative so

to assure the pressure inside the star decreases as one moves to larger values

of the objects radius r. These equations, together with mass conservation,

equation 2.55, can be solved numerically with an appropriate equation of

state, typically given by a relation between pressure and energydensity.

The solutions of the TOV equations are determined by di�erent equations

of state, and the entire collection of masses and corresponding radii is called

the mass-radius relation of compact stars. For each equation of state, p(ε) =

p(ε(r)), where p is the pressure and ε the corresponding energy density at

a given radius r, exists a solution which is parametrized by pc, the central

pressure of the star.



3
Elementary Particles

and fundamental
interactions

This introduction is based upon works from [16, 17, 18, 19, 20, 21, 22, 23].

A more detailled introductional discussion on elementary particles and their

respective interactions can be found in (nearly) every textbook concerning

the topic. Nonetheless it will be quoted were certain expressions have their

origin.

At the beginning of the 20th century the theory of special relativity (remem-

ber section 2.1) along with Quantum-mechanics revolutionized our under-

standing of nature. Since Quantum mechanics is a nonrelativistic theory, the

development of a theory combining both, relativistic e�ects and elementary

particles, has been lacked. During the 1920's and 1930's the most compe-

tent and capable physicists developed the idea of a Quantum �eld theory.

A Quantum �eld theory treats particles as excited states of a corresponding

physical �eld, so called �eld quanta, where quantum mechanical interactions

between particles are described by interaction terms between the correspond-

22
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ing underlying quantum �elds.

3.1.

Elementary particle physics

Elementary particle physics addresses the question: "`What is the matter

made of?"'. At the smallest scale of size there is a zoo of particles which

can be found, some stable1 (τ1/2 = 30 years) and some not (τ1/2 = 10−20

seconds). These particles are then replicated in astronomical size to form all

the matter around us. A theoretical framework to describe decays is there-

fore important in Quantum Field Theory. However the smallest particles to

be found are quarks. Particles containing quarks are known as hadrons.

Hadrons have to be color singletts, i.e. an appropriate combination of ei-

ther color-anticolor, or three colors to make a colorless state (see section

3.6.2). Since a colored quark-state has never been solely detected in nature,

quarks are con�ned within a hadron. Another important feature of quarks is,

that for large temperature or density they behave asymptotically free. How-

ever, hadrons are classi�ed into two groups: mesons, with integer spin2, and

baryons with half integer spin. The force between two quarks is mediated

by the exchange of gluons, which are responsible for binding quarks together

to make hadrons, and indirectly for holding protons and neutrons together.

This feature is described by the theory of the strong interaction, quantum

chromodynamics (see section 3.2). As we shall see, gluons carry a combina-

tion of color- and the appropriate anticolor. Murray Gell-Mann introduced

the eightfold way, which arranges the baryons and mesons in weird geomet-

rical patterns, according to their charge and strangeness. An understanding

of the eightfold way came in 1964, when Gell-Mann and Zweig proposed

that all hadrons are in fact composed of quarks, which themselfes come in

three types of �avours (see table 3.1), forming a triangular pattern. In the

1960's and 1970's a theory emerged that described all the known elementary

1Stable on a cosmological timescale so to speak.
2Spin up ↑, Spin down ↓
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generation �avour charge (e) mass (MeV)

�rst u (up) 2
3

2.3± 0.6
d (down) −1

3
4.8± 0.5

second s (strange) −1
3

95± 5
c (charm) 2

3
1275± 25

third b (bottom) −1
3

4180± 30
t (top) 2

3
1735± 70

Table 3.1: The six quark �avours with spin 1
2
and a few of their properties

particle interactions, except gravity: It is incorporating Quantum electrody-

namics and called Glashow Weinberg Salam theory of electroweak processes.

Together with quantum chromodynamics (QCD) this theory has come to be

called the Standard Model. The Standard Model is based upon two families

of elementary particles: quarks and leptons3 (and mediators) and can be de-

rived by one general principle: The requirement of local gauge invariance, to

be discussed in section 3.5.2.

3.2.

Quantum chromodynamics

The theory of the strong interaction is the so called quantum chromody-

namics. It describes the interaction between quarks and gluons. Due to

the electric charge of the quarks, the electromagnetic force also plays but

a subdominant part, this is due to the fact that the electromagnetic cou-

pling constant is two orders of magnitude smaller αem ∼ 1
137

than the strong

coupling in vacuum αs ∼ 1. By exchanging weak bosons, quarks can also

interact weakly, this mechanism is responsible for the β-decay of nucleons,

which themselves consist of quarks. The range of the strong interaction is

about 10−15 m. In the framework of the standard model, color4 plays the role

3Recall that leptons do not carry color, so they do not participate in the strong inter-
action

4Usually red, green and blue, and the appropriate anticolors for antiquarks
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of charge, and the fundamental process is q → q + g, see �gure 3.1. Two or

more such primitive vertices can be combined to represent more complicated

processes. The concept of color as charge will be enlightened in section 3.6.2.

q q

g

Figure 3.1: Feynman diagram of the process q → q + g. In this fundamental

process, the color of the quark q may change, but not its �avour. They interact

via a gluon g, which carries away the di�erence in charge. For instance:

r → b+ rb̄.

Before dealing and discussing quantum chromodynamics in greater detail, a

few preliminary considerations are derived to an extend required to under-

stand not only the need for an e�ective model, but also topic and results of

this thesis, and are therefore crucial.

3.3.

Lagrangians

A particle is a localized entity. In classical mechanics we are interested in

calculating its position as a function of time ~x(t). A �eld, on the other

hand, occupies some region of space, so our concern is to calculate functions

of position and time φi(t, ~x). In classical mechanics the Lagrangian was a

function of the coordinates qi and its derivatives q̇i. The starting point in a

quantum �eld theoretical approach is a Lagrangian density5 L, which is an

expansion of the Lagrange function of classical mechanics to �eld theory6.

5Often just called Lagrangian
6The considered object will be replaced by a �eld with ∞ degrees of freedom.
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Note that in classical mechanics the Lagrange function is derived, in �eld

theory L is axiomatic.

3.3.1.

Euler-Lagrange equation

The used Lagrangian L, which models the properties of any given problem in

�eld theories, usually depends on the �elds themselves and it's �rst deriva-

tives L = L(φ, ∂µφ). A small displacement in the �elds φ causes

δS =

∫
d4x(L(φ′, ∂µφ

′)− L(φ, ∂µφ)) (3.1)

S being the action, which is required to vanish. Expanding in Taylor series

δS =

∫
d4x

(
L(φ, ∂µφ) +

∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)− L(φ, ∂µφ)

)
= 0 (3.2)

so that

δS =

∫
d4x

(
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

)
= 0 (3.3)

Using the product rule the second expression in the brackets can be rewritten

to

δS =

∫
δφ

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
= 0 (3.4)

Since δφ is arbitrary the term in the brackets has to vanish

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 (3.5)

Equation (3.5) is known as Euler-Lagrange equation and is the �eld theoret-

ical expansion of the well know Lagrange equation from classical mechanics.
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3.4.

Particles with integer Spin

3.4.1.

The Klein Gordon equation

The Klein Gordon equation describes particles with spin 0. It is a relativistic

generalization of the Schrödinger equation. When the Klein Gordon equation

was �rst derived it was �rst rejected since its interpretation was not clear

at �rst. This is due to her second order time character. Later it could

be interpreted as the equation describing spin 0 particles. The Lagrangian

describing boson �elds φ reads

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 (3.6)

Using the Euler-Lagrange equation (3.5)

− ∂(L)

∂(φ)
+ ∂µ

(
∂(L)

∂(∂µφ)

)
= 0 (3.7)

the Lagrangian becomes

∂(L)

∂(φ)
= −m2φ and

∂(L)

∂(∂µφ)
→ 1

2
(∂µφ)(∂µφ) (3.8)

We will treat ∂µ in the second expression in equation (3.7) afterwards

∂(L)

∂(∂µφ)
=

∂

∂(∂µφ)

(
1

2
gαβ(∂αφ)(∂βφ)

)
(3.9)

=
1

2
gαβ

∂

∂(∂µφ)
((∂αφ)(∂βφ)) =

1

2
gαβ

(
∂∂αφ

∂(∂µφ)
∂βφ+ ∂αφ

∂∂βφ

∂(∂µφ)

)
=

1

2
gαβ

(
gµα∂βφ+ ∂αφg

µ
β

)
=

1

2
gαβ∂µ

(
gµα∂βφ+ ∂αφg

µ
β

)
=

1

2
gαβ (∂α∂βφ+ ∂α∂βφ) = ∂α∂

αφ
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The equation of motion for spin 0 particles �nally reads

�φ+m2φ = 0 (3.10)

3.4.2.

The Proca equation

For the sake of completeness the Proca equation shall be mentioned. When

dealing with spin 1 bosons, one de�nes a vector Aν and an arbitrary mass

m. The �eld equation becomes

∂µF
µν +mAν = 0 (3.11)

If the notation reminds you of electrodynamics: This is no incident, since the

electromagnetic �eld is a massless7 vector �eld with spin 1.

3.5.

Particles with half integer spin

3.5.1.

Dirac equation

The Dirac Lagrangian describing fermions8 with half integer spin is

L = Ψ̄(i��∂ − m̂)Ψ (3.12)

with the shorthand ��∂ = γµ∂
µ and the Dirac matrices

γ0 =

(
12 0

0 −12

)
γi =

(
0 τ̂i

−τ̂i 0

)
(3.13)

7Set m = 0 and you are left with the Maxwell equations for empty space
8Such as the neutron or proton
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and τi being the Pauli matrices,

τ1 =

(
0 1

1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0

0 −1

)
(3.14)

The Dirac equation can be obtained by applying the Euler Lagrange equation

3.5 to the Dirac Lagrangian, yielding

(γµpµ −m) Ψ = 0 (3.15)

(γµpµ +m) Ψ̄ = 0 (3.16)

which is the equation of motion for particles 3.15 and antiparticles 3.16 with

spin ±1/2.

3.5.2.

Gauge invariance and covariant derivative

L from equation 3.12 is invariant under a global phase transition Ψ→ Ψ′ =

ΨeiΘΨ where Θ is a constant, but not invariant under a local phase transition,

when Θ(xµ) itself is a function, i.e di�erent at di�erent space-time points,

then

Ψ→ Ψ′ = ΨeiΘ(xµ)Ψ (3.17)

The Lagrangian then has an additional term

L = ie−iΘ(xµ)Ψ̄��∂eiΘ(xµ)Ψ− m̂eiΘ(xµ)Ψ̄e−iΘ(xµ)Ψ

= ie−iΘ(xµ)Ψ̄γµ
(
(∂µΨ)eiΘ(xµ) + (∂µ(iΘ(xµ)))eiΘ(xµ)Ψ

)
− m̂Ψ̄Ψ

= ie−iΘ(xµ)Ψ̄γµ∂µΨeiΘ(xµ)

− ie−iΘ(xµ)Ψ̄γµ(∂µ(Θ(xµ))eiΘ(xµ)Ψ− m̂Ψ̄Ψ

= iΨ̄��∂Ψ− m̂Ψ̄Ψ− ψ̄γµ∂µ(Θ(xµ))

= Ψ̄(i��∂ − m̂)Ψ− ψ̄γµ∂µ(Θ(xµ)) (3.18)
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With λ(xµ) = −1
q
Θ(xµ), where q is the charge of the particle involved, then

the Lagrangian can be written as

L = L+ qΨ̄��∂λ(xµ)Ψ (3.19)

The extra term resulting from the derivative has to be soaked up for the

whole Lagrangian to be invariant. Suppose

L = iΨ̄��∂Ψ− m̂Ψ̄Ψ− qΨ̄γµΨAµ (3.20)

where Aµ is an additional �eld, which transforms according to

Aµ → A′µ = Aµ + ∂µλ (3.21)

This improved Lagrangian is locally invariant, since

L = iΨ̄��∂Ψ− m̂Ψ̄Ψ− qΨ̄γµΨAµ − qΨ̄γµΨ∂µΨ + qΨ̄γµΨ∂µΨ (3.22)

= iΨ̄��∂Ψ− m̂Ψ̄Ψ− qΨ̄γµΨAµ (3.23)

The price to pay therefore is to introduce a new massless vector �eld which

couples to Ψ, called gauge �eld. In case of QED this is the well known

photon �eld, as will be described in section (3.6.1). The di�erence between

global and local phase transitions occurs when calculating derivatives of the

�elds

∂µΨ→ eiλ(∂µ + iq∂µλ)Ψ (3.24)

Instead of a simple phase factor, ∂µλ has to be introduced. If now every

derivative in L will be replaced by the so called covariant derivative

Dµ ≡ ∂µ − iqAµ (3.25)

the gauge transformation of Aµ, equation 3.21, will cancel the o�ending term,

and L is �nally invariant under a local phase transition. With equations 3.17,
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3.21, 3.25 and the abbreviation Θ(xµ) = Θ

DΨ→ D′Ψ′ = (∂µ − iqA′µ)eiΘ (3.26)

= (∂µ − iqAµ − iq∂µΘ)eiqΘΨ (3.27)

= (∂µ − iqAµ + iq∂µΘ− iq∂µΘ)eiqΘΨ (3.28)

= (∂µ − iqAµ)eiqΘΨ = eiqΘDΨ (3.29)

The Dirac Lagrangian �nally transform then according to

Ψ̄(i��D − m̂)Ψ → Ψ̄′(i��D′ − m̂)Ψ′ (3.30)

= e−iqΘΨ̄(i��D′Ψ′ − m̂Ψ′) (3.31)

= e−iqΘΨ̄(ieiqΘ��DΨ− m̂eiqΘΨ) (3.32)

= Ψ̄i��DΨ− Ψ̄m̂Ψ (3.33)

= Ψ̄(i��DΨ− m̂)Ψ (3.34)

and hence is locally invariant.

Using the example of QED, we shall see in a following section (3.6.1) how

the �eld strenght tensor, including the respective gauge �eld, transforms.

3.6.

Unitary symmetries and symmetry breaking

Symmetries play an important role in the description of the fundamental

interactions. Before describing the model used in this work a much sim-

pler example of an underlying symmetry is discussed. Eventually the QCD

Lagrangian will be examined. This should be beheld as a base for further

investigations in the (chiral) quark meson model, which in detail will be

discussed in chapter 4 and is among the main parts in this thesis.
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3.6.1.

U(1) symmetry of Quantumelectrodynamics

Quantum Electro Dynamics is the oldest and most successful of the dynami-

cal theories, the others are self-consciously modeled on it, so that this section

is not only a historical, but also a decisive necessity for the discussion of cer-

tain symmetries of quantum chromodynamics.

It describes the theory of electromagnetism as an interaction between elec-

trons and photons, see �gure 3.2.

The Lagrangian of QED in natural units reads

L = −1

4
F µνFµν + Ψ̄(i��D −m)Ψ (3.35)

with F µν = ∂µAν − ∂νAµ as the �eld strenght tensor of the electromagnetic

�eld including Aµ as gauge �eld, Ψ represents the spinor of the electron, m

their mass and Dµ = ∂µ − ieAµ being the covariant derivative as discussed

in section (3.5.2). Equation (3.35) is invariant under a U(1) gauge transfor-

mation of the form

e− e′−

γa)

e−1 e′−1

γb)

e′−2e−2

Figure 3.2: Feynman diagram of quantum electrodynamics. a) reads that a

charged electron e− enters, emits (or either absorbs) a photon γ and exits as

e′−. In case b) two electrons, e−1 and e−2 enter, a photon passes between them

and two (primed) electrons exit. As shortly mentioned in section 3.2, more

complicated processes can be described by combining more primitive vertices.
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Ψ→ Ψ′ = ÛΨ (3.36)

Aµ → A′µ = ÛAµÛ
−1 − i

e
(∂µÛ)Û−1 (3.37)

where Û = eieΘ(x) is the space-time dependend phase.

In the U(1) case equation (3.37) simpli�es to equation (3.21). Following

equation (3.31) one can see immediately that the term describing matter, in

case of QED the electrons, is locally invariant. So is the �eld strenght tensor

including the gauge �eld Aµ, since

F µν → F ′µν = ∂µ(Aν + ∂νΘ)− ∂ν(Aµ + ∂µΘ) = F µν (3.38)

The gauge �eld in QED is the photon-�eld, describing the electromagnetic

interaction via an exchange of photons.

3.6.2.

SU(3) color symmetry of Quantumchromody-

namics

The main goal of any physical model is to describe processes in nature in a

most approximativley way. The necessity of an additional degree of freedom

called color for quarks arises from the Pauli principle. Following the eightfold

way, a proton9 is a state containing two up quarks and one down quark. Its

spin-�avour wave function can be written as

|p >=
1√
3

(|u↑u↑d↓ > +|u↑u↓d↑ > +|u↓u↑d↑ >) (3.39)

In 1965 a baryon with charge 2e and spin 3/2 has been discovered, which

could only be described by up quarks, but only if the Pauli exclusion prin-

ciple was violated. The particle was labelled ∆++ and its spin-�avour wave

9For the neutron just replace u→ d
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function had to be

|∆++ >= |u↑u↑u↑ > (3.40)

The solution to this paradox was to introduce another additional degree of

freedom: color.

The feature of color has even been veri�ed experimentally. The π0 decays

into 2γ and the standard model determines the corresponding decay width

[24] to

Γπ0→2γ =
α2m3

π

64π2f 2
π

(
Nc

3

)2

≡ 7.73eV

(
Nc

3

)2

(3.41)

where Nc denotes the number of colors and fπ being the pion decay constant

(which plays an important role in the forthcoming). The experimental value

was found to be Γexpπ0→2γ = 7.83 ± 0.37 eV and can only be described by the

standard model if Nc = 3 [25].

However, to construct a Lagrangian which contains either the �avour and the

colour degrees of freedom, the SU(3) gauge symmetry needs to be utilized.

The Lagrangian requires invariance under rotations in color space10. A quark

�eld in the fundamental representation transforms as

qf → q′f = e−iΘ
α(x)T̂α · qf = Ûq (3.42)

where T̂α denotes the eight generators T̂α = ~
2
λ̂α of the group, also known

as Gell-Mann matrices. Θa are the parameters of the group. Analogous to

the Dirac Lagrangian for fermions, a locally SU(3) symmetric Lagrangian for

quarks can be constructed.

Lq = q̄(iγµDµ −mf )q (3.43)

where the sum over the di�erent quark �avors f is implied and Dµ = ∂µ −
igAµ is the covariant derivative with the eight gauge �elds Aµ of the SU(3)

group, representing the gluon �elds. Under the SU(3) group the gluon �elds

10Generally spoken, the Lagrangian needs to be Poincarre-invariant
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transform similar to the QED gauge �eld

Aµ → A′µ = UAµU
† − i

g
(∂µU)U † (3.44)

The theory of the strong interaction is then characterized by the following

Lagrangian

L = Ψ̄(i��D − m̂)Ψ− 1

4
(FµνFµν) (3.45)

where Fµν = F µνT̂α is the gauge-�eld term. Ψ is the Dirac-4-spinor of the

quarks with the mass matrix m̂. Ψ is not just a spinor, but also a 3-vector

in color-space. The more, there are six quark �avors, so that m̂ is actually

a 72-component matrix. The relationship to the QED-Lagrangian is highly

visible.

The main di�erence between QED and QCD is, that in QCD eight �eld

strenght tensors F µνT̂α, corresponding to eight colors of the gluon �elds,

exist. Its 4-potential Aµ ≡ AµαT̂α then represent the gluons.

Since Fµν is de�ned as a commutator of two covariant derivatives, additional

terms in the �eld-strenght tensor arise.

F µνT̂α = ∂µAνα − ∂νAµα + gfabcA
µ
bA

ν
c (3.46)

where fabc are the antisymmetric structure constants, i.e commutation re-

lations for Gell-Mann matrices. This non-abelian nature of QCD leads to

3- and 4 gluon interaction terms, which makes QCD such hard to calculate.

Nontheless is equation (3.45) locally gauge invariant. This is one of the rea-

sons11 why quarks and gluons can be arranged in multiplets of SU(3). Quarks

and gluons only transform into each other, but never among themselves. A

coupling of a triplett and an antitriplett [3̄]⊗ [3] = [1]⊕ [8] generates a sin-

glett and an octett. These patterns then represent the gluons12, which in

this picture can be understood as a combination of color and anticolor, see

�gure 3.3.

11The other reasons will be discussed in section (3.6.3)
12The same is possible for mesons and baryons.
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T3

T8

||
1/2−1/2

1/3

−2/3

a)

T3

T8

||
1/2−1/2

2/3

−1/3

b)

Figure 3.3: The triplett in fundamental representation: a) displays the colors,

b) the respective anticolors. The T3 axis is the color's spin, whereas the T8

axis labels the hypercharge. Since anti particles have opposite sign in charge,

this has even to be the case for the color (Remember: color is a charge).

Therefore is b) the corresponding antitriplett.



Thermal evolution of massive compact strange objects 37

T3

T8

rr̄+gḡ√
2

rr̄+gḡ−2bb̄√
6

||
1/2−1/2

1

−1

1−1

Figure 3.4: The eight gluons occupy states in the adjoint representation of

the octett. Due to [3̄]⊗ [3] = [1]⊕ [8] are gluons a combination of colors and

anticolors. Con�nement requires that all naturally occuring particles be color

singlets, this explains why the octett gluons never appear as free particles,

hence there is no singlett state, because if there was, it would appear as a

free particle. The centered states are combinations of colors and anticolors

according to the Clebsch-Gordan coe�cients.

3.6.3.

SU(3) �avor symmetry of Quantumchromody-

namics

In case of massless QCD left- and righthanded �elds decouple. Even if quarks

are not massless, the mass of the up and down quark is relatively small (see

table (3.1)) on a hadronic scale (nucleonu 1GeV). Using the projectors

ΨL = (1− γ5)Ψ (3.47)

ΨR = (1 + γ5)Ψ (3.48)
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and splitting the Lagrangian from equation (3.12) up into L = LL + LR

L = Ψ̄(i��∂ − m̂)Ψ (3.49)

L = (Ψ̄L + Ψ̄R)(i��∂ − m̂)(ΨL + ΨR) (3.50)

Yielding

L = iΨ̄L��∂ΨL + iΨ̄R��∂ΨR −m(Ψ̄LΨR + Ψ̄RΨL)

+iΨ̄L��∂ΨR + iΨ̄R��∂ΨL −m(Ψ̄LΨL + Ψ̄RΨR) (3.51)

The Dirac matrices satisfy {γµ, γν} = 2gµν so that gµνpµpν = 1
2
{γµ, γν}pµν =

γµmµγ
νmν . Using equation (3.13) and

γ5 ≡ iγ0γ1γ2γ3 =

(
0 1

1 0

)
(3.52)

such as

γ2
5 = 1 (3.53)

{γ5, γµ} = 0 ∀µ = 0, 1, 2, 3 (3.54)

and Ψ̄ = Ψ†γ0, the left hand product of the �elds gives

Ψ̄LΨL =
1

4
Ψ†(1− γ5)γ0(1− γ5)Ψ (3.55)

=
1

4
Ψ†(γ0 + γ0γ5)(1− γ5)Ψ (3.56)

=
1

4
Ψ̄(1 + γ5)(1− γ5)Ψ = 0 (3.57)
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Analoguous for the right handed �elds Ψ̄RΨR = 0.

With the abbreviation �p = ∂µγ
µ and using equation (3.54)

�pΨR =
1

2
∂µγ

µ(1 + γ5)Ψ (3.58)

=
1

2
(γµ + γµγ5)∂µΨ (3.59)

=
1

2
(1− γ5)γµ∂µΨ (3.60)

=
1

2
(1− γ5)�pΨ (3.61)

Adding Ψ̄L

Ψ̄L�pΨR =
1

2
Ψ†(1− γ5)γ0 1

2
(1− γ5)�pΨ (3.62)

=
1

4
Ψ̄(1 + γ5)(1− γ5)�pΨ = 0 (3.63)

and from equation (3.51) everything but

L = i(Ψ̄L�pΨL + Ψ̄R�pΨR)−m(Ψ̄LΨR + Ψ̄RΨL) (3.64)

cancels.

In case m = 0 both �elds decouple, so that eventually L = LL + LR.
This property is called chiral symmetry. Note that a mass term m breaks

chiral symmetry explicitely. This feature shall be enlightened in section 3.6.6.

The conserved quantities however are the vector current, i.e. the isospin, and

the axialvector current, which is only partially conserved [20]. Conservation

of isospin and strangeness are mainly responsible for the arrangement in

multiplets. Mesons and baryons can be (for instance) arranged due to [3̄]⊗
[3] = [1] ⊕ [8] into a singlett- and an oktett state (see �gure 3.5), similar as

the colors combine to make gluons (see �gure 3.4). Only mesons and baryons

consist of quarks and antiquarks.
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T3

T8

|uū>+|dd̄>√
2

|uū>+|dd̄>−2|ss̄>√
6

||
1/2−1/2

1

−1

1−1

|ud̄ >|dū >

|us̄ >|ds̄ >

|sd̄ >|sū >

Figure 3.5: The meson octett and the respective �avour content. One can

then distinguish between scalar, pseudoscalar, vector and axialvector mesons.

The |us̄ > state for instance represents di�erent Kaon states. The centered

states are combinations of quarks and antiquarks according to the Clebsch-

Gordan coe�cients. The singlett is not shown here.

3.6.4.

Symmetries and conserved quantities

The Noether theorem known from classical mechanics combines symmetries

with conserved quantities, see table 3.2. This holds also for �elds. Mathemat-

ically a symmetry is a variation of the �eld or respectively the Lagrangian,

leaving the appropriate equation of motion invariant. Two of the most funda-

mental conservation laws in physics, conservation of energy and momentum,

are due to a symmetry that results from a small displacement in spacetime.

Variation of xµ → xµ
′
= xµ+aµ, where aµ is a small and arbitrary parameter,
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leads to a change in the �elds to

φ(x)→ φ(x+ a) = φ(x) + aµ∂µφ (3.65)

The �elds then can be described as φ→ φ+ δφ where

δφ = aµ∂µφ = ∂µφa
µ (3.66)

Let us now consider a variation of an arbitrary Lagrangian L, which usually

depends on the �eld and its �rst derivatives

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) (3.67)

With the Euler-Lagrange equations (3.5) ∂L
∂φ

can be replaced.

Furthermore δ(∂µφ) = ∂µ(δφ). Finally

δL = ∂µ

(
∂L

∂(∂µφ)

)
δφ+

∂L
∂(∂µφ)

∂µ(δφ) (3.68)

Using the product rule

δL = ∂µ

(
∂L

∂(∂µφ)
δφ

)
(3.69)

Now we can use equation (3.66) and

δL = ∂µ

(
∂L

∂(∂µφ)
∂νφ

)
aν = δµν ∂µ(L)aν (3.70)

so that

∂µ

(
∂L

∂(∂µφ)
∂νφ− δµνL

)
aν = 0 (3.71)

Since aν is arbitrary, the term in the brackets has to vanish

∂µ

(
∂L

∂(∂µφ)
∂νφ− δµνL

)
= 0 (3.72)
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The quantity in the brackets is of tremendous importance, so it has its own

name:

The energy-momentum tensor

T µν =
∂L

∂(∂µφ)
∂νφ− δµνL (3.73)

We end up with

∂µT
µ
ν = 0 (3.74)

Assuming the Lagrangian does not change under a spacetime variation one

gets the following expression

∂µ

(
∂L
∂(∂µφ

δφ

)
= ∂µJ

µ = 0 (3.75)

The important statement of equation (3.74) and of (3.75) is, that for every

continuous symmetry, which leaves the Lagrangian invariant, a conserved

quantity exists. In case of equation (3.74) those would be energy with the

energy density T 0
0 and momentum with the momentum density T 0

i , where i

denotes the spacial components.

Operation conserved quantity

space-translation conservation of momentum

time-translation conservation of energy

rotation conservation of angular momentum

Table 3.2: Transformations and conserved quantities
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3.6.5.

Spontaneous symmetry breaking

An example of a Lagrangian that is invariant under the transformation

φ→ −φ is the Lagrangian from φ4-theory.

L = ∂µφ∂
µφ− m2

2
φ2 − λ

4
φ4 = ∂µφ∂

µφ− V (φ) (3.76)

for some mass m and an arbitrary coupling λ. In many cases a system that

has some symmetry in the corresponding Lagrangian, may have a ground

state which does not satisfy the same symmetry.

Figure 3.6: The potential V (φ) in arbitrary units described by L from equation

3.76. The true ground state would be located at the vacuum expectation value

fπ.

This is the case for L from equation 3.76 for λ < 0. Immagine an upside

down bowl placed on �at ground and place a particle13 on top of it. The

system is symmetric, from every point of view around the bowl.

But: The system is actually unstable, since the slightest perturbation would

cause the marble to roll down14. Now suppose the marble comes to rest on

the �at ground:

13In this case a marble would suit best.
14The analogy to quantum �eld theory is that the particle in the ground state is unstable.
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The perturbation has sponteaneously broken the symmetry, i.e. the particle

was not really in its ground state, the state of minimal potential energy, see

�gure 3.6.

Now the minima of the potential for (a more realistic) positive coupling λ

can be expressed in terms of m2 > 0 and m2 < 0.

∂V (φ)

∂φ
= φ(m2 + λφ2) (3.77)

The case φ = 0 represents a scalar �eld of mass m and corrresponds to

m2 > 0. When the ground state is at φ = 0, it obviously satis�es the sym-

metry present in L.
The other minima correspond to φ = ±

√
−m2

λ
= ±µ. In order to represent

a real �eld m2 < 0. This case corresponds to the particle sitting on top

of the bowl, i.e. the unstable point. The ground state would be to break

the symmetry by choosing either ±µ. An importatnt feature of sponta-

neously broken symmetries is the appearence of a massless mode, a so called

Goldstone-boson15. However, a perturbative expansion around ±µ allows for

the Feynman rules, since the calculations converge.

3.6.6.

Explicit symmetry breaking

Remembering the discussion in section 3.6.3 we learned that a mass term

breaks chiral symmetry explicitely. For QCD this is indeed the case since

quarks have a �nite mass. The quantity of breaking is comparatively small

for the up and down quark due to their small mass, see table 3.1, so that

QCD exhibits an approximatively SU(2) �avour symmetry16.

In case of an explicit breaking already the Lagrangian is unsymmetric:

L = ∂µφ∂
µφ− m2

2
φ2 − λ

4
φ4 +Hφ (3.78)

15This can be shown by using the Noether theorem, but shall not be performed here.
16Also called: Isospin symmetry
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where H breaks the symmetry explicitely.

This implies that the potential is not invariant under rotations anymore, see

�gure 3.7. As long as the explicit breaking is small, we expect spontaneous

breaking to be the dominant feature.

Figure 3.7: The potential V (φ) in arbitrary units described by L from equation

3.78 with explicit symmetry breaking term. The true ground state would be

located at the vacuum expectation value fπ.

Explicit symmetry breaking is nonetheless an important issue, because ra-

dial exitations do cost energy, i.e. mass: The appearing Goldstone bosone

becomes massive. In the SU(2) case this feature is responsible for the π to

have a �nite mass. Within this picture it can be simply understood what

the derivatives of the the potential with respect to the �elds represent: The

extremum of V (φ) correlates to the state the particle actually sits in and the

second derivative correlates to its mass.



4
Finite temperature
field theory - SU(2)

case

As discussed in the previous sections (3.6.2) and (3.6.3) the QCD Lagrangian

possesses an exact color symmetry and an approximate �avor symmetry. For

su�ciently low temperature and density, quarks and gluons are con�ned

inside colourless hadrons. Since QCD is non-perturbative in the low energy

regime, e�ective theories and models based on the QCD Lagrangian and its

properties have to be utilized. In the low energy regime it is predominantly

chiral symmetry which determines hadronic interactions, whereas in the high

energy dominion quarks are expected to behave asymptotically free.

The linear sigma model is an e�ective theory which contains hadrons as

degree of freedom instead of quarks and gluons and where chiral symmetry

is realized. It has been �rst developed in 1960 by Gell-Mann and Levy to

describe the interaction of nucleons via the exchange of pions [26]. Generally

speaking, the interaction can be modelled by the transmission of either scalar-

, pseudoscalar- and vector1 mesons. If one adopts the linear sigma model for

1pseudovector mesons are in most approaches not crucial

46
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quark interactions, it is referred to as the chiral Quark Meson model [27, 20,

3, 4, 28]. Its great advantage in comparison to other chiral models like the

Nambu-Jona-Lasinio model lies in its renormalizability. Renormalizability

takes into account the (in most works neglected) contribution of vacuum

�uctuations, which within this thesis is among the main topics.

A SU(2) approach refers to the light quark sector, i.e. up- and down quark

being considered. The �rst part of this chapter deals with the purely mesonic

treatment, whereas the following sector respects only quark interactions and

treats the mesonic �elds as stationary background. Both approaches will

be treated without vacuum polarization and then, after performing the so

called dimensional regularization scheme, the vacuum contributions will be

included. The �nal discussion is a combination of both sectors neglecting

and eventually including vacuum �uctuations.

4.1.

Thermodynamics

Before analyzing independently the SU(2) Quark Meson model for the mesonic-

and the quark sector, a brief repetition on the relevant thermodynamics shall

be given, which is valid for both sectors and also for the combined approach2.

The starting point for the determination of thermodynamic quantities is the

identi�cation of the pressure as the negative of the e�ective thermodynamical

potential, normalized such that it vanishes in the vacuum [29]

p(T, µ) = −Ω(T, µ) + Ω0(T = µ = 0) (4.1)

The entropy density s and the quark �avour densities nf can be derived from

the e�ective potential by the Gibbs-Duhem relations

s = −∂Ω

∂T

∣∣∣∣
µf=const.

and nf = − ∂Ω

∂µf

∣∣∣∣
T=const.

(4.2)

2These equations also hold for the SU(3) case to be discussed in Chapter 5.
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The energy density is consequently given as

ε = Ts+ Ω + µfnf (4.3)

and the Stefan-Boltzmann limit of the quark meson model is [30, 31, 29, 32]

pSB

T 4
= ξ

[
7π2

180
+

1

6

(µ
T

)2

+
1

12π2

(µ
T

)4
]

(4.4)

sSB

T 3
= 4ξ

[
7π2

180
+

1

12

(µ
T

)2
]

(4.5)

nSBf
T 3

=
ξ

3

[(µ
T

)
+

1

π2

(µ
T

)3
]

(4.6)

Here ξ = NcNf with Nc = 3 and Nf = 2.

It will prove, that the second expression for the mesonic case in equation

4.2 to be discussed below is always zero, because mesons do not possess any

chemical potential. Due to this feature we consider µf = 0 for the quark case

likewise.

We present our thermodynamical results in the Stefan-Boltzmann limit (SB

limit, eqs. 4.4 and 4.5), where the pressure of a single fermionic degree of

freedom at µ = 0 is

pSBfermion = ξfT

∫
d3~k

(2π)3
ln
(
1 + e−βk

)
= ξf

7

8

π2

90
T4 (4.7)

and the pressure of a single bosonic degree of freedom is

pSBboson = ξmT

∫
d3~k

(2π)3
ln
(
1− e−βk

)
= ξm

π2

90
T4 (4.8)

where ξf,m connotes the relevant degrees of freedom within the respective

sector. The entropy density limit can be obtained by utilizing the Gibbs-

Duhem relation, eq. 4.2.
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4.2.

The formalism in terms of propagators

In this short section we present the formalism of the theory in terms of propa-

gators and the functional derivatives. The reason is that it can easily be seen

that our approach is in any case considered thermodynamically consistent. A

general ansatz for the e�ective action Γ[φ,G,Q] according to [33, 34, 35, 36]

is

Γ[φ,G,Q] = I[φ] (4.9)

− 1

2
Tr
(
ln G−1

)
− 1

2
Tr
(
D−1G− 1

)
+ Tr

(
ln Q−1

)
+ Tr

(
S−1Q− 1

)
+ Γ2[φ,G,Q]

where φ represents the �elds involved, I[φ] is the classical action or the tree-

level potential, see equation 4.16 and �gure 4.1. G is the full propagator,

equation 4.32, and D−1 is the inverse tree level propagator for the mesons,

equation 4.31. Q represents the full propagator-, and S−1 the inverse tree

level propagator for the quarks respectively. Γ2[φ,G,Q] is the contribution

from the two-particle irreducible diagrams, which in our case only depends

on the �elds and the full propagator of the mesons, i.e. Γ2[φ,G], see equation

4.33 and �gure 4.4.

For vanishing sources the stationary conditions read

δΓ[φ,G,Q]

δφ
=

δI[φ]

δφ
− 1

2
Tr

(
δD−1

δφ
G

)
+ Tr

(
δS−1

δφ
Q

)
+
δΓ2[φ,G]

δφ
= 0 (4.10)

δΓ[φ,G,Q]

δG
= −1

2
D−1 +

1

2
G−1 +

δΓ2[φ,G]

δG
= 0 (4.11)

δΓ[φ,G,Q]

δQ
= −G−1 + S−1 = 0 (4.12)
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Since no contribution from Γ2[φ,G] to the stationary conditions occurs when

deriving with respect to the quark propagator Q, no diagrams containing a

quark propagator within a meson loop appears within our approach. Hence

it is justi�ed to evaluate the potentials independently and the respective gap

equations in the combined sector are consequently additive3.

4.3.

Mesonic interactions within the 2PI formalism

A generic Lagrangian [37, 34]4 containing meson �elds in case of two �avours

reads

L =
1

2
∂µ~φ∂

µ~φ− λ

4
(~φ2 − v2)2 +Hσ (4.13)

where

~φ =

(
σ

~π

)
(4.14)

λ is the coupling to the �elds, v2 being a general paramter approaching

the vacuum expectaion value fπ, if the explicit symmetry breaking term H

approaches zero, see the discussion in 3.6.6. Equation 4.13 can hence be

written as

L =
1

2
(∂µσ∂

µσ + ∂µ~π∂
µ~π)− U(σ, ~π) (4.15)

with the linear sigma potential

U(σ, ~π) =
λ

4
((σ2 + ~π2)− v2)2 −Hσ (4.16)

=
λ

4
(σ + ~π)4 +

m2

2
(σ + ~π)2 +

λv4

4
−Hσ (4.17)

shown in �gure 4.1.

3The same argumentation holds for the SU(3) case.
4See also section 5 for the motivation of the terms involved in the Lagrangian.



Thermal evolution of massive compact strange objects 51

U(σ, ~π)

~π

σ

Figure 4.1: The potential U(σ, ~π) without explicit symmetry breaking term,

i.e. H = 0 (Also called mexican hat potential). For the case of H 6= 0 the

whole �hat� would be shifted to the right, so that the pion would have to climb

up the inner circle. This means the pion gains a mass.

Note, that in some cases one uses a mass term instead of v2, thenm2 = −λv2.

Figure 4.2 shows the corresponding Feynman diagrams resulting from the

kinetic terms in the Lagrangian from equation 4.15.

σ∂µ∂
µσ ~π∂µ∂

µ~π

Figure 4.2: Left: A propagating sigma meson without any interaction, right:

a propagating pion.

At �nite temperature perturbative expansion in powers of the coupling con-

stant breaks down and an approach via the path integral formalism leads con-

sequently to di�culties. At low momentum spontaneous symmetry break-

ing for instance leads to quasi particle exitations with imaginary energies

[34, 38, 39]. These di�culties can be circumvented utilizing the Cornwall-

Jackiw-Toumboulis (CJT) [33] formalism, which can be understood as a rel-

ativistic generalization of the Luttinger Ward formalism [40, 41]. The CJT

(often refered to as the 2PI-formalism: Two particle irreducible formalism)
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formalism can be viewed as a prescription for computing the e�ective action

of a theory, where the stationary conditions are the Greens functions5. The

in-medium masses of the σ and the ~π can then be solved self-consistently

[34, 38]. The grandcanonical potential can be derived via the generating

functional for the respective Greens functions, which, in the presence of the

two sources J and K, is given as

Z[J,K] = eW[J,K] =

∫
Dφe(I[φ]+φJ+ 1

2
φKφ) (4.18)

withW [J,K] as the generating functional for the connected Greens functions

with the sources

φJ ≡
∫
x

φ(x)J(x) (4.19)

φKφ ≡
∫
x,y

φ(x)K(x, y)φ(y) (4.20)

with I[φ] =
∫
x
L as the classical action. The expectation values are

δW [J,K]

δJ(x)
≡ φ̄(x) (4.21)

δW [J,K]

δK(x, y)
≡ 1

2

(
G(x, y) + φ̄(x)φ̄(y)

)
(4.22)

To obtain the e�ective action a double Legendre transformation needs to be

performed leading to

Γ[φ̄, G] =W [J,K]− φ̄J − 1

2
φ̄Kφ̄− 1

2
GK (4.23)

5Note that this approach works due to a symmetry reason: For translational invariant
systems the e�ective action corresponds to the e�ective potential, which is the �nally
achieved quantity.
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and GK ≡
∫
x,y
G(x, y)K(y, x). Thus

δΓ[φ̄, G]

δφ̄
= J(x)−

∫
y

K(x, y)φ(y) (4.24)

δΓ[φ̄, G]

δG(x, y)
= −1

2
K(x, y) (4.25)

For vanishing sources the stationary conditions then read

δΓ[φ̄, G]

δφ̄

∣∣∣∣
φ̄=ϕ,G=G

= 0 (4.26)

δΓ[φ̄, G]

δG(x, y)

∣∣∣∣
φ̄=ϕ,G=G

= 0 (4.27)

and the e�ective action according to [33] is

Γ[φ̄, G] = I[φ̄]− 1

2
Tr(ln G−1)− 1

2
Tr(D−1G− 1) + Γ2[φ̄,G] (4.28)

where

D−1(x, y, φ̄) ≡ − δ2I[φ]

δφ(x)δφ(y)

∣∣∣∣
φ=φ̄

(4.29)

is the inverse tree level propagator and Γ2[φ̄, G] is the sum of all two particle

irreducible diagrams where all lines represent full propagators G. For constant

�elds φ̄(x) = φ̄ and homogenous systems, the e�ective potential is [33, 34]

Ω[φ̄, G] = U(φ̄) +
1

2

∫
k

lnG−1(k) +
1

2

∫
k

[
D−1(k, φ̄)G(k)− 1

]
+ Ω2 (4.30)

where

D−1(k, φ̄) = −k2 + U ′′(φ̄) (4.31)

is the inverse tree level propagator and

Gσ,π(k) =
1

−k2 + m̄2
σ,π

(4.32)

is the full (or dressed) propagator. In equation 4.30 Ω2 ≡ −TΓ2[φ̄, G]/V ,

and V being the 3-volume of the system.
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The CJT potential is obtained from equation 4.30 and reads

Ω(φ,Gσ,π) =
1

2
m2φ2 +

1

4
λφ4 −Hφ (4.33)

+
1

2

∫
k

[
lnG−1

σ (k) + D−1
σ (k, φ)Gσ(k)− 1

]
+

3

2

∫
k

[
lnG−1

π (k) + D−1
π (k, φ)Gπ(k)− 1

]
+

3λ

4

[∫
k

Gσ(k)

]2

+
15λ

4

[∫
k

Gπ(k)

]2

+
3λ

2

[∫
k

Gσ(k)

] [∫
k

Gπ(k)

]
The one loop correction to the tree level potential can be computed as the sum

of all one particle irreducible diagrams with a single loop and zero external

momentum. Each vertex has two external legs, see �gure 4.3. The factor 1/2

in certain terms in equation 4.28 and equation 4.30, which is actually the 1 PI

contribution to the whole potential, comes from the fact that interchanging

the two external lines of the vertex does not change the diagram.

+ + + ...

Figure 4.3: The 1-PI loops contributing to the e�ective potential in eq. 4.28,

i.e. eq. 4.30 (The logarithmic terms mody�ed by the factor 1/2). The loga-

rithm within the propagator tells to sum up an in�nite number of diagrams.

The terms D−1
σ,π(k, φ)Gσ,π(k) are corrections to the naked propagating mass

of either the sigma or the pion due to corrections from the potential, i.e. the

second derivative in equation 4.31. If one furthermore takes into account

the double-bubble diagrams in �gure 4.4, i.e. Ω2, one obtains the so called

Hartree approximation of the linear sigma model Lagrangian. Note that Ω1

and Ω2 contain an in�nite number of diagrams. The computation on the
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a.)

b.)

Gσ Gπ

Gσ

Gπ

Figure 4.4: a.) The two loop Hartree contributions to the CJT e�ective
potential (Ω2). The full red line corresponds to Gσ, whereas the dashed blue
line corresponds to Gπ. The most right loop correlates to the last term in
equation 4.33. The black circle corresponds to the vertex ∼ λ. b.) displays
the tadpole contribution to the self energy, obtained by cutting a line. For
this self energy the Dyson-Schwinger equation is self consistently solvable,
because the internal lines in the tadpole diagrams represent full propagators.

other hand has to be restricted to a �nite number. The stationary conditions

with respect to Ω[φ̄, G] read

δΩ[φ̄, G]

δφ̄

∣∣∣∣
φ̄=ϕ,G=G

= 0 (4.34)

δΩ[φ̄, G]

δG(k)

∣∣∣∣
φ̄=ϕ,G=G

= 0 (4.35)

The latter can be written

G−1(k) = D−1(k, ϕ) + Π(k) (4.36)
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where

Π(k) = 2
δΓ2[φ̄, G]

δG(k)

∣∣∣∣
φ̄=ϕ,G=G

(4.37)

is the self energy. Since Π(k) is in general a functional of G, equation 4.36

represents a Schwinger-Dyson equation for the dressed propagator. Using

eq. (4.31) one arrives at the inverse tree level propagators for the sigma and

the pion

D−1
σ = −k2 +m2 +

12λ

N
φ2 (4.38)

D−1
π = −k2 +m2 +

4λ

N
φ2 (4.39)

At tree level, the parameters of the Lagrangian are �xed, so that the masses

agree with the observed masses mσ = 550 MeV and mπ = 138 MeV.

m2
σ = m2 + 3λf 2

π (4.40)

m2
π = m2 + λf 2

π (4.41)

From this the tree level parameters are obtained6. The coupling constant is

λ =
(m2

σ −m2
π)

2f 2
π

(4.42)

where fπ = 92.4 MeV is the pion decay constant. Solving for the mass term

m2 = −m
2
σ − 3m2

π

2
(4.43)

leading eventually to H = m2
πfπ. These constants are the same as for the

quark-quark interaction case, see equations 4.114, 4.115 and 4.116 in section

4.4, and being derived in similar manner. However, the dressed masses m̄σ,π

6Note, that the parameters change upon renormalization
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are then determined by solving the following Gap equations:

H = φ
[
m2 + λ

(
φ2 + 3F (m̄σ, T ) + 3F (m̄π, T )

)]
(4.44)

m̄σ = m2 + λ
[
3φ2 + 3F (m̄σ, T ) + 3F (m̄π, T )

]
(4.45)

m̄π = m2 + λ
[
φ2 + F (m̄σ, T ) + 5F (m̄π, T )

]
(4.46)

derived by the potential given in eq. (4.33) with respect to the �elds. Herein

the function

F (m̄σ,π, T ) = FT (m̄σ,π, T ) + Fvac(m̄σ,π, T ) (4.47)

=

∫
d3~k

(2π)3

1√
~k2 + m̄2

σ,π

·
[

1

eβ
√
~k2+m̄2

σ,π − 1
+

1

2

]

displays the temperature dependence including the vacuum contribution, i.e.

the last additive term [34]. Within this section we simply ignore the vacuum

term Fvac(m̄σ,π) = 0, claiming it to be independent of temperature. The

function F (m̄σ,π, T )→ FT (m̄σ,π, T ) reduces then to a thermal part only where

FT (m̄σ,π, T ) =

∫
d3~k

(2π)3

1√
~k2 + m̄2

σ,π

·
[

1

eβ
√
~k2+m̄2

σ,π − 1

]
(4.48)

The exclusion of the self energy in the mesonic sector is also not negligible,

which will be discussed in the following section, where we take into account

the corresponding self energy term Fvac(m̄σ,π, T ).

4.3.1.

Vacuum �uctuations of mesons

Taking into account vacuum �uctuations needs regularization schemes7. To

lowest order, the vacuum term is just the one loop e�ective potential at zero

temperature. However, regularization is a method of isolating the divergen-

7This section is based upon works from [18, 21, 42] but is nonetheless somewhat more
detailled due to carried out calculations.
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cies in Feynman integrals, and there are several techniques of regularization.

The most intuitive one is to introduce a cut-o� parameter Λ in the momentum

integrals. To regularize the divergencies of a given theory the most common

procedure though is the so called dimensional regularization scheme. The

idea behind this scheme is to calculate in dimensions d where the theory is

still calculable due to convergent integrals and then reduce to the dimension

required for the given problem.

Using dimensional regularization, a new parameter has to be introduced.

But since the theory should not depend on heuristic parameters, they have

�nally to be removed utilizing renormalization. The isolated divergent part

can eventually be removed via appropriate counter terms.

The divergent quantity modifying the free particle propagator and contribut-

ing to the self energy corresponds in momentum space to

λ

∫
d4~k

(2π)4

1

~k2 −m2
(4.49)

Since there are four powers in the numerator and only two in the denomi-

nator, the integral converges quadratically at large k. The question arises

how to �nd the divergence of a particular graph, i.e. the super�cial de-

gree of divergence, D. Considering a φr interaction in d dimensions, then

each propagator contributes ∼ k−2 and each vertex kd powers, together with

a momentum conservating δ−function for each vertex contributing ∼ k−d.

Only one δ−function does not contribute to guarantee d-momentum con-

servation. The number of loops corresponds to the number of independent

momenta. Using the method of power counting with n vertices, I internal

lines (propagators), E external lines and L loops, L is given as

L = I − n+ 1 (4.50)

This means that the internal lines correspond to the number of independent

d-momentum integrals The super�cial degree D of a divergence is then

D = dL− 2I (4.51)
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In φr-theory every vetrex has r legs and every internal line L is connected to

two vertices, yielding

D = −δn−
(
d

2
− 1

)
E + d (4.52)

where

δ ≡ d−
(
d

2
− 1

)
r (4.53)

In Minkowski spacetime d = 4 and E = const., so that D depends on the

type of interaction, i.e. the number of �elds interacting at a vertex and of

course the number of vertices. A case by case analysis gives

1. δ < 0: not renormalizable

2. δ = 0: renormalizable

3. δ > 0: super-renormalizable

Equation 4.52 can be written as

D =

[(r
2
− 1
)
n− E

2
+ 1

]
d− rn+ E (4.54)

The super�cial degree of D grows with the number of dimensions. For a

4-point interactive theory (φ4) the calculation has to be carried out in d < 4

and, when done, d→ 4. The �rst step is to expand the Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4
φ4 (4.55)

from four to d dimensions. Since φ has dimensions 1/2d−1 and L dimension

d−1 (Lenght equates to Λd in momentum - remember that the action s =∫
ddxL is dimensionless). λ is dimensionless in 4 dimensions, the coupling in

d 6= 4 dimensions is then no longer dimensionless [λ] = Λδ = Λ4−d. The 4-

point interactive term has to become λ→ λµ4−d to restore the dimensionless

coupling λ.

The interaction provides a correction δm2 to the naked mass m2, i.e m2
r =

m2 + δm2, where m2
r is called dressed mass (or renormalized mass). Using
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the Feynman rules to calculate the order of the one-loop contribution to the

free propagator gives

δm2 =
iλ

2
µ4−d

∫
ddk

(2π)d
1

k2 −m2 + iη
(4.56)

which is nothing but a correction to the naked mass of the respective boson.

The Feynman integral8∫ 1

0

dz

[az + b(1− z)]2
=

∫ 1

0

dz

[(a− b)z + b]2
= − 1

a− b
1

(a− b)z + b

∣∣∣∣1
0

= − 1

a− b

[
1

a
− 1

b

]
=

1

ab
(4.57)

can later be used to calculate scattering amplitudes [42], at this point it is

given for the sake of completeness. However, realizing that equation 4.56 can

be reduced to an integral of such a form

Id(P ) =

∫
ddk

1

(k2 + 2pµkµ −M2 + iη)α
(4.58)

and utilizing spherical coordinates

ddk = dk0dkk
d−2dΩk (4.59)

the angle dependence can be treated separately since δm2 is independent of

any angle, i.e. ∫
dΩk =

2π(d−1)/2

Γ
(
d−1

2

) (4.60)

being the surface of the d− 1 dimensional unit sphere.

Equation 4.58 is then

Id(P ) =
2π(d−1)/2

Γ
(
d−1

2

) ∫ ∞
−∞

dk0

∫ ∞
−∞

dkkd−2 1

(k2
0 + 2p0k0 − k2 −M2 + iη)α

(4.61)

8Which is an elementary integral for the purpose of writing 1/ab in a slighlty more
complicated way.
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Using the substitute k′0 = k0 + p0, making use of the binomic formula and

eventually renaming k′0 → k0 leads to

Id(P ) =
4π(d−1)/2

Γ
(
d−1

2

) ∫ ∞
0

dk0

∫ ∞
−∞

dkkd−2 1

(k2
0 − k2 − (p2

0 +M2) + iη)α
(4.62)

For the following, the Euler beta function9 is usefull

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
= 2

∫ ∞
0

t2x−1

(1 + t2)x+y
dt (4.63)

where Γ(x) =
∫∞

0
e−uux−1du is the Gamma function. The next integral has

to be solved to see the similarity to equation 4.63∫ ∞
0

ds
sβ

(s2 + n2)α
(4.64)

setting s = nt → ds = ndt, β = 2x − 1 → x = (1 + β)/2 and α = x + y →
y = α− (1 + β)/2 gives∫ ∞

0

ndt
(nt)2x−1

[(nt)2 + n2]x+y
=

∫ ∞
0

t2x−1

(t2 + 1)x+y

n2x

n2(x+y)
dt (4.65)

=

∫ ∞
0

t2x−1

(t2 + 1)x+y
n−2α+1+βdt (4.66)

=
1

2
B(x, y)

1

(n2)α−(1+β)/2
(4.67)

=
Γ
(

1+β
2

)
Γ
(
α− 1+β

2

)
Γ(α)

1

2(n2)α−(1+β)/2
(4.68)

Identifying s = k0, n2 = −k2− (p2 +M2) + iη and β = 0 the integration over

k0 has been carried out and iη can be neglected since the remaining q-integral

has no singularity. What remains from equation 4.62 is the integral over k

Id(P ) = (−1)−α+ 1
2

2π(d−1)/2

Γ
(
d−1

2

) Γ
(

1
2

)
Γ
(
α− 1

2

)
Γ(α)

∫ ∞
0

dkkd−2 1

(k2 + p2 +M2)α−
1
2

(4.69)

9See Abramowitz and Stegun: Handbook of mathematical functions
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which is fortunately of the same form as equation 4.64, and with s = k,

β = d− 2, n2 = p2 +M2 and α→ α− 1
2
, i.e.

∫ ∞
0

dkkd−2 1

(k2 + p2 +M2)α−
1
2

=
Γ
(
d−1

2

)
Γ
(
α− 1

2
− (d−1)

2

)
Γ
(
α− 1

2

) 1

2(p2 +M2)α−1/2−(d−1)/2

(4.70)

Using (−1)1/2 = i and Γ(1
2
) =
√
π and inserting 4.70 in equation 4.69 gives

Id(P ) = (−1)−α+ 1
2

2π(d−1)/2

Γ (α)
π

1
2

1

2(p2 +M2)α−1/2−(d−1)/2
Γ

(
α− 1

2
− (d− 1)

2

)
= −iπd/2 Γ

(
α− d

2

)
Γ(α)

1

(p2 +M2)α−1/2
(4.71)

Choosing p = 0 and α = 1 equation 4.56 then is

δm2 =
iλ

2
µ4−d

∫
ddk

(2π)d
1

k2 −m2
(4.72)

δm2 =
λ

2
µ4−d π

d/2

(2π)d
Γ
(
1− d

2

)
Γ(1)(m2)1−d/2 (4.73)

δm2 =
λ

2

Γ
(
1− d

2

)
(4π)d/2

m2

(
µ2

m2

)2−d/2

(4.74)

It seems like nothing has simply�ed, since the divergence is still hidden within

the gamma function, because the gamma function has poles at zero and

negative integer values. To isolate the divergencies as poles we need to prove

that

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ Ψ1(n+ 1) +O(ε)

]
(4.75)

with a Taylor expansion where ε << 1. To this purpose we introduce

i.) zΓ(z) = Γ(z + 1)

ii.) Ψ1(z) = d ln Γ(z)
dz

= Γ′(z)
Γ(z)

iii.) 1
Γ(z)

= zeγz
∏∞

n=1

(
1 + z

n

)
e−z/n

where
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i.) can be shown by integration by parts,

ii.) is the Euler Ψ function, and

iii.) is called Weierstrass representation of the Gamma function.

γ is known from theoretical arithmetic to be

γ = lim
n→∞

(
n∑
r=1

1

r
− lnn

)
' 0.5772157 (4.76)

and called the Euler-Mascheroni constant.

Starting with ii.)

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n

∣∣∣∣ ln
ln

(
1

Γ(z)

)
= ln(z) + γz + ln

(
1 +

z

1

)
− z

1
+ ln

(
1 +

z

2

)
− z

2
+ ...

= ln(z) + γz +
∞∑
n=1

[
ln
(

1 +
z

n

)
− z

n

] ∣∣∣∣ ddz
−d ln(Γ(z))

dz
=

1

z
+ γ +

∞∑
n=1

(
1

z + n
− 1

n

)
which is = −Ψ1(z) (4.77)

For z = n ∈ N

Ψ1(n) = −γ +
n−1∑
r=1

1

r
(4.78)

The crucial step is to expand Γ in Taylor around ε

Γ(1 + ε) = Γ(1) + εΓ′(1) +O(ε2) (4.79)

Γ(1 + ε) = 1 + εΓ(1)Ψ1(1) +O(ε2) (4.80)

Γ(1 + ε) = 1− εγ +O(ε2) (4.81)

where Ψ1(1) = −γ and ii.) Γ′(1) = Γ(1)Ψ1(1) were used. Recall i.) Γ(ε+1) =

εΓ(ε) then

Γ(ε) =
1

ε
− γ +O(ε) (4.82)
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Now

Γ(−1 + ε) = − 1

1− εΓ(ε) = −
[

1

ε
+ 1− γ +O(ε)

]
(4.83)

Γ(−2 + ε) = − 1

2− εΓ(ε) =
(−1)2

2

[
1

ε
+ 1 +

1

2
− γ +O(ε)

]
(4.84)

... (4.85)

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ 1 +

1

2
+ ...

1

n
− γ +O(ε)

]
(4.86)

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ Ψ1(n+ 1) +O(ε)

]
(4.87)

The Gamma function from equation 4.74 can now be calculated for d = 4

using the prooved equation 4.75, i.e. ε = 4− d→ d = 4− ε→ d
2

= 2− ε
2
, so

that

Γ

(
1− d

2

)
= Γ

(
−1 +

ε

2

)
= −

[
2

ε
− γ + 1 +O(ε)

]
(4.88)

replacing in equation 4.74 yields

δm2 =
λ

2

Γ
(
1− d

2

)
(4π)2−ε/2 m

2

(
µ2

m2

)ε/2
(4.89)

=
λ

32π2

[
−2

ε
+ γ − 1 +O(ε)

]
m2

(
4πµ2

m2

)ε/2
(4.90)

The last term can be expanded again since xε = eε ln(x) ' 1 + ε ln(x) +O(ε2),

so that

δm2 =
λ

32π2

[
−2

ε
+ γ − 1 +O(ε)

] [
1 +

ε

2
ln

(
4πµ2

m2

)
+O(ε2)

]
(4.91)

δm2 = − λm2

16π2ε
− λm2

32π2
ln

(
4πµ2e

m2eγ

)
+O(ε2) (4.92)

and remember − ln(x)+γ = − ln(x)+ln(eγ) = ln
(
eγ

x

)
= − ln

(
x
eγ

)
. The �rst

term in equation 4.92 is divergent for lim ε → 0, whereas the second term

corrects the naked mass of the respective bosons. Unfortuantely the formula

still diverges. The loophole is to de�ne the naked mass also divergent, so

that eventually the divergence cancels. What remains is the true physical
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mass of the particle, the so called dressed mass. This procedure is called

renormalization. The one-loop correction to the mass is

m2
r = m2 + δm2 = m2

(
1− λ

16π2ε
− λ

32π2
ln

(
4πµ2e

m2eγ

))
(4.93)

and the corresponding vacuum diagram is shown in �gure 4.5 amongst the

self energy term for the quark propagator.

Figure 4.5: Left picture: Vacuum polarization, i.e. the self energy of the re-

spective boson, either the sigma shown here or the pion (which in this thesis

is denoted as blue thick dotted line such as in �gure 4.2 on the right hand

side). Right picure: The corresponding diagram for the respective quark self-

interacting due to vacuum�uctuations (to be discussed in section 4.4.1).

The idea however is to choose the naked mass as such as to cancel the di-

vergence, so that m2
r is eventually the physical mass of the corresponding

particle. Solving equation 4.93 for m2 gives

m2 = m2
r +

λm2

16π2ε
+
λm2

32π2
ln

(
4πµ2e

m2eγ

)
(4.94)

m2 = m2
r +

λm2
r

16π2ε
+
λm2

r

32π2
ln

(
4πµ2e

m2
re
γ

)
(4.95)

m2 on the right-hand side can be replaced by m2
r since the corrections are of

order O(λ2), even in the logarithmic expression. Now we are free to choose

µ2 =
m2
re
γ

4πe
(4.96)

to get rid of the logarithmic term. This is called minimal substraction scheme
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[34, 42], however

m2 = m2
r

(
1 +

λ

16π2ε

)
+O(λ2) (4.97)

m2
r =

m2

1 + λ
16π2ε

+O(λ2) (4.98)

m2
r = m2

(
1 +

λ

16π2ε

)
+O(λ2) (4.99)

where we approximated 1/(1 + x) ' 1 + x.

Inserting equation 4.97 in equation 4.93 gives m2
r = m2

r +O(λ2). The diver-

gencies cancel.

One now may ask the question if this whole procedure of dimensional re-

gularization is necessary, because the vacuum contribution from 4.47 is

temperature independent anyway. The answer is: Yes, because the �eld and

the masses are a�ected via the derivations by it. The correction is small, but

not negligible. To solve then the Gap equations 4.44, 4.45 and 4.46 incor-

porating the vacuum contribution leads to modifyed Gap equations where

equation 4.47 splits up into a temperature dependent and a vacuum part. To

obtain the renormalized gap equations simply replace

F (m̄σ,π, T ) = FT (m̄σ,π, T ) + Fdr(m̄σ,π) (4.100)

where the index dr stands for d imensional regularization and the tempera-

ture dependent part is

FT (m̄σ,π, T ) =

∫
d3~k

(2π)3

1√
~k2 + m̄2

σ,π

·
[

1

eβ
√
~k2+m̄2

σ,π − 1

]
(4.101)

and the renormalized vacuum contribution Fvac(m̄σ,π)→ Fdr(m̄σ,π) where

Fdr(m̄σ,π) =

∫
d3~k

(2π)3

1

2
√
~k2 + m̄2

σ,π

= −m̄σ,π

16π2

[
1 + ln

(
µ2

m̄σ,π

)]
(4.102)

Now it is important to note that apart from that the renormalization proce-
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dure changes the results [42], the renormalization scale can be chosen arbi-

trary10. Here we set µ = mσ/
√
e according to the choice of [34, 43] and in

order for Fdr(m̄σ) to vanish in the vacuum. The renormalized parameters of

the Lagrangian are determined to be

λr =
m2
σ −m2

π

2 [f 2
π + Fdr(m̄σ)− Fdr(m̄π)]

(4.103)

m2
r = m2

σ − 3λr
[
f 2
π + Fdr(m̄σ)− Fdr(m̄π)

]
(4.104)

Hr = m2
πfπ = H (4.105)

where the explicit symmetry breaking term remains una�ected by renormal-

ization due to our choice µ = mσ/
√
e.

4.3.2.

Results in the mesonic sector

Figure 4.6 shows the order parameter σ as a function of the temperature for

three di�erent initial vacuum sigma meson masses mvac
σ , neglecting (denoted

in the �gure as �th�) and including (denoted in the �gure as �th+vac�) the

self energy of the mesons. We �nd that with increasing σ meson mass mvac
σ

the phase transition in the thermal case becomes more crossover like, i.e.

approaching a �rst order phase transition, up to an area, where all three

curves nearly intersect (T = 230 − 245MeV at σ = 30 − 33MeV). That is

the area around the phase transition and from this area on the case of the

largest value of the initial sigma meson mass approaches the chiral limit at

lower temperatures compared to the other cases. This special behaviour has

not been observed in the quark case, which is investigated in detail in section

4.4 . The larger the initial mvac
σ in the thermal case, the sooner the chiral

limit is approached with increasing temperature, nonetheless not that close

as in the quark case.

10Within a physically reasonable range.
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Figure 4.6: The σ condensate as a function of temperature without (denoted

as �th�) and with vacuum contribution (denoted as �th+vac�) for three di�er-

ent values of the initial vacuo sigma meson mass mvac
σ . The larger mvac

σ , the

more crossover like is the behaviour of the �thermal� curves up to a tempera-

ture, where the curves intersect. From there on the highest initial vacuo mass

of the sigma mesons shows the steepest case of fall with temperature, and ap-

proaching the chirally restored phase more rapidly. The vacuum contribution

leads to the same behaviour as when increasing the initial value of mσ. The

highest chosen initial vacuo mass and the inclusion of the vacuum contribu-

tion leads to a phase transition at very high temperature and the condensate

is farthest from being in the chirally restored phase.

The most crossover like trend from the quark case, i.e. mvac
σ = 900 MeV with

the inclusion of the self energy nearly matches the least crossover like trend

in the thermal mesonic sector, that is mvac
σ = 500 MeV without considering

the self energy. These two curves are nearly equal up to T ∼ 210 MeV. From

there on the quark curve approaches the chirally restored phase more steeply.
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At T = 400 MeV the value of the �eld reads σ ∼ 1.4 MeV for the former case

compared to σ ∼ 6.7 MeV for the latter case. However, all three cases dis-

cussed here containing the vacuum contribution do not show an intersection.

The inclusion of the vacuum contribution shifts the curves to higher temper-

atures, whereas the curve with the highest initial sigma meson mass bends

down at higher temperatures, steeper than the others. These behaviours

have not been observed in the quark cases including or neglecting the vac-

uum contribution. There, the trends become slightly more crossover like with

increasing mvac
σ . For mvac

σ = 500 MeV the phase transition in the present case

neglecting the self energy takes place at T ∼ 230 MeV, for mvac
σ = 700 MeV

at T ∼ 240 MeV and for mvac
σ = 900 MeV at T ∼ 245 MeV, i.e. for larger

initial sigma meson mass mσ the chiral transition temperatures rise, but not

that signi�cantly as in the quark sector. Including the vacuum contributions,

for mvac
σ = 500 MeV the phase transition takes place at T ∼ 260 MeV, for

mvac
σ = 700 MeV at T ∼ 305 MeV and for mvac

σ = 900 MeV at T ∼ 360 MeV.

Comparing the phase transition di�erences ∆Tc in temperature, the ther-

mal di�erences, neglecting the vacuum term, are signi�cantly smaller in the

mesonic sector when changing the initial value of the sigma meson mass,

230 ≤ ∆pt ≤ 245 MeV for the mesonic case and 130 ≤ ∆pt ≤ 205 MeV for the

quark case in section 4.4. ∆pt marks the di�erences around the phase transi-

tion. The same behaviour can be observed when including the vacuum term.

Here 260 ≤ ∆pt ≤ 360 MeV for the mesonic case and 163 ≤ ∆pt ≤ 233 MeV

for the quark case (section 4.4), see also Table 4.1.

The chiral condensate does not vanish entirely, so that there the system is

signi�cantly away from a chirally restored phase then compared to the quark

sector for temperatures up to 400 MeV.
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Figure 4.7: The sigma meson mass mσ as a function of temperature without

(denoted as �th�) and with vacuum contribution (denoted as �th+vac�) for

three di�erent values of the initial vacuo sigma meson mass mσ.

Figure 4.7 shows the mass of the sigma mesons as a function of the tem-

perature, neglecting (denoted as �th�) and including (denoted as �th+vac�)

the vacuum term. The value of the minimum in the thermal case (ne-

glecting the self energy) for the initial value of mvac
σ = 500 MeV reads

T = 230 MeV and mσ = 290 MeV, for mvac
σ = 700 MeV the tempera-

ture is located at T = 238 MeV and the sigma meson mass mσ = 324 MeV.

For mvac
σ = 900 MeV, T = 245 MeV and mσ = 355 MeV.

Inclusion of the self energy leads to the values T = 260 MeV and mσ =

320 MeV for mvac
σ = 500 MeV, T = 305 MeV and mσ = 414 MeV for

mvac
σ = 700 MeV and T = 360 MeV and mσ = 510 MeV for mvac

σ = 900 MeV.

Studying the thermal case, the minima are quite close together (230 ≤ T ≤
245 MeV and 290 ≤ mσ ≤ 355 MeV), whereas the inclusion of the self energy

leads to a decisive stretching of the temperature region for varying vacuum
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sigma meson masses (260 ≤ T ≤ 360 MeV and 320 ≤ mσ ≤ 510 MeV). The

rise of all curves at high temperatures is clearly less steep then in the quark

case (section 4.4).
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Figure 4.8: The pion mass mπ as a function of temperature without (denoted

as �th�) and with vacuum contribution (denoted as �th+vac�) for three dif-

ferent values of the initial vacuo sigma meson mass. At T ∼ 50 MeV the

curves start to deviate from the vacuum mass of the pion. Some curves show

a minimum, which cannot be back traced to the behaviour of the �elds and is

rather a feature of the distribution function eq. 4.47.

Figure 4.8 shows the behaviour of the pion mass for the three di�erent values

of the sigma meson mvac
σ , neglecting and including the vacuum contribution

of the mesons. Compared to the quark case (section 4.4) all the mesonic

pion-mass curves start to deviate from their vacuum value at T ∼ 50 MeV

already before the phase transition takes place, so that this behaviour cannot

be backtraced to the trend of the respective �elds in �g. 4.6. In contrast to

the quark case some of these curves also show a negative slope. For mvac
σ ≥
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700 MeV, the curves clearly show a minimum. This is also the case when

including the vacuum �uctuations, at a larger value of the initially chosen

sigma meson mass, mvac
σ ∼ 900 MeV. As we shall see, the appearance of a

minimum in the pionic mass spectrum in�uences the thermodynamics in a

nontrivial manner. Another important di�erence to the quark case is that the

masses of the degenerate mesons are only half as heavy at high temperatures.

Within the 2PI formalism we only reach 500 ≤ mπ,σ ≤ 600 MeV, whereas in

the quark case masses of ∼ 1.2 GeV have been achieved.
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Figure 4.9: The negative of the potential, i.e. the pressure, divided by T 4 as a

function of temperature without (denoted as �th�) and with vacuum contribu-

tion (denoted as �th+vac�) for three di�erent values of the initial vacuo sigma

meson mass mvac
σ . The curves show a deviation from the Stefan Boltzmann

limit at high temperatures.

The pressure of the mesonic contribution divided by T 4 provided by the

CJT formalism is shown in �g. 4.9. All curves neglecting the self energy

start to rise signi�cantly at T ' 30 MeV, whereas the inclusion of the self
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energy causes the pressure to rise at already T ' 20 MeV. Neglecting the

vacuum term, for mvac
σ = 500 MeV the curve rises nearly monotonically up

to T ' 250 MeV and slowly decreases for higher temperatures failing to

approach the Stefan Boltzmann limit (up to 23% deviation), that is eq. 4.7

with ξm = 4. This is because the �eld σ does not fully reach the value of a

chirally restored phase, see �g. 4.6, and all relevant degrees of freedom aquire

a thermal mass. The larger the chosen mass of the sigma meson, the less

pressure the system 3 has at a given temperature, which is in accordance with

our observation in the quark case (section 4.4), and due to the same reasons

discussed in section 4.4.2 reasonable. The deviation from a monotonically

trend of the curves for higher chosen mass mvac
σ ≥ 500 MeV goes along with

the non-monotonically behaviour of the sigma meson mass shown in �g. 4.7.

The higher the vacuum mass of the sigma meson, the more pronounced is the

minimum implying a deviation from a monotonically trend of the pressure.

Connected to that is the strange behaviour of the pion mass, shown in �g. 4.8.

When the mass of the pion starts to rise less steeply, becomes constant or

even gets less heavy with rising temperature (this happens around the phase

transition), the ratio of p/T 4 is immediately a�ected via these features. In

the quark sector all pressure curves rise monotonically, see �g. 4.18. There

the relevant degrees of freedom are obtained around the phase transition. In

the mesonic sector the Stefan Boltzmann limit is not reached. Inclusion of

the self energy shifts all curves to the left, yielding a higher pressure at given

temperature, which is opposite to the feature seen in the quark case (section

4.4). The pressure is found to be closest to the Stefan Boltzmann limit for

a higher mass of mvac
σ . Speaking of a chiral limit is, however, doubtful, since

all curves show no asymptotic behaviour. The irregularities in the curves

are mainly resulting from the odd behaviour of the pion mass, which itself

is connected to the sigma mass (remember that the gap equations 4.44, 4.45

and 4.46 are coupled equations). In the quark sector the masses of the

mesons are generated by the �elds and its coupling, and are independent of

temperature, whereas in the mesonic sector the mass term in the distribution

function, equation 4.47, itself is dependent on temperature. That is, eq. 4.45

enters in the distribution function, either in the temperature dependent part,
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eq. 4.48 and, including the vacuum term, also in the vacuum part eq. 4.102.

This also leads to the fact, that for the mesonic case there exists no analytic

expression for the entropy density s.
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Figure 4.10: The entropy density s divided by T 3 as a function of temperature

without (denoted as �th�) and with vacuum contribution (denoted as �th+vac�)

for three di�erent values of the initial vacuo sigma meson mass mvac
σ . The

curves are clearly more distorted then in the quark case (�g. 4.19) and show

accentuated maxima within a small region of the temperature.

The entropy density divided by T 3 is shown in �g. 4.10, related to the deriva-

tion of the potential with respect to the temperature, in �g. 4.9, the accen-

tuated maxima for all of these curves can hence be traced back to the odd

behaviour of the potential. When the pressure rises disproportional a drastic

increase in the entropy density is seen. As soon as the pressure reaches the

maximum towards the Stefan Boltzmann limit, the entropy density decreases

drastically, too, to eventually saturate towards the Stefan Boltzmann limit.

This feature can be explained as follows:
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The disorder within the system rises because the sigma meson mass is at its

point of in�ection. Here the pion mass does not rise anymore, i.e. it nearly

stays constant. At the very point of in�ection of the sigma meson mass

the entropy is maximal. As soon as the mass of the pion rises again to be-

come degenerate with the sigma meson mass, the entropy density approaches

asymptotically the Stefan Boltzmann limit. A detailed analysis of the quark

case in the next section 4.4 shows the same relation of the meson masses to

the entropy. There the e�ect is not that visible because the mass of the pion

rises considerably after the phase transition (and does not remain constant

as in the mesonic case), which also leads to the missing of the �spikes� in the

entropy to T 3 ratio in the quark sector.

4.4.

Quark-quark interactions

A Lagrangian [37]11 with Nf = 2 respecting quark �elds may be written as

L = Ψ̄ (i��∂ − g(σ + iγ5~τ · ~π)) Ψ (4.106)

+
1

2
(∂µσ∂

µσ + ∂µ~π∂
µ~π)− U(σ, ~π)

where g is a Yukawa type coupling to the quark spinors Ψ, Ψ̄ and U(σ, ~π)

is the same tree level potential as given in equation 4.16. The respective

Feynman diagrams resulting from the quark-meson interaction can be seen

in �gure 4.11.

Instead of using a CJT-type formalism, the quark-quark interaction is derived

commonly with the path integral formalism12 with the mesons as classical

background �elds.

11See section 5 for a more detailled treatment and motivation of the terms involved in
the Lagrangian.

12A detailled path integral calculation within this thesis is performed for the more
lavorious and relevant SU(3) case in section 5. The SU(2) calculation can then easily be
retraced.
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∼ λ

gΨ̄σΨ

∼ λ

gΨ̄γ5~τ~πΨ

Figure 4.11: Left picture: A propagating quark without any interaction, so

called free propagator. Middle: a propagating quark interacting with a sta-

tionary sigma meson �eld. Right: A propagating quark interacting with a

pion. The formulae in the upper middle of each picture depicts how each

term in the Lagrangian can be translated into a Feynman diagram. g couples

the quarks to the mesons and the vertex is proportional to the coupling λ.

The grand canonical potential then reads

Ωq̄q = U(σ, ~π)−NfNcT

∫ ∞
0

dk3

(2π)3

[
Ek
T

+ ln
[
1 + e−β(Ek±µf )

]]
(4.107)

The thermal contribution to the potential is

Ωth
q̄q =

3T

π2

∫ ∞
0

dkk2 ln
[
1 + e−β(Ek±µf )

]
(4.108)

where the single particle energy

Ek =
√
k2 + m̃2

f with m̃f = g
√

(σ2 + π̃2) (4.109)

as the e�ective mass m̃f with the Yukawa type coupling g = mq,vac
fπ

cor-

responding to the constituent quark mass mq,vac = 300 MeV and the al-

ready known pion decay constant fπ = 92.4 MeV, have been introduced.

f represents the two quark �avours incorporated in the model and µf is

the �avour dependent quark chemical potential. The vacuum contribution

Ωvac
q̄q =

∫
dk3

(2π)3
Ek will be treated in the next section 4.4.1. To solve the cou-

pled gap equations at �nite T where both particle- and antiparticle states

are considered, one needs �rstly to �x the vacuum values for λ, H and v2.

To �x these values one needs the derivatives of Ωq̄q at T = 0 with respect to
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the �leds σ and ~π.

The �rst derivatives read:

∂Ωq̄q

∂σ

∣∣∣∣
T=µ=0

=
∂U(σ, ~π)

∂σ

∣∣∣∣
π=0

= λ(σ2 − v2)σ −H (4.110)

∂Ωq̄q

∂π

∣∣∣∣
T=µ=0

=
∂U(σ, ~π)

∂~π

∣∣∣∣
π=0

= λ(π2 + σ2 − v2)π (4.111)

Note, that the �rst derivative of Ω with respect to π yields zero. This is rea-

sonable, since the π does not condensate due to parity. The second derivatives

are consequently:

∂2Ωq̄q

∂σ2

∣∣∣∣
T=µ=0

=
∂U2(σ, ~π)

∂σ2

∣∣∣∣
π=0

(4.112)

= λ(3σ2 − v2) = m2
σ,vac. = 550 MeV

∂2Ωq̄q

∂π2

∣∣∣∣
T=µ=0

=
∂U2(σ, ~π)

∂~π2

∣∣∣∣
π=0

= 0 (4.113)

= λ(σ2 − v2) = m2
π,vac. = 135 MeV

i.e. the �rst derivatives give the minimum of the potential, which actually

is the true ground state of a particle (remember the disccussion in section

3.6.5) and the second derivatives yield the respective masses of the particles.

Using eqs.: 4.110, 4.112 and 4.113 one can extract the values for

H = m2
πfπ (4.114)

λ =
m2
σ −m2

π

2fπ
(4.115)

v2 = f 2
π −

m2
π

λ
or: v2 = 3f 2

π −
m2
σ

λ
(4.116)

Including the tree level potential and only the thermal contributions from
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Ωq̄q the �rst derivative with respect to σ is

∂Ωth
q̄q

∂σ

∣∣∣∣
T,µ6=0

= λ(σ2 − v2)σ −H (4.117)

+
3gσ

π2

∫ ∞
0

dk
k2

Ek
· 1

1 + eβ(Ek±µf )

The second derivatives including the thermal contribution read

∂2Ωth
q̄q

∂σ2

∣∣∣∣
T,µ6=0

= M2
σ = λ(3σ2 − v2) (4.118)

+
3g2

π2

∫ ∞
0

dkk2

(
1

Ek
− g2σ2

Ek
3
2

)
× 1

1 + eβ(Ek±µf )
− g2σ2eβ(Ek±µf )

TEk
2(1 + eβ(Ek±µf ))2

∂2Ωth
q̄q

∂π2

∣∣∣∣
T,µ6=0

= M2
π = λ(σ2 − v2) (4.119)

+
3g2

π2

∫ ∞
0

dkk2

(
1

Ek
− g2~π2

Ek
3
2

)
× 1

1 + eβ(Ek±µf )
− g2π2eβ(Ek±µf )

TEk
2(1 + eβ(Ek±µf ))2

and yield the masses of the corresponding particles13.

The equations 4.117, 4.118 and 4.119 represent the gap equations in the

thermal quark sector for Nf = 2, which are to be solved self-consistently.

Note that, due to < ~π >= 0 not all terms contribute to the Integral in

equation 4.119. Figure 4.12 shows the values of the σ condensate up to

T = 400 MeV. At large T chiral symmetry is restored, i.e. the condensate

vanishes. The corresponding potential Ω as a function of the order parameter

σ can be seen in the �gures 4.13 for µ = 0 and in 4.14 for µ = 100 MeV,

where the respective minima matches the values in �gure 4.12. For small

temperature the mexican hat like potential (Remember the discussion in

section 3.6.5, i.e. �gure 3.6) is clearly to be seen.

13This feature can be understood as how much energy is needed to �climb� up the
potential wall (Recall that E = mc2) in σ direction.
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Figure 4.12: The σ �eld as function of the Temperature in the SU(2) case con-

sidering quark-quark interactions with stationary mesonic background �elds

at two di�erent values of µ. The respective values mq,vac = 300 MeV,

mσ = 600 MeV, fπ = 92.4 MeV are the standard values. The curve rep-

resents the minimum of the potential at any given T.

The physical interpretation of the `mexican hat potential is that the sigma

�lies� in a circle around the origin (see �gure 4.1), which is its true ground

state. The explicit symmertry breaking term H gives an nonvanishing mass

to the pion, see the discussion in section 3.6.6 and also �gure 3.7.
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Figure 4.13: The curves show the minima of the potential at di�erent T for

the parameter choice mq,vac = 300 MeV, mσ = 600 MeV, fπ = 92.4 MeV.

µ = 0 in all cases. For a better understanding compare to �gs.: 3.6 and 3.7.
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Figure 4.14: The curves show the minima of the potential at di�erent T for

the parameter choice mq,vac = 300 MeV, mσ = 600 MeV, fπ = 92.4 MeV.

µ = 100 MeV in all cases. For a better understanding compare to �gs.: 3.6

and 3.7.
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4.4.1.

Vacuum �uctuations of quarks

Like in the bosonic case in section 4.3.1, a proper renormalisation of the one-

loop contribution leads to a fermionic vacuum contribution to the in-medium

e�ective potential, see �gure 4.5. Consequently one expects contributions in

particular for large chemical potential and high temperatures. So, vacuum

terms from both fermionic and bosonic �elds can change qualitatively the

process of the order parameter and the mass spectrum. The fermion vacuum

contribution from equation 4.107 can also be obtained by the dimensional

regularization scheme, which for fermions is derived similar as been performed

in section 4.3.1 for the mesons. Here only the result shall be given

Ωvac
q̄q =

∫
dk3

(2π)3Ek → Ωdr
q̄q = −NcNf

8π2
m̃4
f ln

(
m̃f

Λ

)
(4.120)

where Λ is the renormalization scale parameter (corresponding to µ in the

mesonic case and not to be messed up with the chemical potential µ). The

values of the parameters λ, H and v2, i.e. equations 4.114, 4.115 and 4.116,

then no longer represent vacuum solutions. They have a logarithmic depen-

dence on the renormalization scale Λ and have to be replaced by renormalized

ones, which have to be extracted from the derivatives of the whole poten-

tial 4.107 (the one including the vacuum contributions). To determine the

renormalized parameters the vacuum loop part from equation 4.120

Ωdr
q̄q = −NcNf

8π2
m̃4
f ln

(
m̃f

Λ

)
has to be derived with respect to the �elds. The equations 4.110, 4.112 and

4.113 then are additive14. De�ning φ2
i = σ2 + ~π2 respresentaive for the two

14Analoguous to the considerations on additivity in section 4.2
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contributing �elds σ and ~π and m̃2
f = g2φ2

i the �rst derivative becomes

∂Ωdr
q̄q

∂φi
=

∂Ωdr
q̄q

∂m̃2
f

∂m̃2
f

∂φi

= −NcNf

8π2

2m̃2
f

∂m̃2
f

∂φi
ln


√
m̃2
f

Λ

+ (m̃2
f )

2 Λ√
m̃2
f

1

Λ

1

2
√
m̃2
f

∂m̃2
f

∂φi


= −NcNf

8π2

2m̃2
f

∂m̃2
f

∂φi
ln


√
m̃2
f

Λ

+
m̃2
f

2

∂m̃2
f

∂φi


∂Ωdr

q̄q

∂σ
= −NcNf

8π2

[
2g2σ22g2σ ln

(
m̃f

Λ

)
+
g2σ2

2
2g2σ

]
∂Ωdr

q̄q

∂σ
= −NcNf

8π2
g4σ3

[
4 ln

(
m̃f

Λ

)
+ 1

]
(4.121)

Since ~π = 0, its �rst derivative vanishes and is hence needless. The second

derivatives then are

∂2Ωdr
q̄q

∂φ2
i

= −NcNf

8π2

[
2m̃2

f

∂2m̃2
f

∂φ2
i

ln

(
m̃2
f

Λ

)
+ 2

(
∂mf

∂φi

)2

ln
(mf

Λ

)
+

3

2

(
∂mf

∂φi

)2

+
m̃2
f

2

∂2m̃2
f

∂φ2
i

]

= −NcNf

8π2

[
3

2

(
∂m2

f

∂φi

)2

+
m̃2
f

2

∂2m̃2
f

∂φ2
i

+ 2 ln

(
m̃f

Λ

)[(
∂m2

f

∂φi

)2

+ m̃2
f

(
∂2m̃2

f

∂φ2
i

)]]
∂2Ωdr

q̄q

∂σ2
= −NcNf

8π2

[
3 · 4

2
g4σ2 +

g2σ2

2
2g2 + 2 ln

gσ

Λ

(
4g4σ2

)
+ 2g2g2σ2

]
∂2Ωdr

q̄q

∂σ2
= −NcNf

8π2
g4σ2

[
7 + 12 ln

(
m̃f

Λ

)]
and (4.122)

∂2Ωdr
q̄q

∂~π2
= −NcNf

8π2

[
3 · 4

2
g2~π2 +

2g2 (σ2 + ~π2) g2

2
+ 2 ln

(
m̃f

Λ

)[
4g4~π2 + 2g2

(
σ2 + ~π2

)
g2
]]

∂2Ωdr
q̄q

∂~π2
= −NcNf

8π2
g4σ2

[
1 + 4 ln

(
m̃f

Λ

)]
(4.123)

Combining the vacuum contributions of the linear sigma potential, i.e. equa-

tions 4.110, 4.112, 4.113, with 4.121, 4.122 and 4.123, and inserting the corre-

sponding vacuum values for < σ >= fπ, mσ = 550 MeV and mπ = 138 MeV

leads to modi�ed renormalized vacuum terms λ → λr, m2 → m2
r and
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H → Hr.

0 = −NcNf

8π2
g4σ3

[
4 ln

(
m̃f

Λ

)
+ 1

]
+ λrf

3
π +m2

rfπ −Hr (4.124)

m2
σ = −NcNf

8π2
g4σ2

[
7 + 12 ln

(
m̃f

Λ

)]
+ 3λrf

2
π +m2

r (4.125)

m2
π = −NcNf

8π2
g4σ2

[
1 + 4 ln

(
m̃f

Λ

)]
+ λrf

2
π +m2

r (4.126)

Substracting 4.126 from 4.125 gives

m2
σ −m2

π = −NcNf

8π2
g4f 2

π

[
6 + 8 ln

(
m̃f

Λ

)]
+ 2λrf

2
π (4.127)

Solving for λr yields

λr =
m2
σ −m2

π

2f 2
π

+
NcNf

8π2
g4

[
3 + 4 ln

(
gfπ
Λ

)]
(4.128)

Placing equation 4.128 in 4.125 gives15

m2
r =

NcNf

4π2
g4f 2

π +
m2
σ − 3m2

π

2
(4.129)

Putting these values back in 4.124 gives Hr = m2
πfπ = H. The explicit

symmety breaking term again remains una�ected by renormalization, such

as in the bosonic case (equation 4.105). Placing the renormalized values into

the whole temperature-independent potential, i.e. eqs. 4.16 and 4.120, the

renormalization scale Λ dependence cancels out in λr, so that

λr =
m2
σ

2f 2
π

− H

2f 3
π

+
3

8

NcNf

π2
g4 (4.130)

15It can of course also be placed in 4.126
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and after having rearranged the terms, the vacuum part plus the linear sigma

part of the potential eventually reads

Ωdr
q̄q + U (σ, ~π) = −NcNf

8π2
m̃4
f ln

(
m̃f

gfπ

)
+

λr
4

(
σ2 + ~π2

)2
+
m2
r

2

(
σ2 + ~π2

)
−Hσ (4.131)

and, including the thermal part, everything together reads

Ωqq̄ = Ωdr
q̄q + Ωth

q̄q + U(σ, ~π) = −NcNf

8π2
m̃4
f ln

(
m̃f

gfπ

)
(4.132)

− 3T

π2

∫ ∞
0

dkk2 ln
[
1 + e−β(Ek±µf )

]
+

λr
4

(
σ2 + ~π2

)2
+
m2
r

2

(
σ2 + ~π2

)
−Hσ

The whole potential is independent of any renormalization.

The vacuum contributions to each the thermal gap equation (4.117, 4.118

and 4.119) is additive.

∂Ωdr
q̄q

∂σ
= −NcNfg

4σ3

8π2

[
1 + 4 ln

(
σ

fπ

)]
(4.133)

∂2Ωdr
q̄q

∂σ2
= −NcNfg

4σ2

8π2

[
7 + 12 ln

(
σ

fπ

)]
(4.134)

∂2Ωdr
q̄q

∂~π2
= −NcNfg

4σ2

8π2

[
1 + 4 ln

(
σ

fπ

)]
(4.135)

4.4.2.

Results in the quark sector

Figure 4.15 shows the order parameter σ as a function of the temperature for

three di�erent initial vacuo sigma meson masses mvac
σ , neglecting (denoted in

the following �gures as �th�) and including (denoted in the following �gures

as �th+vac�) the vacuum term of the quarks.
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Figure 4.15: The σ condensate as a function of temperature for zero chemical

potential without (denoted as �th�) and with vacuum contribution (denoted as

�th+vac�) for three di�erent values of the vacuo sigma meson mass mvac
σ . A

higher value of mvac
σ shifts the phase transition to higher temperatures in the

thermal case, and also in the vacuum contributing case. The incorporation

of the vacuum term at a given value of mvac
σ leads to a smoother crossover,

where the phase transition is located at a higher temperature. Neglecting the

vacuum term at the lowest choice of mvac
σ shows a curve where the phase

transition is nearly �rst order, whereas a high vacuo mass mvac
σ accompanied

with the inclusion of the vacuum term leads to the smoothest behaviour and

the highest transition temperature.

We �nd that with increasing vacuo σ meson mass mvac
σ the phase transition

in the thermal case is shifted to higher temperatures and becomes slightly

more crossover like, whereas smaller values of mvac
σ lead to a behaviour close

to �rst order phase transition, which is not achieved even for our lowest

choice of mvac
σ = 500 MeV. For this choice the phase transition takes place
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at T ∼ 130 MeV, whereas for mvac
σ = 700 MeV at T ∼ 165 MeV and for

mvac
σ = 900 MeV at T ∼ 205 MeV, i.e. the larger the sigma meson mass mvac

σ

the higher are the chiral transition temperatures. The curves containing the

vacuum contribution show the same behaviour, only the trends are notice-

able more crossover like, and shifted to higher transition temperatures with

increasing values of mvac
σ . With vacuum contribution and the initial value

of mvac
σ = 500 MeV the phase transition takes place at T ∼ 163 MeV, for

mvac
σ = 700 MeV at T ∼ 198 MeV and for mvac

σ = 900 MeV at T ∼ 233 MeV.

The thermal curve with mvac
σ = 700 MeV intersects the vacuum contributing

curve with mvac
σ = 500 MeV at T = 172 MeV and σ = 22 MeV.

In summary a lower mass of the sigma meson mass and neglecting the vac-

uum term leads to a trend close to a �rst order phase transition at relatively

low chiral transition temperatures, whereas a highermvac
σ and the inclusion of

the vacuum term shifts the curves considerably to higher temperatures, i.e. a

noticeable smoother behaviour with a higher chiral transition temperatures.

Because of the explicit symmetry breaking term H, the thermal quarks with-

out (th) and with (th+vac) vacuum term condensate does not vanish entirely

in the restored phase at high temperature, it approaches σ ∼ 1 MeV for all

choices of mvac
σ , which is however considerably quite close to the chiral limit.

A �rst order phase transition can be achieved in the chiral limit for H = 0

[34, 36].

The behaviour of the order parameter within our parameter range can be

translated to the behaviour of the masses as a function of the temperature,

see �g. 4.16 for the sigma meson mass spectrum, and �g. 4.17 for the pion

mass spectrum. A �rst order transition would cause the sigma meson mass to

vanish at the phase transition point, i.e. at the respective minimum, which

is clearly not the case in �g. 4.16, and furthermore cause the pion mass to

jump at the transition from a lower mass to a larger one, which is also not

the case in �gure 4.17.
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Figure 4.16: The sigma meson mass mσ as a function of temperature for zero

chemical potential without (denoted as �th�) and with vacuum contribution

(denoted as �th+vac�) for three di�erent values of the vacuo sigma meson

mass mvac
σ . The larger the value of mvac

σ the smoother is the behaviour of the

thermal mass spectrum, which is shifted to higher temperatures. The thermal

curves show a relatively pronounced minimum, which indicates the chiral

phase transition point. Inclusion of the vacuum term leads to a less distinctive

decrease of the sigma meson mass which is shifted to higher temperatures.

For mvac
σ = 500 MeV, when neglecting the vacuum term, both curves for

the sigma and the pion mass come (within our chosen parameter range) as

close as possible to the chiral limit. That is, the respective minimum in

�g. 4.16 is the most spiky one at the lowest attainable mass, T = 130 MeV

and mσ = 120 MeV, and the pion mass nearly jumps vertically in �g. 4.17.

Raising the initial value of the vacuum sigma meson mass causes the respec-

tive minima to be slightly less spiky and located at higher temperatures and

higher sigma meson mass (T = 165 MeV,mσ = 185 MeV formvac
σ = 700 MeV
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and T = 205 MeV, mσ = 243 MeV for mvac
σ = 900 MeV). The inclusion of

the vacuum contribution for all values of the initial vacuo mass mvac
σ leads to

a less distinctive decrease of the curve up to the minimum, going along with

a clearly less spiky minimum, which is also located at higher temperatures

and higher mσ compared to the respective thermal value, i.e. when neglect-

ing the vacuum term. The minimum values including the vacuum term for

mvac
σ = 500 MeV are T = 163 MeV, mσ = 287 MeV, for mvac

σ = 700 MeV the

transition temperature is located at T = 198 MeV and the sigma meson mass

mσ = 310 MeV. For mvac
σ = 900 MeV, T = 233 MeV and mσ = 336 MeV.

Like in the thermal case, the inclusion of the vacuum term causes the phase

transition to be at higher temperatures, but also at a higher mass of the

sigma meson in medium. For all the chosen initial vacuum masses mvac
σ the

minima shift in a similar manner in �g. 4.16.

Note, that all masses increase approximately linear at high temperatures.

The initial vacuum mass of the sigma meson mvac
σ is furthermore directly

related to the parameters λ, m2 and H, according to eqs. 4.114, 4.115 and

4.116 for the thermal case, and to eqs. 4.129 and 4.130 including the vacuum

contribution 16. These parameters are mainly responsible for the potentials

depth (the case when investigating the potential as a function of the �eld σ

(Ωq̄q(σ)) at �xed temperature) and thereby for spontaneous symmetry break-

ing. The respective minimum of each curve in �g. 4.16 therefore represents

the point of the chiral phase transition. From there on the mass of the sigma

and the pion start to be degenerate. When the order parameter σ reaches

approximately the chiral limit, the quarks become nearly massless and the

mesons heavy.

The pion mass as a function of the temperature is shown in �g. 4.17. The

curves behave in accordance with the one of the di�erent �elds (�g. 4.15)

and with the one of the sigma meson mass (�g. 4.16). Increasing mvac
σ in

the thermal case causes the pion mass to increase at higher temperatures in

combination with a softer rise of the mass around the respective transition

16Remember that Hr = m2
πfπ = H and the discussion at the beginning of chapter 4.3

on the relation between λ and the mass term m.



Thermal evolution of massive compact strange objects 89

temperature. The inclusion of the self energy causes a softer rise with tem-

perature, so that the the highest chosen mvac
σ including the self energy shows

the softest increase of the pion mass spectrum, starting around the highest

transition temperature. For the lowest chosen value ofmvac
σ = 500 MeV when

neglecting the self energy the curve rises the steepest at the transition.
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Figure 4.17: The pion mass mπ as a function of temperature for zero chemical

potential without (denoted as �th�) and with vacuum contribution (denoted as

�th+vac�) for three di�erent values of the initial vacuo sigma meson mass

mvac
σ . The curves start to deviate from the initial mass of the pion, mπ =

138 MeV, becoming larger when the chiral phase transition sets in. These

features are directly related to the behaviour of the corresponding �elds in

�g. 4.15 and furthermore with the respective minimum of the temperature

dependent sigma meson mass shown in �g. 4.16.

From the phase transition point on the mass of the pion becomes equal to

the mass of the sigma. At T = 400 MeV sigma and pion masses of ∼1.2 GeV
are achieved. The physical interpretation of this feature is that at high
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temperatures the quarks behave more and more like a massless free Fermi gas

generating highly massive mesons. The highest masses at T = 400 MeV are

attained when considering a small initial sigma meson mass and neglecting

the self energy, then mσ = mπ = 1.25 GeV. The inclusion of the self energy

and the highest chosen sigma meson mass in vacuo, mvac
σ = 900 MeV, lead to

mσ = mπ = 1.1 GeV. For all initial vacuum sigma meson masses the inclusion

of the vacuum contribution leads to degenerate masses of the sigma and the

pion ∼ 40 MeV smaller compared to the case when neglecting the vacuum

contribution. The pions and the sigmas gain mass with temperature, and

become degenerate due to the restoration of chiral symmetry. The conclusion

is, that the lighter the initial mass of the sigma, the heavier it gets at high

temperatures, which can be observed in �gs. 4.16 and 4.17.

Figure 4.18 shows the pressure of the three di�erent initial sigma meson

masses including and neglecting the vacuum contributions. All curves rise

monotonically, but in the temperature region 100 MeV≤ T ≤ 350 MeV the

curves separate in a sense that the pressure becomes smaller with increasing

value of the initial vacuum sigma meson mass. The inclusion of vacuum

�uctuations intensi�es this trend at given mvac
σ , so that the pressure within

this temperature range is smallest for high mvac
σ and inclusion of the self

energy. The higher the initial mass of the sigma, the less pronounced are the

e�ects from the inclusion of the vacuum �uctuations. For high temperatures

all curves approach the Stefan Boltzmann limit, i.e. eq. 4.7, where ξf =

4NcNf (the factor four represents particle- and antiparticle contributions

and the corresponding spin of the particle), quite close (up to 99.5%).
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Figure 4.18: The negative of the potential, i.e. the pressure, divided by T 4

as a function of temperature for zero chemical potential without (denoted as

�th�) and with vacuum contribution (denoted as �th+vac�) for three di�erent

values of the initial vacuo sigma meson mass mvac
σ . The curves are nearly

equal to one another up to T ∼ 100 MeV, where they split up to �nally

saturate at the Stefan Boltzmann limit, eq. 4.7.

This feature implies, that in each considered case the quarks behave like a

nearly massless free fermi gas at very high temperatures with all the con-

sidered degrees of freedom involved. For the smallest value of the initial

vacuum sigma meson mass mvac
σ = 500 MeV and neglecting the vacuum

contribution, the quarks reach the limit at the lowest temperature, whereas

the inclusion of the vacuum contribution at mvac
σ = 500 MeV pushes down

the curve within the temperature region 100 MeV≤ T ≤ 350 MeV. This

statement is valid for allmvac
σ , and can be understood as an intrinsic property

of the self energy. The quarks struggle more to become massless, because

the intrinsic self energy rises their own mass. This matches the statement



Thermal evolution of massive compact strange objects 92

concerning the respective mass spectrum of the sigma and the pion at high

temperature and can also be observed from the behaviour of the σ �elds

in �g. 4.15. There the inclusion of the self energy causes the �eld to reach

the chiral limit somewhat later. Recalling that the e�ective mass of the

quarks is generated through the coupling g and the �elds, see eq. 4.109, in

the potential, eq. 4.108, this conclusion is not surprising.
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Figure 4.19: The entropy density s divided by T 3 as a function of temperature

for zero chemical potential without (denoted as �th�) and with vacuum con-

tribution (denoted as �th+vac�) for three di�erent values of the initial vacuo

sigma meson mass mvac
σ . The curves are nearly equal to one another up to

T ∼ 100 MeV where they split up to �nally saturate at the Stefan Boltzmann

limit.

Figure 4.19 shows the entropy density divided by T 3 of the three di�erent

initial sigma meson masses mvac
σ including and neglecting the vacuum con-

tributions. The curves also rise monotonically as the pressure does, and as

they should due to the Gibbs-Duhem relation, eq. 4.2. The entropy density
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for small mvac
σ and without the vacuum term has higher values at a given

temperature compared to the cases with high initial vacuum mass mσ and

the inclusion of the self energy. This feature stems from the fact, that the

disorder in the system gets larger, the more freely the quarks are. Remember,

that the heavier the initial vacuum value mvac
σ , the later the quarks reach the

chiral limit, leading to heavier quarks at given temperature. The inclusion of

the self energy term ampli�es this e�ect, for low mvac
σ more signi�cantly than

for large mvac
σ . The approach to the Stefan-Boltzmann limit indicates the

chiral phase transition, where the system acts with all considered massless

degrees of freedom. From the chiral phase transition on, the ratio of the

entropy remains approximately constant to T 3, the quarks cannot become

lighter than (nearly) massless and the entropy can not increase any further,

i.e. no other degrees of freedom than the considered ones can appear.

4.5.

Combining interactions between Quarks and

Mesons

Since the grand canonical potential is an intensive quantity, it is additive, and

so are the respective gap equations of the corresponding previous sections,

where we investigated mesonic interactions and quark-quark interactions.

This section now combines both approaches to an uni�ed set of equations.

Here we will treat the thermal contributions only, whereas the following sec-

tion includes the vacuum �uctuations of the quark sector. The potential is

a sum of the independent potentials, i.e. eq. 4.33 and eq. 4.107 (including

only once the tree level potential U(σ, ~π)).

Ωth
QAM = Ω2PI(φ,Gσ,π) + Ωth

q̄q (4.136)

Here Ωth
QAM is the thermal part of the combined grand canonical potential of

quarks and mesons (QAM), where only thermal contributions the mesonic

sector, i.e. eq. 4.48 and from the fermionic sector, eq. 4.108, are taken into
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account.

The corresponding vacuum parameters are given by eqs. 4.114, 4.115 and

4.116, since the addition of any thermal part does not in�uence the vacuum

parameters at T = 0.

As mentioned above, all relevant quantities are additive, and so are the vac-

uum contributions. Hence there is no need to regularize and renor-

malize anew17. Both equations for the divergent vacuum contributions, equa-

tion 4.102 and equation 4.120, can be merged into a single set of gap equa-

tions. The potential is the sum of the independent potentials, i.e. equation

4.33 (with both contributions: equations 4.48 and 4.102, i.e. the whole dis-

tribution function from the mesonic sector eq. 4.47 needs to be considered for

Ω2PI(φ,Gσ,π)), 4.107 (including the tree level potential U(σ, ~π)) and 4.120.

Ωqam = Ωth
q̄q + Ωdr

q̄q + Ω2PI(φ,Gσ,π) (4.137)

Certainly the vacuum parameters λ, m2 and H change. They are determined

to be

λ =
m2
σ +m2

π +
NcNf
8π2 g

4σ2
[
6 + 8 ln

(
gσ
Λ

)]
2 (Fdr(m̄σ)− Fdr(m̄π) + σ2)

(4.138)

m2 =
NcNf

8π2
g4σ2

[
7 + 12 ln

(gσ
Λ

)]
− 3λ (Fdr(m̄σ) + Fdr(m̄π)) +m2

σ − 3λσ2 (4.139)

H = −NcNf

8π2
g4σ3

[
1 + 4 ln

(gσ
Λ

)]
+ 3λσ (Fdr(m̄σ) + Fdr(m̄π)) + σ(m2 + λσ2) (4.140)

17Remember the discussion on additivity in section 4.2
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and the corresponding gap equations read

∂ΩQAM

∂σ
= −NcNf

8π2
g4σ3

[
1 + 4 ln

(gσ
Λ

)]
(4.141)

+ 3λσ (F (m̄σ) + F (m̄π)) +m2σ + λσ3 = H

∂2ΩQAM

∂σ2
= −NcNf

8π2
g4σ2

[
7 + 12 ln

(gσ
Λ

)]
(4.142)

+ 3λ (F (m̄σ) + F (m̄π)) +m2 + 3λσ2 = m2
σ

∂2ΩQAM

∂π2
= −NcNf

8π2
g4σ2

[
1 + 4 ln

(gσ
Λ

)]
(4.143)

+ λ (F (m̄σ) + F (m̄π)) +m2 + λσ2 = m2
π

Unfortunately these equations leave us with the possibility of having two

renormalization scales, one from the quark-quark contribution, Λ, and one

hidden in F (m̄σπ), namely µ (see eq. 4.102).

Recall that the chemical potential µ is zero and has so far nothing to do with

the renormalization scale µ.

4.5.1.

Results in the combined sector 1: Quark vac-

uum energy

At �rst we neglect the vacuum contribution from both sectors, which is de-

noted as (usual) �therm� to eventually include the vacuum contributions from

the quark sector only, having the main impact. That is, set Fdr(m̄σ,~π) = 0.

Excluding the mesonic vacuum contribution, the dependence on the renor-

malization scale Λ does not vanish due to the contribution from Ω2PI . We

choose a value of Λ = 1033 MeV due to reasons which will become apparently

clear during the next section 4.5.2, where we discuss the dependence on both

renormalization scales.
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Figure 4.20: The σ condensate in the combined approach as a function of

temperature for zero chemical potential without (denoted as �th�) and with

quark vacuum contribution (denoted as �th+vac�) for three di�erent values of

the initial vacuo sigma meson mass mvac
σ . The value of the renormalization

scale has been chosen to be Λ = 1033 MeV. The larger the value of mvac
σ

the more the phase transition is shifted to larger temperatures. The vacuum

contribution leads to the same behaviour as when raising mvac
σ . All curves

are shifted to larger temperature in a similar manner. A high vacuo mass

mσ accompanied with the inclusion of the self energy leads to the highest

transition temperature. The thermal curve with mvac
σ = 900 MeV intersects

the vacuum contributing curve with mvac
σ = 500 MeV at T = 160 MeV and

σ = 38 MeV.

Figure 4.20 shows the order parameter σ as a function of the temperature

within the combined approach for the choice of the renormalization scale

Λ = 1033 MeV. The larger the value of mσ the farther is the curve shifted to

higher temperatures. The vacuum contribution leads to the same trend as
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when raising the initial value of mvac
σ , so that a high vacuo mass mvac

σ accom-

panied with the inclusion of the self energy leads to the highest transition

temperature. Interesting to note is that all curves are shifted in a similar

manner very much alike as in the quark case, see �g. 4.15. The main dif-

ference to the quark sector is, that all trends are slightly shifted to the left,

i.e. to a smaller transition temperature. This feature is accompanied with

a slightly steeper decrease indicating a �rst order phase transition, which

still is not achieved. This can be traced back to the in�uence of Ω2PI from

the mesonic sector. The thermal curve with mvac
σ = 900 MeV intersects the

vacuum contributing curve with mvac
σ = 500 MeV at T = 160 MeV and

σ = 38 MeV. However, neither the thermal nor the vacuum contributing

curves show an intersection of the thermal curves from the mesonic sector,

see �g. 4.6, which too is an indication that the quarks adopt the dominant

role in the combined approach. Comparing the individual features for initial

sigma meson mass for quarks, mesons and within the combined approach,

the order parameter has been shifted to smaller temperatures and seems to

converge towards a �rst order phase transition, which can be traced back

to the in�uence of the mesonic contribution. Certainly the quarks have a

large in�uence, not only because the curves look much like the ones from

�g. 4.15 but also because quarks can gain a large amount of energy through

the temperature and can therefore sooner reach the chiral phase transition.
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Figure 4.21: The sigma meson mass mσ in the combined approach as a func-

tion of temperature for zero chemical potential without (denoted as �th�) and

with quark vacuum contribution (denoted as �th+vac�) for three di�erent val-

ues of the initial vacuo sigma meson mass mvac
σ . The value of the renormal-

ization scale has been chosen to be Λ = 1033 MeV. The curves are similar

to the curves obtained for the quark case in �g. 4.16, which indicates the

dominance of the quark contribution over the mesonic case.

The sigma meson mass as function of the temperature is plotted in �g. 4.21.

The curves are quite similar to the curves obtained for the quark case in

�g. 4.16 and the minima are closer to the values from the quark sector then

from the mesonic sector, see table 4.1. For mvac
σ = 500 MeV the values (and

the whole curve) are quite similar, but increasing the mass of the initial vac-

uum mass mvac
σ drives the minima slightly apart, indicating that the meson

contribution gains in�uence.

Table 4.1 shows the minimal value of the sigma meson mass in medium for

thermal quarks, thermal mesons and for the combined approach. With or
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mvac
σ TM, section 4.3 TQ, section 4.4 TQM, section 4.5

T mσ T mσ T mσ

500(th) 230 290 130 120 118 150
500(th+vac) 260 320 163 187 166 285

700(th) 238 324 165 185 143 214
500(th+vac) 305 414 198 310 185 316

900(th) 245 355 205 243 165 267
500(th+vac) 360 510 233 336 201 344

Table 4.1: The minimal mass for the σ-meson for all three di�erent ap-
proaches, i.e. thermal mesons (TM) with and without vacuum term (sec-
tion 4.3), thermal quarks (TQ) with and without vacuum term (section 4.4)
and and thermal quarks and mesons combined (TQM) (section 4.5). All
values are given in MeV.

without the vacuum term the minima of the combined approach are closer to

the values of the thermal quarks then to the values for thermal mesons. The

impact of the thermal mesons shifts the minima of the combined approach

to lower temperatures at similar in medium masses, that is a crossover phase

transition at lower temperatures. This feature can also be observed when

investigating the order parameter for �xed mvac
σ as a function of the temper-

ature for the three di�erent approaches separately.
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Figure 4.22: The pion mass mπ in the combined approach as a function of

temperature for zero chemical potential without (denoted as �therm.�) and

with quark vacuum contribution (denoted as �vac.�) for three di�erent values

of the initial vacuo sigma meson mass mvac
σ . The value of the renormalization

scale has been chosen to be Λ = 1033 MeV. The curves are similar to the

curves obtained for the quark case in �g. 4.17, which indicates the dominance

of the quarks within the combined approach.

The behaviour of the pion mass within the combined approach can be seen

in �g. 4.22. The curves seem to be a combination of the pion mass spec-

trum from the quark sector �g. 4.17 and the one from the mesonic sector

�g. 4.8, while the quark contribution dominants. For larger chosen initial

value of mvac
σ the pion mass starts to increase at lower tempertature, as has

been already seen in the mesonic sector. This underlines the statement that

for larger sigma meson mass the 2PI formalism gains in�uence within the

combined approach. The explicit symmetry breaking term H in eq. 4.140,

which is mainly responsible for the in-medium mass of the pion in combi-
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nation with the other two parameters eqs. 4.138 and 4.139 provides a larger

in-medium mass of the pion when the value of mvac
σ is rather high. However,

both masses, �gs. 4.21 and 4.22, reach ∼1.2 GeV at T = 400 MeV as is the

case in the quark sector.

The pressure of the combined system divided by T 4 provided by the SU(2)

Quark Meson model and the CJT formalism is shown in �g. 4.23.
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Figure 4.23: The negative of the potential, i.e. the pressure, divided by T 4

as a function of temperature without (denoted as �therm.�) and with vacuum

contribution (denoted as �vac.�) for three di�erent values of the initial vacuo

sigma meson mass mvac
σ . The curves show clearly maxima and minima. The

SB limit is given by combining the equations 4.7 and 4.8.

All cases without the vacuum term start to rise signi�cantly at T ' 30 MeV,

whereas the inclusion of the vacuum term causes the pressure to rise at

already T ' 20 MeV. This behaviour has also been observed in the mesonic

case, see �g. 4.9. Neglecting the vacuum contribution, the curves exhibit
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a nontrivial behaviour within the temperature range 100 ≤ T ≤ 180 MeV.

The extrema seen in �g. 4.23 will be important for the discussion of the

corresponding entropy density divided by T 3 below. The curves show distinct

extrema, less pronounced with largermvac
σ , located around T ' 45 MeV. This

clearly is correlated to the behaviour of the mesons, where the inclusion of the

vacuum term leads to a higher pressure at given temperature compared to

the case without the vacuum term, see �g. 4.9. In the combined approach this

leads to distinct extrema, indicating the dominance of the meson contribution

to the low energy regime. It is important to note that these extrema are not

instabilities, since the pressure itself is a monotonically rising function, and

so is the entropy density. The curves in �g. 4.23 re�ect the behaviour of

the relativistic degrees of freedom at given temperature. For quarks eq. 4.7

is valid and approached at high temperature. For the mesons within the

2PI approach the high temperature limit, eq. 4.8, is not reached. In the

combined approach a limit is reached for all parameter choices, but it is not

the sum relativistic degrees of freedom, eqs. 4.7 and 4.8. It deviates about

∼ 10% from this Stefan Boltzmann limit, which seems to be a result from

the mesonic contribution.
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Figure 4.24: The entropy density s divided by T 3 as a function of temperature

without (denoted as �therm.�) and with vacuum contribution (denoted as

�vac.�) for three di�erent values of the initial vacuo sigma meson mass mvac
σ .

The curves show accentuated maxima at low temperature and spikes at higher

temperatures.

The entropy density divided by T 3 as a function of the temperature is shown

in �g. 4.24. The curves without vacuum term rise approximately linear at

low temperature. For mvac
σ = 500 MeV a maximum at T = 116 MeV and

s/T 3 = 9.85 can be observed, which can be traced back to the hardly visible

change of slope in the pressure to T 4 ratio in �g. 4.23. The higher the vacuum

sigma meson mass, the more pronounced are these slope changes, resulting

in more pronounced maxima in the entropy to T 3 ratio. This occurs in all

cases considered at the phase transition. These peaks arise from the fact that

the pressure has a considerably change of slope at the chiral phase transition

temperature, see �g. 4.23. At this point it is important to state, that the

entropy density is a monotonically rising function, even if not expected when
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looking at �g. 4.24. However, taking into account the vacuum contribution,

the same discussion holds, only that the maxima from the pressure to T 4

curves appear in the low temperature region. The clearly visible maxima

at the phase transition temperature are less spiky now as the respective

increase around the phase transition temperature in the pressure to T 4 ratio.

A possible explanation of having two maxima might be that the change of

relativistic degrees of freedom occurs in two di�erent temperature regions.

This could go along with the increase of the pion mass at higher temperature,

see �g. 4.22. Recall that the strange behaviour of the pion mass spectrum

in the mesonic case, �g. 4.8, caused a similar behaviour of the respective

entropy to T 3 ratio in �g. 4.10 going along with clearly visible maxima. One

can interpret these pronounced peaks as an intermediate sudden increase in

relativistic degrees of freedom or as an �eld energy contribution. Note that

an entropy jump for a �rst order phase transition is not observed.

4.5.2.

Results in the combined sector 2: Dependence

on the renormalization scale

In the last section we set Fdr(m̄σ,~π) = 0, omitting the self energy resulting

from the 2PI formalism for the mesonic sector. In this section we show that

the contribution is negligible for the �elds and the mass spectra, but not

for the relativistic degrees of freedom. We explore the impact of having two

renormalization scales, one from the quark sector Λ and one from the mesonic

sector µ.

First we run the code with one value for the renormalization scale, i.e. setting

Λ = µ and in a second approach we keep µ �xed at the value used in [43], that

is µ = mσ/
√
e to study what happens when the quark self energy changes.

We �rst study the three vacuum parameters λ (eq. 4.138), m2 (eq. 4.139) and

H (eq. 4.140) as a function of the renormalization scale for Λ = µ and for the

choice µ = mσ/
√
e, such as to locate the most reasonable renormalization

scale value, which turns out to be the one used in the previous section,
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Λ = 1033 MeV. The value of the sigma meson mass has been chosen to be

mσ = 550 MeV.
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Figure 4.25: The coupling constant λ normalized to its tree level value

(λ ' 16.64 according to eq. 4.114) as a function of the renormalization scale

parameter Λ with Λ = µ (continuous curve) and with µ = mσ/
√
e held �xed

(dotted curve). The curves intersect at Λ = 1033 MeV. The crosses mark

the respective tree level value of λ.

The renormalization scale parameter is naturally placed at the chiral scale

[34, 38, 36], i.e. is of the order 1 GeV. Setting Λ = µ or even µ = mσ/
√
e we

�nd reasonable solutions only within the range 850 ≤ Λ ≤ 1150 MeV, which

we investigate during this section. We �rst calculate the vacuum parameters

as a function of the renormalization scale. Fig. 4.25 shows the normalized

coupling λ/λtree as a function of the renormalization scale with Λ = µ (con-

tinuous curve) and with µ = mσ/
√
e held �xed (dotted curve). Both curves

are monotonically decreasing with Λ. The tree level value for the choice

Λ = µ is found to be located at Λ = 343 MeV, which is surprisingly close
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to µ = mσ/
√
e MeV. However, for the choice µ = mσ/

√
e MeV the tree

level value is located at Λ = 623 MeV. Note that the two curves intersect at

Λ = 1033 MeV.
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Figure 4.26: The mass parameter m2 normalized to its tree level value (m2 =

−122683MeV2 according to eq. 4.115) as a function of the renormalization

scale parameter Λ with Λ = µ (continuous curve) and with µ = mσ/
√
e held

�xed (dotted curve). The curves intersect at Λ = 1033 MeV. The cross marks

the tree level value. For the case Λ = µ the tree level value is not reached.

The normalized mass parameter m2 = −λv2 as a function of the renormal-

ization scale Λ is shown in �g. 4.26. Setting Λ = µ the curve is decreasing

with Λ, but does never reach the tree level value. Setting µ = mσ/
√
e MeV

the curve surprisingly increases with Λ, and the tree level value is located at

Λ = 115 MeV. These two cases also intersect at Λ = 1033 MeV.
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Figure 4.27: The explicit symmetry breaking term H normalized to its tree

level value (H = 1.75 · 106MeV3 according to eq. 4.116) as a function of the

renormalization scale parameter Λ with Λ = µ (continuous curve) and with

µ = mσ/
√
e held �xed (dotted curve). The curves intersect at Λ = 1033 MeV.

The cross marks the tree level value of H = m2
πfπ.

The explicit symmetry breaking term, which is responsible for the mass of

the pion, is shown normalized to its tree level value in �g. 4.27. The y axis is

plotted in a logarithmic scale. Both cases show a decrease with Λ. The case

for Λ = µ even becomes negative (which is not shown here), which would

imply that the VEV of the sigma meson would be a negative quantity too.

We relate this feature to the strange behaviour of not �nding any tree level

value for m2 in �g. 4.26, and as an indication, that the choice for Λ = µ is not

that physically reasonable. The curve for the choice µ = mσ/
√
e decreases

slowly with Λ. At Λ = 2000 MeV the value is at H/Htree = 0.3. The tree

level value is again located at Λ = 1033 MeV.
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Figure 4.28: The σ condensate as a function of temperature for the renor-

malization scales Λ = 900, 1000, 1100 MeV at µ = mσ/
√
e held �xed and for

Λ = µ = 1033 MeV at mσ = 550 MeV. For comparison the σ �eld for one

�xed renormalization scale is also shown.

The σ �eld for di�erent renormalization scales is shown in �g. 4.28. For

comparison the σ �eld for one renormalization scale with Λ = 1033 MeV

and µ = 0 for mvac
σ = 550 MeV is also shown. The respective value of Λ

has been chosen to be Λ = µ = 1033 MeV. For the choice for µ according

to [43] we choose three values of Λ. There is no notable di�erence in the

σ �eld. All cases show a crossover phase transition at T ' 165 MeV. It is

worth mentioning that the curves are very similar to the curves from the

quark sector shown in section 4.4, demonstrating again the dominance of the

quark contribution.
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Figure 4.29: The sigma and the pion mass spectrum as a function of tem-

perature for the renormalization scale choices Λ = 900, 1000, 1100 MeV at

µ = mσ/
√
e held �xed and for Λ = µ = 1033 MeV at mσ = 550 MeV.

For comparison the case for one �xed renormalization scale is also shown.

The di�erent curves do not show signi�cant di�erences up to T = 250 MeV,

where the degenerate masses of the sigma and the pion have di�erent slopes

resulting in di�erent thermal masses at T = 400 MeV.

The sigma and the pion mass spectrum as a function of temperature for the

renormalization scale choices Λ = 900, 1000, 1100 MeV and µ = mσ/
√
e held

�xed, and for Λ = µ = 1033 MeV both at mσ = 550 MeV can be seen in

�g. 4.29. For comparison mσ and mπ for one �xed renormalization scale

are also shown, i.e. for the choice Λ = 1033 MeV and µ = 0. The di�er-

ent cases do however not show signi�cant di�erences up to T = 250 MeV,

where the degenerate masses of the sigma and the pion start having di�er-

ent slopes resulting in di�erent masses at T = 400 MeV. For Λ = 900 MeV

and µ = mσ/
√
e a mass of 1.5 GeV is reached. For Λ = 1000 MeV and
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Interaction type mvac
σ Λ µ λ m2 H

Qth 500 - - 16.744 -122683 1.75 · 106

Qth+vac 500 - - 42.521 -268130 1.75 · 106

Mth 500 - - 16.744 -122683 1.75 · 106

Mth+vac 500 - 333.591 16.11 -90449 2.74 · 106

Qth +Mth 500 - - 16.744 -122683 1.75 · 106

Qth+vac +Mth 550 1033 - 0.0268 -268130 1.75 · 106

Qth+vac +Mth+vac : Λ = µ 550 1033 1033 0.013 -268148 1.77 · 106

Qth+vac +Mth+vac : Λ 6= µ 550 900 333.591 4.583 -258959 2.03 · 106

Qth+vac +Mth+vac : Λ 6= µ 550 1000 333.591 1.099 -265930 1.82 · 106

Qth+vac +Mth+vac : Λ 6= µ 550 1100 333.591 -2.052 -272236 1.62 · 106

Table 4.2: The parameters λ, m2 and H for all considered interaction cases.
Thermal quarks are labeled Qth, including the vacuum term in the quark sec-
tor is labeled Qth+vac. The thermal mesons without vacuum term are labeled
Mth and with vacuum term Mth+vac. The thermal approach combining quarks
and mesons without vacuum term is labeled Qth + Mth. For these cases the
sigma meson mass is mvac

σ = 500 MeV. The combination of both sectors with
vacuum term only in the quark sector is labeled Qth+vac +Mth, and with vac-
uum term in both sectors Qth+vac + Mth+vac. Here mvac

σ = 550 MeV for the
di�erent choices of the renormalization scale.

µ = mσ/
√
e, Λ = 1033 MeV and µ = 0 and for Λ = µ = 1033 MeV the

masses are around 1.2 GeV. The highest value of Λ = 1100 MeV at �xed µ

results in a mass of ∼ 1.1 GeV.

The pressure divided by T 4 as a function of of temperature for the renormal-

ization scale choices Λ = 900, 1000, 1100 MeV at µ = mσ/
√
e held �xed and

for Λ = µ = 1033 MeV at mσ = 550 MeV are represented in �g. 4.30. All

curves show the same kind of extrema at relatively low temperature, espe-

cially the maximum at T = 50 MeV, which are not shifted in temperature

when changing the renormalization scale.
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Figure 4.30: The negative of the potential, i.e. the pressure, divided by T 4

as a function of of temperature for the renormalization scale choices Λ =

900, 1000, 1100 MeV at µ = mσ/
√
e held �xed and for Λ = µ = 1033 MeV at

mσ = 550 MeV. For a better comparison the p/T 4 curve for one renormal-

ization scale is also shown. The di�erent curves do show the same kind of

extrema at relatively low temperature as in �g. 4.23.

This particular behaviour is the same as seen in �g. 4.23. The extrema are

a result from the mesonic sector only, where the inclusion of the mesonic

self energy leads to no signi�cant changes when ignoring its contribution.

For comparison the p/T 4 course for one renormalization scale, that is Λ =

1033 MeV and µ = 0 at mvac
σ = 550 MeV, is also shown. The maximum

is located within the same region as for two renormalization scales, whereas

the minimum is shifted to a considerably lower value of p/T 4. To emphasize

is, that this feature originates only from the inclusion of the self energy from

the mesonic sector. All the curves, apart from the curve with the parameter

choice Λ = 900 MeV and µ = mσ/
√
e, which is slightly lower, reach the same
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limit at high temperatures.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  50  100  150  200  250  300  350  400

s
/T

3
 

T [MeV]

Thermal quarks and mesons with different renormalization scales

SB limit

Λ=1033, µ=0
Λ=900, µ=333.591

Λ=1000, µ=333.591
Λ=1100, µ=333.591

Λ=µ=1033

Figure 4.31: The entropy density divided by T 3 as a function of of tem-

perature for the renormalization scale choices Λ = 900, 1000, 1100 MeV at

µ = mσ/
√
e held �xed and for Λ = µ = 1033 MeV at mσ = 550 MeV.

For a better comparison the s/T 3 curve for one renormalization scale is also

shown. The di�erent curves do show the same kind of extrema at relatively

low temperature as in �g. 4.24 where the self energy of the mesons were not

taken into account.

Since the pressure in �g. 4.30 does not show any steep increase, the entropy

density in �g. 4.31 has no spikes. All the curves show two maxima, one at

T ' 50 MeV and a smaller one around the phase transition at T ' 168 MeV.

The minimum for the case of only one renormalization scale is located at

a considerably lower value of s/T 3 than for the case of two renormalization

scales, indicating again the in�uence of the mesonic self energy.

Table 4.2 shows the explicit values of λ, m2 and H for thermal quarks with-
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out vacuum term, labeled Qth and with vacuum term, labeled Qth+vac. The

thermal mesons without vacuum term are labeledMth and with vacuum term

Mth+vac. The thermal approach combining quarks and mesons without vac-

uum term is labeled Qth + Mth. For the above mentioned cases the sigma

meson mass is mvac
σ = 500 MeV. Table 4.2 shows furthermore these values for

the combination of both sectors with vacuum term only in the quark sector

Qth+vac + Mth and with vacuum term in both sectors Qth+vac + Mth+vac for

di�erent choices of the renormalization scale. Here mvac
σ = 550 MeV.

As already mentioned before, the tree level values for the cases, when ne-

glecting the vacuum term, are all equal. Since the renormalization scale Λ

for the quark sector (Qth+vac) cancels out, there is no impact on the three

vacuum values, apart from varying mvac
σ of course. In the case for thermal

quarks with vacuum term the coupling constant λr = 2.54λ and the mass

term is m2
r = 2.2m2, while the explicit symmetry breaking term H remains

una�ected. The case µ = mσ/
√
e for the inclusion of the vacuum contribu-

tion in the mesonic sector leads to the same tree level value for the coupling

constant λ, but to a lower value of the mass term m2
r and a higher value of

H, resulting in a increase of the pion mass at small temperatures, see �g. 4.8

and the discussion in section 4.3.

The case with one renormalization scale in the combined sector (Qth+vac +

Mth) for the choice Λ = 1033 MeV and µ = 0 yields a value of λ = 0.0268,

which is rather small compared to the other cases, m2 and H are virtually

una�ected. The conclusion is, that this feature is a result from the inclusion

of the CJT formalism, i.e. the mesons in�uence is rather small. For a lower

value of mvac
σ the coupling constant would be negative, which is unphysical

since the potential would yield no stable state. Choosing Λ = µ = 1033 MeV

(Qth+vac+Mth+vac : Λ = µ) the parameter values are similar as for one renor-

malization scale, indicating again the small impact of the mesonic self energy

onto the �elds and the mass spectra. It is apparent, that the results with

renormalization scales are very similar to the pure quark case, since for a

small value of λ the contribution of the mesons is nearly negligible, see also

eqs. 4.141, 4.142 and 4.143.

For two di�erent renormalization scales (Qth+vac + Mth+vac : Λ 6= µ) things
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seem slightly di�erent. The value for µ was held �xed at µ = mσ/
√
e and Λ

was varyied from 900 ≤ Λ ≤ 1100 MeV. An increase of Λ reduces the value

of the coupling λ, which gets negative at Λ ≥ 1050 MeV. m2 and H are still

close to the tree level values. For Λ = 900 MeV the coupling constant λ is

4.583, resulting in degenerate masses of the sigma and the pion ' 1500 MeV

at T = 400 MeV, see �gure 4.29.



5
Finite temperature
field theory - SU(3)

case

Working with Nf = 3 considering up, down and strange quarks and three

colored states1 Nc = 3, our aim is to set up a chirally invariant model with

quarks being the active degrees of freedom.

5.1.

Noninteracting quark matter hypothesis

Before setting up our model, we brie�y discuss the noninteracting quark mat-

ter hypothesis in the bag model [44, 45, 46]. The bag model is a phenomeno-

logical way to incorporate con�nement within our description of quark matter

[30]. To understand how the bag constant models con�nement, one can com-

pare the pressure of a noninteractiong gas of quarks (decon�ned) with the

pressure of a noninteracting gas of pions (con�ned) at µ = 0 and T 6= 0.

According to the equations 4.7 and 4.8 and considering the respective de-

1Remember the discussion in section 3.6.2, i.e. see equation 3.41
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grees of freedom ξq = 37 and ξm = 3, the pressue of a noninteracting gas

of pions (con�ned) would have less pressure and thus the noninteracting gas

of quarks would be preferred for all temperatures. We know however, that

at su�cently low temperatures the con�ned phase is preferred. The energy

penalty correcting this is the so called bag constant B, which is substracted

from the pressure of the noninteracting gas of quarks2.

In the context of compact stars T � 1 and µ 6= 0. Here too one can com-

pare nuclear (con�ned) matter with quark (decon�ned) matter. Hence, the

introduction of a bag constant is for that case justi�ed as well.

p =
∑
f

pf −B (5.1)

ε =
∑
f

εf +B (5.2)

At vanishing quark mass this implies that εf = 3pf and expressing p in terms

of the energy density ε yields

p(ε) =
1

3
(ε− 4B) (5.3)

This phenomenological model of con�nement is called Bag model [47]. Note

that the energy density is �nite at vanishing pressure, which we will encounter

again in the chapter on compact stars 6.

5.2.

The SU(3) Quark Meson model

In section 4.4 the step from the Lagrangian 4.106 to the grandcanonical po-

tential 4.107 was abbreviated. For the SU(3) case an explicit calculation will

be performed. This then can easily be retraced for the performance of the

much simpler SU(2) case in the previous section 4.4. Based on the results

from section 4.5 we neglect mesonic contributions in the SU(3) case. The

2See [30] for details.
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renormalization procedure will be performed in section 5.7.

Based on QCD, an e�ective model must doubtless implement features of

QCD:

• Color symmetry as will be discussed in section (3.6.2):

All the states in the model have to be color neutral, this feature is

guaranteed, since the transmitting mesons are ΨΨ̄ states.

• Flavor symmetry as will be described in section (3.6.3):

This symmetry is exact only in the limit of vanishing quark masses,

and needs to be considered in any e�ective theory based on QCD.

• Spontaneous breaking of chiral symmetry as discussed in the forthcom-

ing section (3.6.5):

Due to a non-vanishing vacuum expectation value of the quark conden-

sate < ΨΨ̄ >6= 0 chiral symmetry is spontaneously broken. This leads

to the emergence of Goldstone bosons, in the Nf = 2 case these are

identi�ed as the pions, which will be present in this thesis too.

• Explicit breaking of chiral symmetry as discussed in section (3.6.6):

Considering massive quarks, chiral symmetry is explicitly broken. The

model therefore contains terms proportional to the quark masses.

• The chiral anomaly term3 generates the mass splitting between Pions

and the η′-meson, whose mass is far to high for being an usual Goldstone

boson.

In the following, an appropriate Lagrangian will be presented, and its di�er-

ent terms and to which symmetry(-breaking) they refer to, will be described

in detail. The Nf = 3 Lagrangian[38, 48, 49] including vector mesonic inter-

3The determinant in equation 5.4
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actions reads

L =
∑
α

(
Ψ̄n (i��∂ − gαm̂) Ψn + Ψ̄s (i��∂ − gαm̂) Ψs

)
+ tr(∂µΦ)(∂µΦ)† − λ1[tr(Φ†Φ)]2 − λ2tr(Φ†Φ)2

− m2
0(tr(Φ†Φ)) + tr[Ĥ(Φ + Φ†)] + c

(
det(Φ†) + det(Φ)

)
− m2

vtr(V
†V ) (5.4)

5.3.

L: The fermion contribution

The part of the Lagrangian modelling the fermionic contribution reads

LFn,s =
∑
α

(
Ψ̄n (i��∂ − gαm̂) Ψn + Ψ̄s (i��∂ − gαm̂) Ψs

)
(5.5)

where the sum represents a �avor independent Yukawa type coupling for

the �elds involved α = σn, σs, ~ω, ~ρ, ~φ. The indices n and s represent the

�avour f considered: n=nonstrange (up and down quarks) and s=strange

(strange quarks). The nonstrange-strange decoupled Lagrangian in terms of

the involved �elds then reads

LFn,s = Ψ̄n

(
i��∂ − gωγ0ω − gρ~τγ0ρ− gnσn − igπ~τγ5~π

)
Ψn (5.6)

+ Ψ̄s

(
i��∂ − gsσs − gφγ0φ

)
Ψs (5.7)

with γ0 being the time component of the Dirac matrices according to equation

3.13. Note that in the following the vectorial character of ~ω, ~ρ, ~φ is implied,

so that the notation will be ω, ρ, φ.
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5.4.

L: The meson contribution

The meson contribution modelling the interaction as an exchange of mesons

(instead of gluons) of the Lagrangian reads

Lmes = tr(∂µΦ)(∂µΦ)† − λ1[tr(Φ†Φ)]2 − λ2tr(Φ†Φ)2 (5.8)

− m2
0(tr(Φ†Φ)) + tr[Ĥ(Φ + Φ†)] + c

(
det(Φ†) + det(Φ)

)
− m2

vtr(V
†V ) (5.9)

where the derivative term represents the kinetic of the �elds. The terms con-

taining λ1 and λ2 model partially the spontaneous breaking of the symmetry

and are responsible for the generation of the masses of the scalar- and pseu-

doscalar condensates, since < Ψ̄|Ψ >6= 0. The explicit symmetry breaking

pattern has to be modelled via the matrix

Ĥ =


hn
2

0 0

0 hn
2

0

0 0 hs√
2

 (5.10)

where hf is proportional to the mass of the appropriate quark �avor

hn = fπm
2
π (5.11)

hs =
√

2fKm
2
K −

hn√
2

(5.12)

mK being the mass of the kaon and fK the corresponding decay constant,

see also [38, 48, 4, 49].

The determinant term including the constant4 c describes the U(1)A anomaly,

i.e. controlls the far to high mass of the η′ meson.

m2
vtr(V

†)V generates the masses of the vector meson contribution. In the

three �avor case it is more convenient to work with the matrices explicitly

4Not to be messed up with the speed of light c - which however has been set to c2 = 1.
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rather than with the SU(3) representation in terms of generators [4, 49]5.

Note however, that for the derivation of the renormalized vacuum parameters

(see the forthcoming section 5.7.1) the generator representation is chosen due

to reasons of convenience.

Sij =
1√
2

Ψ̄jΨi (5.13)

Pij =
1√
2

Ψ̄jiγ
5Ψi (5.14)

where S denotes the scalar and P the pseudoscalar current. The indices i,j

represent the �avor states up, down and strange. The composed matrix with

all elements then is

Φij = Sij + iPij (5.15)

S =
1√
2


σn+a00√

2
a+

0 K+
s

a−0
σn−a00√

2
K0
s

K−s K̄0
s σs

 (5.16)

P =
1√
2


ηn+π0√

2
π+ K+

π− ηn−π0
√

2
K0

K− K̄0 ηs

 (5.17)

Both together form

Φ = S + iP =
1√
2


σn+a00√

2
a+

0 K+
s

a−0
σn−a00√

2
K0
s

K−s K̄0
s σs

+
i√
2


ηn+π0√

2
π+ K+

π− ηn−π0
√

2
K0

K− K̄0 ηs


or more compact

Φ =
1√
2


(σn+a00)+i(ηn+π0)√

2
a+

0 + iπ+ K+
s + iK+

a−0 + iπ−
(σn−a00)+i(ηn−π0)√

2
K0
s + iK0

K−s + iK− K̄0
s + iK̄0 σs + iηs

 (5.18)

5For an overview on the calculation involving the generators see for instance [50, 51]
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and respectively the complex conjugate

Φ† =
1√
2


(σn+a00)−i(ηn+π0)√

2
a+

0 − iπ+ K+
s − iK+

a−0 − iπ− (σn−a00)−i(ηn−π0)√
2

K0
s − iK0

K−s − iK− K̄0
s − iK̄0 σs − iηs

 (5.19)

In the scalar- and pseudoscalar sector we will restrict ourselves to the scalar

�elds σn and σs and a pionic contribution6. The matrix Φ then reads

Φ =
1√
2


σn+iπ0√

2
iπ+ 0

iπ− σn+iπ0
√

2
0

0 0 σs

 (5.20)

and respectively

Φ† =
1√
2


σn−iπ0√

2
−iπ+ 0

−iπ− σn−iπ0
√

2
0

0 0 σs

 (5.21)

5.4.1.

Computation of the kinetic part

The kinetic part from equation (5.8) is then

tr(∂µΦ)(∂µΦ)† =
1

2
tr∂µ


σn+iπ0√

2
iπ+ 0

iπ− σn+iπ0
√

2
0

0 0 σs

 ∂µ


σn−iπ0√

2
−iπ+ 0

−iπ− σn−iπ0
√

2
0

0 0 σs


(5.22)

6We do not consider Kaon condensation: Because of their relatively large mass, Kaons
usually do not condense in compact stars.
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Computing just the product of the matrices ∂µ(σn+iπ0√
2

)∂µ(σn−iπ0√
2

)− ∂µiπ+∂µiπ− 0 0

0 ∂µ(σn−iπ0√
2

)∂µ(σn+iπ0√
2

)− ∂µiπ−∂µiπ+ 0

0 0 ∂µ∂
µσ2

s


And �nally taking the trace, the kinetic part reads

tr(∂µΦ)(∂µΦ)† =
1

4
∂µ(σn + iπ0)∂µ(σn − iπ0) +

1

2

(
∂µπ

+∂µπ−
)

+
1

4
∂µ(σn − iπ0)∂µ(σn + iπ0) +

1

2

(
∂µπ

−∂µπ+
)

+ ∂µ∂
µσ2

s (5.23)

5.4.2.

Computation of the symmetry breaking con-

tributions

The product of ΦΦ† is

ΦΦ† =
1

2


σ2
n+π2

0+2π+π−
2

0 0

0
σ2
n+π2

0+2π+π−
2

0

0 0 σ2
s

 (5.24)

The mass term is easiest to compute. For the λ1 and λ2 term the trace has

to be taken and then squared or else squared and then to take the trace in
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(5.8). After computing this, the mesonic contribution reads

V = − λ1

4

(
(σ2

n + σ2
s)

2 + 2π2
0(σ2

n + σ2
s) + 4π+π−(σ2

n + σ2
s + π2

0) + π4
0 + 4π2

+π
2
−
)

− λ2

4

(
(σ2

n + π2
0)2 + 4π+π−(σ2

n + π2
0) + 4π2

+π
2
− + 2σ4

s

)
(5.25)

− m2
0

2
(σ2

n + π2
0 + 2π−π+σ

2
s) (5.26)

+ hnσn + hsσs +

(
σ2
nσs + π2

0σs

2
√

2
+
π+π−σs√

2

)
· c−B (5.27)

(5.28)

5.4.3.

Computation of the vector meson contribution

The genearal matrix representation for vector mesons is

V µ =
1√
2


ωµn+ρµ0√

2
ρµ+ K∗µ+

ρµ− ωµn−ρµ0√
2

K∗µ0

K∗µ− K̄∗µ0 φµ

 (5.29)

The Matrix containing the vector meson contribution to this work is

V µ =
1√
2


ωn+ρ0√

2
ρ+ 0

ρ− ωn−ρ0√
2

0

0 0 φ

 (5.30)

The product with the adjoint V is the square of V

V 2 =
1

2


(ωn+ρ0)2

2
+ ρ+ρ−

(
ωn+ρ0√

2

)
ρ+ +

(
ωn−ρ0√

2

)
ρ+ 0(

ωn+ρ0√
2

)
ρ− +

(
ωn+ρ0√

2

)
ρ− (ωn−ρ0)2

2
+ ρ+ρ− 0

0 0 φ2


(5.31)
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Terms with ρ+ and ρ− can be neglected, since they do not couple to the �elds

due to isospin. The trace remains to be

tr(V 2) =
1

2

(
m2
ωω

2 +m2
ρρ

2 +m2
φφ

2
)

(5.32)

5.5.

The whole Lagrangian L
Summing all up, L = Lmes +LFn,s the whole Lagrangian, splitted up into its

containing �elds, reads

L =
1

4
∂µ(σn + iπ0)∂µ(σn − iπ0) +

1

2

(
∂µπ

+∂µπ−
)

(5.33)

+
1

4
∂µ(σn − iπ0)∂µ(σn + iπ0) +

1

2

(
∂µπ

−∂µπ+
)

+ ∂µ∂
µσ2

s

− λ1

4

(
(σ2

n + σ2
s)

2 + 2π2
0(σ2

n + σ2
s) + 4π+π−(σ2

n + σ2
s + π2

0) + π4
0 + 4π2

+π
2
−
)

− λ2

8

(
(σ2

n + π2
0)2 + 4π+π−(σ2

n + π2
0) + 4π2

+π
2
− + 2σ4

s

)
− m2

0

2
(σ2

n + π2
0 + 2π−π+σ

2
s)

+ hnσn + hsσs +

(
σ2
nσs + π2

0σs

2
√

2
+
π+π−σs√

2

)
· c−B

+
1

2

(
m2
ωω

2 +m2
ρρ

2 +m2
φφ

2
)

+ Ψ̄n

(
i��∂ − gωγ0ω − gρ~τγ0ρ− gnσn − igπ~τγ5~π

)
Ψn

+ Ψ̄s

(
i��∂ − gsσs − gφγ0φ

)
Ψs (5.34)

Note however that all terms containing a pion contribution cancel7, because

due to parity the pion does not condensate. The inclusion of a pseudoscalar

current leads furthermore to di�culties when performing perturbation the-

ory within the path integral formalism [17] and the squared pion mass would

7They need to be considered when taking the derivatives of course, and then be set
equal zero.
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become negative for temperatures below the phase transition [48]. The ex-

plicit calculation leading to these di�culties can be found in the appendix,

section 8. These problems however can be circumvented via the CJT formal-

ism, see section 4.3. As shown in section 4.2 their contribution is additive

(when neglecting higher order diagrams). Because of the small in�uence, i.e.

the domination of the quark-quark interaction obtained in the SU(2) sector

(section 4.5), we choose to neglect bosonic excitations in the SU(3) case. In

mean �eld approximation the mesonic part of the Lagrangian is however de-

�ned as its negative potential Lmes = −V , and is shown in vacuo in �gures

5.1 and 5.2.
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Figure 5.1: The three dimensional potential V(σn, σs) and the corresponding

contour lines in the nonstrange-strange plane. Because of the implementation

of the explicit symmetry breaking terms it is, unlike as the mexican hat poten-

tial in �gure 4.1, tilted. The minimum corresponds to the vacuum expectation

value of the nonstrange and strange scalar �elds.
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Figure 5.2: The three dimensional potential V(σn, σs) as a colored contour

base in the nonstrange-strange plane. The minimum, shown here in the cen-

ter of the black area, corresponds to the vacuum expectation value of the

nonstrange and strange scalar �elds.

5.6.

The grand potential

In order to calculate the grand potential to get the desired thermodynamic

quantities such as pressure and energy density, equation 5.35 known from

statistical mechanics and thermodynamics can be used. In thermal equilib-

rium the grand potential Ω will be calculated via the partition function Z,
which is de�ned as a path integral over the fermionic and bosonic �elds.

Ω = − lnZ
β

= −p (5.35)

Low energy therorems such as the Goldstone theorem and the Ward identities

are however ful�lled in mean �eld approximation.



Thermal evolution of massive compact strange objects 127

5.6.1.

Path integral over the fermionic contributions

As already mentioned, in relativistic quantum mechanics fermions are de-

scribed by a four-component spinor Ψ. Assuming thermal equilibrium the

partition function is de�ned as a path-integral over the quark/antiquark and

meson �elds. The meson �elds will be integrated out, that is: treated in

mean �eld approximation due to the problems mentioned above. The parti-

tion function reads [38, 48, 49]

Z =

∫
DΨ̄DΨe(

∫ β
0 dτ

∫
V d

3~rL) (5.36)

=

[∫
DΨ̄DΨe

∫ β
0 dτ

∫
V d

3~r[Ψ̄n(...)Ψn+Ψ̄s(...)Ψs]
]
e−

∫ β
0 dτ

∫
V d

3~rV (5.37)

=

[∫
DΨ̄DΨe

∫ β
0 dτ

∫
V d

3~r[Ψ̄n(...)Ψn+Ψ̄s(...)Ψs]
]
e−βV (5.38)

The abbreviations

Ψ̄n(...)Ψn = Ψ̄
(
i��∂ − gωγ0ω − gρ~τγ0ρ− gnσn − iγ5~τ~π

)
Ψ (5.39)

such as

Ψ̄s(...)Ψs = Ψ̄s

(
i��∂ − gsσs − gϕγ0φ

)
Ψs (5.40)

are used.

In both, the nonstrange and strange sector, the integral in the exponent of

the exponential function can be rewritten with a Fourier transformation. It

is explicitly shown here in the nonstrange case. Since the calculation in the

strange sector is completly analoguous, just the results will be given.

Ψ(~r, t) =
1√
V

∑
n,~k

ei(νnτ+~k~r)φn(~k) (5.41)

Substituting equation (5.41) in equation (5.38) and performing the derivation
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as told by ��∂ gives:∫ β

0

dτ

∫
V

d3~r
1

V

∑
n,~k

e−i(νnτ+~k~r)φ̄n(~k)(A)
∑
m,k̃

ei(νmτ+k̃~r)φm(k̃) (5.42)

where

A =
(
−iγ0νn − ~γ~k − gnσn − iγ5~τ~π − gωγ0ω − gρ~τγ0~ρ

)
(5.43)

Since no operator is left anymore, a rearrangement can be done∫ β

0

dτ
1

V

∑
n,~k

∑
m,k̃

φ̄n(~k)φm(k̃)(A)

∫
V

d3~re−i(νnτ+~k~r)ei(νmτ+k̃~r) (5.44)

then making use of the following identities known from quantum mechanics∫ +∞

−∞
e−iaxeia

′xdV = δ(a− a′) and
∫ +∞

−∞
e−iaxeia

′xdx = δaa′ (5.45)

just one sum remains either for nonstrange β
V

∑
n,~k φ̄nφn(A) and strange con-

tributions β
V

∑
n,~k φ̄sφs(B) respectively. In the strange sector

B =
(
−iγ0νn − ~γ~k − gsσs − gφγ0φ

)
(5.46)

Replacing the equations (5.43) and (5.46) in the partition function

Z = e−βV
∫
DΨ̄

∫
DΨe−( βV

∑
n,~k(φ̄n(−A)φn+φ̄s(−B)φs)) (5.47)

is what has up to now become of equation (5.38).

Now this integral is to be performed over Grassmann variables, which are of

use when dealing with fermionic path integrals,∫ n∏
i=1

dη̄idηie
−
∑
i,j ηiAijηj = detA (5.48)
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so that the partition function

Z =
1

T
e−βV ·

[
det
γ,f,c,k

A
T
· det
γ,f,c,k

B
T

]
(5.49)

One remains with a determinant over four degrees of freedom. The calcula-

tion will be done step by step in the following sections.

The determinant over particle-/antiparticle contribution

The �rst determinant to be calculated is the determinat over γ, which rep-

resents particle and antiparticle contributions. First step is to insert the

Dirac-matrices equation (3.13) explicitly in the equations (5.43) and (5.46).

To not make confusion with the nonstrange index n, the Matsubara index

n→ α has been substituted in the forthcoming

µ̃n = gωω + gρ~τρ (5.50)

m̃n = gnσn (5.51)

µ̃s = gφφ (5.52)

m̃s = gsσs (5.53)

Equation 5.43 then

−A = i

(
12 0

0 −12

)
να +

(
0 σ̂i

−σ̂i 0

)
~k (5.54)

+ i

(
0 12

12 0

)
~τ~π +

(
12 0

0 −12

)
µ̃n +

(
12 0

0 12

)
m̃n

and the strange part from equation 5.46

−B = i

(
12 0

0 −12

)
να +

(
0 σ̂i

−σ̂i 0

)
~k (5.55)

+

(
12 0

0 −12

)
µ̃s +

(
12 0

0 12

)
m̃s
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So that

−A =

(
iνα + µ̃n + m̃n ~σ~k + i~τ~π

−~σ~k + i~τ~π −iνα − µ̃n + m̃n

)
(5.56)

and

− B =

(
iνα + µ̃s + m̃s ~σ~k

−~σ~k + i~τ~π −iνα − µ̃s + m̃s

)
(5.57)

The partition function for the nonstrange propagator then reads

Z = e−βV · det
γ

1

T
·
(
iνα + µ̃n + m̃n ~σ~k + i~τ~π

−~σ~k + i~τ~π −iνα − µ̃n + m̃n

)
(5.58)

Using the identity [23]

det
2N×2N

(
A2 B2

C2 D2

)
= det

N×N
(AD −BD−1CD) (5.59)

and after a bit of non-enlightening algebra the determinant detγ A reads(
ν2
α − µ̃2

n + m̃2
n − 2iναµ̃n + gn(~τ~π)2 + ~k2 0

0 ν2
α − µ̃2

n + m̃2
n − 2iναµ̃n + gn(~τ~π)2 + ~k2

)

det
γ
A = (ν2

α − µ̃2
n + m̃2

n − 2iναµ̃n + gn(~τ~π)2 + ~k2)2 (5.60)

= (E2
n + (ν2

α − µ̃2
n − 2iναµ̃n) + ~τ 2~π2)2 (5.61)

= (E2
n + (να − iµ̃n)2 + ~τ 2~π2)2 (5.62)

Analogue is the calculation in the strange contribution

det
γ
B = (E2

s + (να − iµ̃s)2)2

For a better overview of the rather lenghty equations, one can abbreviate

E2
n = k2 + m̃2

n + (gn~τ~π)2 (5.63)
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such as

E2
s = k2 + m̃2

s (5.64)

Finally the partition function is left with but three degrees of freedom

Z = e−βV det
f,c,k
· 1

T 4

[(
E2
n + (να − iµ̃n)2

)2 ·
(
E2
s + (να − iµ̃s)2

)2
]

(5.65)

The determinant over momentum space

Since the goal is to collect all momenta, the determinant over momentum

space detk becomes a sum
∑

k and eventually an integral.

Z = e−βV det
f,c
· 1

T 4

∑
α,~k

[(
E2
n + (να − iµ̃n)2

)2 ·
(
E2
s + (να − iµ̃s)2

)2
]

(5.66)

At this point it is more convenient to take the logarithm of the partition

function in equation (5.66) and making use of another identity

ln detA = tr ln A (5.67)

Then

Ω = − 1

β
lnZ (5.68)

= V − 1

β
ln det

c,f
· 1

T 4

∑
α,~k

[(
E2
n + (να − iµ̃n)2

)2 ·
(
E2
s + (να − iµ̃s)2

)2
]

= V − 1

β
· trc,f

∑
α,~k

ln

[(
E2
n + (να − iµ̃n)2

T 2

)2

·
(
E2
s + (να − iµ̃s)2

T 2

)2
]
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The Matsubara frequencies να = (2n+ 1)2π2 run over −∞→ +∞, and from

the sum on

=
+∞∑
−∞

ln

[(
E2
n + (να − iµ̃n)2

T 2

)2

·
(
E2
s + (να − iµ̃s)2

T 2

)2
]

(5.69)

=
+∞∑
−∞

ln

(
E2
n + (να − iµ̃n)2

T 2

)
+

+∞∑
−∞

ln

(
E2
n + (−να − iµ̃n)2

T 2

)

+
+∞∑
−∞

ln

(
E2
s + (να − iµ̃s)2

T 2

)
+

+∞∑
−∞

ln

(
E2
s + (−να − iµ̃s)2

T 2

)
(5.70)

which justi�es the change in the algebraic sign. Rearranging

(E2
n + (να− iµn)2)(E2

n + (−να− iµn)2) = (ν2
α + (En + µn)2)(ν2

α + (En− µn)2)

(5.71)

and substituting the Matsubara frequencies να = (2n+ 1)2π2 gives8

∞∑
n=−∞

ln

[
(2n+ 1)2π2 +

(En,s ± µ̃n,s)2

T 2

]
(5.72)

Making use9 of another identity

ln(a+ b) =

∫ b2

1

1

θ2 + a
dθ2 + ln(a+ 1) (5.73)

and identifying a = (2n+ 1)2π2 and b2 = (En,s±µ̃n,s)2
T 2 the sum then reads

∞∑
n=−∞

∫ b2

1

1

θ2 + (2n+ 1)2π2
dθ2 +

∞∑
n=−∞

ln((2n+ 1)2π2 + 1) (5.74)

8The calculation is shown for one case of the four terms in equation (5.70), the others
are performed analoguous.

9Note that in �nite temperature �eld theory certain idenities need to be known, else the
calculation cannot be performed. A similar procedure took already place while deriving the
vacuum contributions to the grandcanonical potential in section 4.3.1, i.e. the equations
4.57, 4.58, 4.63 and 4.64.
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For further calculations of the �rst term the denominator has to become com-

plex, and after another few algebraic steps including another known identity

from quantum �elds theory (performed in detail in [5]) one �nally gets for

5.72 ∫ b2

1

dθ2 1

θ

[
1

2
− 1

eθ + 1

]
+

∞∑
n=−∞

ln((2n+ 1)2π2 + 1) (5.75)

The integral in equation (5.75) can be solved with dθ2 = 2θdθ, substituting

α = e−θ + 1 and its derivation dα
dθ

= −e−θ

∫ b2

1

dθ2 1

θ

[
1

2
− 1

eθ + 1

]
= [b− 1] + 2 ln(1 + e−b)− 2 ln(1 + e−1)(5.76)

Having done this thrice10 and replacing all relevant quantities, the grand

potential now reads

Ω = V − 1

β
trc,f

∑
k

(En ± µ̃n)

T
+ 2 ln

(
1 + e−

(En±µ̃n)2

T2

)
+

(En ± µ̃s)
T

+ 2 ln

(
1 + e−

(En±µ̃s)2

T2

)
+ C̃

where

C̃ = 4 ·
∞∑
−∞

ln
(
(2n+ 1)2π2 + 1

)
− 1− 2 ln(1− e−1) (5.77)

is the appropriate constant vacuum energy pressure containing only c-numbers.

The determinant over color-and �avor space

As mentioned above, the sum
∑

k becomes an integral over the whole space∫
d3~k

(2π)3
in the thermodynamical limes, which �nally can be rewritten as a

surface integral d3~k → 4πk2d~k. What remains to be done is to calculate

10The explicit analytical solution of the integral can be found in my master thesis, [5].
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both traces over color- and �avorspace.

Ω = V − 1

β
trc,f

∫
d3k

(2π)3

[
En,s ± µ̃n,s

T
+ 2 ln

(
1 + e−

En,s±µ̃n,s
T

)]
(5.78)

= V − 3

β
trf

∫
d3k

(2π)3

[
2
En,s
T

+ 2 ln
(

1 + e−
En,s±µ̃n,s

T

)]
(5.79)

= V − 3

π2β
trf

∫
k2dk

[
En,s
T

+ ln
(

1 + e−
En,s±µ̃n,s

T

)]
(5.80)

The trace over color space just yields a factor three in equation (5.78). Choos-

ing as base τ3 (see equation (3.14)) and splitting up equation (5.50) in its

�avor content gives

µ̃up = µ̃u = gωω + gρρ (5.81)

µ̃down = µ̃d = gωω − gρρ (5.82)

µ̃strange = µ̃s = gφφ (5.83)

where equation (5.83) is equal to equation (5.52). The use of equation (5.67)

collects all terms relevant in �avor space and what �nally remains is the

grand canonical potential for �nite temperature

Ω = V − 3

π2β

∫ ∞
0

k2dk · N (5.84)

where V is the negative of equation (5.34)

V =
λ1

4

(
(σ2

n + σ2
s)

2
)

+
λ2

8

(
σ4
n + 2σ4

s

)
+
m2

0

2
(σ2

n + σ2
s)

− hnσn − hsσs −
cσ2

nσs

2
√

2
− 1

2

(
m2
ωω

2 +m2
ρρ

2 +m2
φφ

2
)

+B1/4
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and where B1/4 is a vacuum pressure term named bag constant11. The in-

meduim part

N = ln
(
1 + e−β(En+µ̃u)

)
+ ln

(
1 + e−β(En−µ̃u)

)
+ ln

(
1 + e−β(En+µ̃d)

)
+ ln

(
1 + e−β(En−µ̃d)

)
+ ln

(
1 + e−β(Es+µ̃s)

)
+ ln

(
1 + e−β(Es−µ̃s)

)
(5.85)

or in terms of �avor

N = ln
(

1 + e
−En+µu−gωω−gρρ

T

)
+ ln

(
1 + e

−En−µu+gωω+gρρ
T

)
+ ln

(
1 + e

−En+µd−gωω+gρρ
T

)
+ ln

(
1 + e

−En−µd+gωω−gρρ
T

)
+ ln

(
1 + e

−Es+µs−gφφ
T

)
+ ln

(
1 + e

−Es−µs+gφφ
T

)
(5.86)

The vacuum values for the parameters λ1, λ2, m2
0, c, hn and hs are again

�xed at tree level12.

Note that the divergent vacuum term still present in equation 5.80 has been

neglected in equation 5.84. Its inclusion will be discussed in section 5.7.

Note furthermore, that the calculation of the equation of state for compact

stars in the forthcoming section 6 is generally performed at T = 0. The

appropriate approximation procedure has been performed during my master

thesis [5] and shall therefore not be shown here again.

11Motivated by the MIT-Bag model, see for instance [1, 2], and as well as from the con-
stant vacuum energy term which is left from the calculation of the Matsubara frequencies,
equation 5.77.

12Although the computation is somewhat more extensive, the SU(2) section 4 can be seen
as a guideline for their derivation. A more detailled treatment of the tree level parameters
in mean �eld approximation can be found in my Master thesis [5] or in [38, 48]. In the
following section upon renormalization 5.7 the vacuum parameters are explicitely derived.
This calculation can also easily be backtraced to the parameter determination in mean
�eld approximation.
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5.6.2.

The Lepton contribution

Since the lepton contribution decouples from the quark grand canonical

potential it can be treated separately. Its computation follows the same

rules and only the result shall be given here. Worth mentioning is that the

lepton-antilepton contribution has but another prefeactor compared to the

in-medium part of equation 5.84, since (for instance) no colour charge ap-

pears.

Ωe = − 2

β

∫
d3k

(2π)3
ln
(

1 + e−
Ek,e±µe

T

)
(5.87)

with Ek,e =
√
k2 +m2

e and µe as the electron chemical potential.

5.7.

Renormalization

Like in the SU(2) case performed for the quark sector13 the implementation

of the vacuum term in the SU(3) case reads also

Ωvac
q̄q =

∫
dk3

(2π)3Ek → Ωdr
q̄q = −NcNf

8π2
m̃4
f ln

(
m̃f

Λ

)
(5.88)

which is of course the same as equation 4.120. Since 4.120 it is independent

of any temperature, its contribution restricts to every tree level value. That

is, the vacuum parameters change upon renormalization.

5.7.1.

The renormalized vacuum parameters

The six model parameters λ1, λ2, m2
0, c, hn and hs are �xed by six exper-

imentally known values [38, 48, 52]. Based upon their derivation in mean

13Based on the computation for the mesonic sector in section 4.3.1, which is completely
analoguous for any case discussed in this thesis.
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�eld approximation the computation including the fermion vacuum contri-

bution can also be found in [53, 31, 54], nonetheless a few important steps

are shown here. As an input the pion mass mπ = 136 MeV, the kaon mass

mk = 496 MeV, the pion decay constant fπ = 92.4 MeV, the kaon decay con-

stant fk = 113 MeV, the masses of the eta mη = 548 MeV meson, the mass

of the eta-prime meson m′η = 958 MeV and the mass of the sigma meson mσ

need to be known. The mass of the sigma meson, mσ, however is not well

determined experimentally. Usually, the sigma meson, which is the chiral

partner of the pion, is identi�ed with the experimentally measured resonance

f0(500), which is rather broad, 400 ≤ mf0 ≤ 600 MeV [55, 52]. Also, in

Ref. [49] it was demonstrated that within an extended quark-meson model

that includes vector and axial-vector interactions, the resonance f0(1370)

could be identi�ed as this very scalar state. To cover the spectrum of physi-

cal possibilities, the mass of the sigma meson adopts a rather wide range in

mass, 400 ≤ mσ ≤ 800 MeV.

Starting point is the grand canonical potential (including an average value

of the pion mass mπ)14 from equation 5.34 at tree level, that is the potential

V and the vacuum contribution.

V =
λ1

4

[
(σ2

n + σ2
s)

2 + 2π2
0(σ2

n + σ2
s) + π4

0

]
+
λ2

8

[
(σ2

n + π2
0)2 + 2σ4

s

]
+

m2
0

2
(σ2

n + π2
0 + σ2

s)− hnσn − hsσs − c
(
σ2
nσs + π2

0σs

2
√

2

)
+B (5.89)

+
1

2

(
m2
ωω

2 +m2
ρρ

2 +m2
φφ

2
)
− NcNf

8π2

(
σ2
n + σ2

s

)2
ln

(
g
√
σ2
n + σ2

s

Λ

)

with the renormalization scale parameter Λ.

Similar as in the SU(2) case to determine the vacuum parameters a few

derivatives are necessary to determine the unknown quantities. When in the

SU(2) case equation 4.110 is needed for the explicit symmetry breaking term

H, it is the same as in SU(3), only two derivatives are needed, one with

respect to the nonstrange condensate σn, for hn, the other with respect to

14Since an input parameter, the �eld π can not be negelcted at this point, because mπ

results from the �eld.
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the strange condensate σs, for hs. The equations 4.112 and 4.113 �x the two

other unknowns in SU(2), recall section 4.4, here also similar to the SU(3)

case, where the second derivatives determine the known masses, which then

serve as an input. In SU(3)

hn = m2
0σn −

cσsσn√
2

+ λ1

(
σ2
n + σ2

s

)
σn +

λ2

2
σ3
n + Vac. (5.90)

hs = m2
0σs −

cσ2
n√

2
√

2
+ λ1

(
σ2
n + σ2

s

)
σs + λ2σ

3
s + Vac. (5.91)

∂2V
∂π2

= m2
0 −

cσs√
2

+ λ1

(
σ2
n + σ2

s

)
+
λ2

2
σ2
n = m2

π (5.92)

and the vacuum contribution yet to be determined. Since the pion does not

condensate, but yields a contribution to the other quantities when deriving

with respect to π, it does not occur anymore in the equations above. Un-

fortunately does the second derivative with respect to σn not yield the mass

of the sigma meson, because, as we will see, of mixing of the mathematical

�elds. Furthermore the kaon mass is needed as well as the vacuum contribu-

tion. Here we remain with three unknowns, so that the corresponding second

derivatives of V need to be performed with respect to the mathematical �elds.
At this point however we have only three scalar �elds and neither of them

corresponds to the experimentally required values, so that it is necessary

to rewrite the nonstrange-strange basis in terms of the generators, i.e. the

mathematical �elds and idenitfy those with the physical �elds so to derive V
twice. Following [38, 48] the matrix

Φ =
1√
2


(σn+a00)+i(ηn+π0)√

2
a+

0 + iπ+ K+
s + iK+

a−0 + iπ−
(σn−a00)+i(ηn−π0)√

2
K0
s + iK0

K−s + iK− K̄0
s + iK̄0 σs + iηs

 (5.93)

(see also equation 5.18) can be written as Φ = TaΦa = Ta(σa + iπa) with

Ta = λa
2

with λa as the Gell Mann matrices and a = 1, 2, ..8 as the nine

generators of the U(3) symmetry group15. Rearranging the entries of 5.93

15The generators obey the U(3) algebra with the standard symmetric dabc and antisym-
metric structure constants fabc
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gives

Φ =
1

2


√

2
3
σ0 + σ3 + σ8√

3
σ1 − iσ2 σ4 − iσ5

σ1 + iσ2

√
2
3
σ0 − σ3 + σ8√

3
σ6 − iσ7

σ4 + iσ5 σ6 + iσ7

√
2
3
σ0 − 2σ8√

3

 (5.94)

The basis transformation from the nonstrange-strange basis to the mathe-

matical basis is (
σn

σs

)
=

1√
3

( √
2 1

1 −
√

2

)(
σ0

σ8

)
(5.95)

Separating the entries for the scalar and the pseudoscalar sector (see equa-

tions 5.16 and 5.17) gives the potential in terms of the mathematical �elds

(see [38, 48] for details). The mass matrix16 mij is determined by the mesonic

part of the potential only, since the quark contribution vanishes in the vac-

uum at T = µ = 0. Because of isospin symmetry some entries are degenerate

and furthermore m2
08 = m2

80, so that

m2
ij =

∂2V
∂Φi∂Φj

+
∂2Ωdr

q̄q

∂Φi∂Φj

=


m2

00 . . . m2
08

...
. . .

...

m2
80 . . . m2

88

 (5.96)

the equated matrix needs to be diagonalized for m2
σ and m2

f0
in the scalar

sector and as well as mη and m′η in the pseudoscalar sector introducing a

mixing angle θ. Eventually the mass of the kaon in the nonstrange-strange

basis is

m2
k = m2

0 −
cσn
2

+ λ1

(
σ2
n + σ2

s

)
+
λ2

2

(
σ2
n −
√

2σnσs + 2σ2
s

)
(5.97)

16Remember that the second derivative of the potential yields the corresponding mass
of a given particle.
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which determines the axial anomaly term c

c =
−2 (m2

k −m2
π)− λ2

(√
2σnσs − 2σ2

s

)
σn −

√
2σs

(5.98)

Having performed a few algebraic steps using 5.96, mη and m′η read

mη +m′η = 2m2
0 + 2λ1

(
σ2
n + σ2

s

)
+
λ2

2

(
σ2
n + 2σ2

s

)
+
cσs√

2

= 2m2
π −

λ2

2

(
σ2
n − 2σ2

s

)
+

3cσs√
2

(5.99)

inserting 5.98 in 5.99 to eventually solve for λ2 gives

λ2 =
m2
η +m′2η − 2m2

π +
6σs(m2

k−m
2
π)√

2(σn−
√

2σs)

σ2
s − σ2

n

2
− (3

√
2σ2
sσn−6σ3

s)√
2(σs−

√
2σs)

(5.100)

These two parameters are equal in mean �eld approximation and as well as

in the renormalized approach17. The further procedure in mean �eld approx-

imation is to determine λ1(m2
0) via mσ and mπ, see [38, 48, 5] for further

details. All these quantities enter in the condensate equations 5.90 and 5.91.

Working in an renormalized approach however, we need to rewrite the vac-

uum contributing part from equation 5.89 in terms of the mathematical �elds

and derive according to 5.96 with respect to σ0, σ8. The corrections are then

∂2Ωdr
q̄q

∂2σ2
0

= κ

(96σ2
0 − 48

√
2σ0σ8 + 48σ2

8

)
W +

X
(

8
3
σ0 − 2

√
2

3
σ8

)
Z


∂2Ωdr

q̄q

∂2σ0σ8

= κ

(96σ0σ8 − 30
√

2σ2
8 − 24

√
2σ2

0

)
W +

X
(

10
3
σ8 − 2

√
2

3
σ0

)
Z


∂2Ωdr

q̄q

∂2σ2
8

= κ

(48σ2
0 − 60

√
2σ8σ0 + 150σ2

8

)
W +

Y
(

10
3
σ8 − 2

√
2

3
σ0

)
Z


17This is due to the fact that the corresponding derived �elds do not depend on any

renormalization, i.e. they do not contribute to the vacuum.
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with

κ = −NcNf

72π2
g4

W = 2 ln

g
√

4
3
σ2

0 + 2
√

2
3
σ0σ8 + 5

3
σ2

8

Λ

+
1

2

X = 32σ3
0 − 10

√
2σ3

8 − 24
√

2σ2
0σ8 + 48σ2

8σ0

Y = 50σ3
8 − 8

√
2σ3

0 + 48σ2
0σ8 − 30

√
2σ0σ

2
8

Z =
4

3
σ2

0 −
2
√

2

3
σ0σ8 +

5

3
σ2

8

as abbreviations. Rewriting everything according to 5.95 in terms of the

physical �elds, these mass corrections enter in the numerical routine to search

for the vacuum parameters λ1 and m2
0. As already mentioned, the other

quantities remain una�ected. These two parameters compensate then the

vacuum contribution in 5.90 and 5.91, and reduces their values to the same

as in mean �eld approximation.

Interesting to note is that also the grand canonical potential remains unaf-

fected by the choice of the renormalization scale parameter Λ. This is as in

the SU(2) case, remember the discussion in section 4.4.1, i.e. see equations

4.130 and 4.132, and it also has been shown in [31, 53] for the SU(3) case.

In the forthcoming we will choose a value of Λ = 200 MeV to be in the Λ-

QCD range, but this value a�ects only the vacuum parameters and not the

thermodynamics or any other relevant quantity.
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5.8.

Thermodynamical quantities

Having performed all necessary calculations to achieve the total grand canon-

ical potential

Ωtot = V − NcNf

8π2
m̃4
f ln

(
m̃f

Λ

)
− 3

π2β

∫ ∞
0

k2dk · N (5.101)

− 2

β

∫
d3k

(2π)3
ln
(

1 + e−
Ek,e±µe

T

)
and the parameter set to start with in the vacuum (previous section 5.7.1),

the next step is to de�ne the chemical potentials according to

µi = BiµB + ZiµZ + LiµL (5.102)

where B indicates the baryon number, Z the charge and L the lepton number

of the corresponding particle. It turns out that µd = µs, apart from the

vector meson contribution, and implementing these, the chemical potentials

are

µ̃u = µu − gωω − gρρ+
2

3
µe (5.103)

µ̃d = µd − gωω + gρρ−
1

3
µe (5.104)

µ̃s = µs − gφφ−
1

3
µe (5.105)

µ̃e = −µe + µL (5.106)

The derivatives with respect to the �elds need to be minimized according to

∂Ω

∂σn
=
∂Ω

∂σs
=
∂Ω

∂ω
=
∂Ω

∂ρ
=
∂Ω

∂φ
!

= 0



Thermal evolution of massive compact strange objects 143

and are called Gap-equations18 and yield the corresponding �eld values. With

the de�nitions

f(µ̃f ) =
1

1 + eβ(Ef−µ̃f )
and f(−µ̃f ) =

1

1 + eβ(Ef+µ̃f )
(5.107)

the Gap equations read

∂Ω

∂σn
= λ1σn(σ2

n + σ2
s) +

λ2

2
σ3
n +m2

σnσn − hn −
cσnσs√

2

− NcNf

8π2
g4
nσ

4
n ln

[gnσn
Λ

]
+

3g2
nσn
π2

∫ ∞
0

dk · k2

En
(f(µ̃u) + f(−µ̃u) + f(µ̃d) + f(−µ̃d))

∂Ω

∂σs
= λ1σs(σ

2
n + σ2

s) + λ2σ
3
s +m2

σsσs − hs −
cσ2

n

2
√

2

− NcNf

8π2
g4
sσ

4
s ln
[gsσs

Λ

]
+

3g2
sσs
π2

∫ ∞
0

dk · k2

Es
(f(µ̃s) + f(−µ̃s)]

∂Ω

∂ω
= −m2

ωω +
3gω
π2

∫ ∞
0

dk · k2 [f(µ̃u)− f(−µ̃u) + f(µ̃d)− f(−µ̃d)]

∂Ω

∂ρ
= −m2

ρρ+
3gρ
π2

∫ ∞
0

dk · k2 [f(µ̃u)− f(−µ̃u)− f(µ̃d) + f(−µ̃d)]

∂Ω

∂φ
= −m2

φφ+
3gφ
π2

∫ ∞
0

dk · k2 [f(µ̃s) + f(−µ̃s)] (5.108)

To perform calculations in mean �eld approximation the vacuum contribut-

ing term in the potential, equation 5.88, has to vanish, such as the respective

derivations of the vacuum term in 5.108 of course. For the treatment of

compact stars in the following chapter 6, not only the charge neutrality con-

straint ∑
i=u,d,s,e

Qini =
2

3
nu −

1

3
nd −

1

3
ns − ne = 0 (5.109)

18Which is a slightly more complicated form of a Klein-Gordon equation (recall section
3.4)
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where ni ≡ −∂Ωtot
∂µi

is the particle density of each considered species i, has to

be ful�lled, but also a temperature approximation T → 0 has to be done.

This has been part of my master thesis and hence the T → 0 calculation can

be found in detail in [5, 56, 57].

The derivatives with respect to the chemical potentials (that is the corre-

sponding particle density) and temperature (that is the entropy density) are

the same quantities as in SU(2), see equations 4.2, and also known from ordi-

nary thermodynamics. These quantities are necessary to achieve an equation

of state respecting temperature e�ects, i.e. a Supernova equation of state.

5.8.1.

Electron-baryon rate

We have so far �xed all parameters which are essential to compute the respec-

tive thermodynamical quantities, given by the solutions of the Gap equations

5.108 and the implementation of charge neutrality equation 5.109. Another

constraint for Supernovae is the electron-baryon rate

Ye =
ne
nB

=
3ne

nu + nd + ns
(5.110)

which is usually in the range 0 ≤ Ye ≤ 0.5. Ye = 0 means, there are no leptons

at all, Ye = 0.2 corresponds to the conditions during the SN explosion and

Ye = 0.4 represents the situation of the massives stars core shortly before the

explosion [51], see the next section 5.9 for a short illustration on Supernovae

and further references on corresponding literature.

5.8.2.

Thermal evolution in the SU(3) model

In this section we present our results at �nite temperature in the SU(3) Quark

Meson model with- and without vacuum term.
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Variation in Temperature

Figure 5.3 shows the solutions of the condensate equations 5.108 in mean

�eld approximation, i.e. without vacuum contribution (equation 5.88).
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Figure 5.3: The solutions of the condensate equations 5.108 in mean �eld

approximation for di�erent values of the temperature for the parameter choice

mσ = 600 MeV, mq = 300 MeV, gω = 3, B1/4 = 100 MeV and Ye = 0.2 as

a function of the quark chemical potential µq. The nonstrange and strange σ

condensate are shown in the upper �gure, whereas the vector �elds are shown

in the three lower plots.

For larger temperature the phase transition sets in at lower values of the

quark chemical potential µq and both scalar condensates melt away faster19,

whereas the vector �elds increase with larger temperature, which can be

seen in the lower three plots in �gure 5.3. Figure 5.4 shows the �elds as

19This is reasonable since QCD is expected to be restored at high chemical potential
and large temperatures, therefore the scalar condensates melt away faster.
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a function of the chemical potential for two di�erent temperatures in mean

�eld approximation and with the vacuum term.
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Figure 5.4: The solutions of the condensate equations 5.108 for two di�erent

values of the temperature in mean �eld approximation and with the vacuum

term for the parameter choice mσ = 600 MeV, mq = 300 MeV, gω = 3,

B1/4 = 100 MeV and Ye = 0.2 as a function of the quark chemical potential

µq. The nonstrange and strange σ condensate are shown in the upper �gure,

whereas the vector �elds are shown in the three lower plots.

Respecting the vacuum term, it can be seen that the nonstrange condensate

is shifted to considerably larger values of the chemical potential, whereas

the strange condensate shows hardly any in�uence respecting the vacuum

term. The nonstrange �elds reaches the chirally restored phase, whereas the

strange �eld remains in the broken phase. This is due to the fact, that the

strange quark is heavier. The repulsive vector �elds change unsigni�cantely

compared to the mean �eld case. This might be explained due to the fact
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that the vacuum contribution in the potential, equation 5.88, just consists of

contributions from the scalar sector.
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Figure 5.5: The pressure p and the fermion densities ni as a function of the

baryon number density nB in mean �eld approximation and with the vacuum

term for di�erent values of the temperature for the parameter choice mσ =

600 MeV, mq = 300 MeV, gω = 3, B1/4 = 100 MeV and Ye = 0.2. The upper

plot p(nB) shows di�erences when respecting the vacuum contribution for two

di�erent temperatures, whereas the lower plot shows the fermion densities

with the vacuum term.

Figure 5.5 shows the pressure as a function of the baryon number density

for di�erent values of the temperature respecting and neglecting the vacuum

term. The phase transition happens to be nB ' 0.18/fm3 for any case at

slightly various values of the pressure. The quark number densities are also

only slightly a�ected by increasing the temperature. The lower plots in

�gure 5.5 shows the densities with the fermion vacuum contribution, where

a small impact for di�erent temperatures can be seen for low nB. Here
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the down quark density is somewhat above the up quark density for T =

10 MeV, corresponding to a larger negative value of the ρ �eld, i.e. the

di�erence between up- and down quarks (see �gure 5.3). Increasing the

temperature suppresses the down quark density at small nB. At large nB
there is however no signi�cant change among the densities, which is also the

case for p(nB), because the scalar �elds reach the chirally restored phase

likewise. The calculation in mean �eld approximation is quantitatively of

the same behaviour, without a noteworthy signi�cant change for the quark

number densities.
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Figure 5.6: The pressure p and the scalar condensates as a function of the en-

ergy density ε in mean �eld approximation and with the vacuum term for two

di�erent values of the temperature for the parameter choice mσ = 600 MeV,

mq = 300 MeV, gω = 3, B1/4 = 100 MeV and Ye = 0.2.

Figure 5.6 shows the pressure and the scalar �elds as a function of the energy

density. The EoSs with and without the fermion vacuum term (upper plot)

are softer for larger temperatures, which is counterintuitive. However, this
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can be explained because of the interactions considered within the system.

Recall that in a nonrelativistic system p increases with temperature, in a rel-

ativistic system p ∼ ε
3
, that is, the pressure p is independent of temperature.

In our case the interactions are consequently responsible for the softening

of the EoS with increasing temperature. The scalar �elds as a function of

the energy density underline the statement (lower plot), because the phase

transition occures at a larger value of ε. The EoS with vacuum term show

some noteworthy di�erences for 150 ≤ ε ≤ 400 MeV/fm3. For both values of

the temperature the EoS is more linear-like and cross p = 0 at lower values

of the energy density, making the EoS sti�er in the low energy regime and

softer in the high energy regime. As has been the case for σ(µq) in �gure

5.4, σ(ε) changes signi�cantely only in the nonstrange sector. The linear-like

behaviour of the EoS in the low energy regime discussed above can be back-

traced to the course of the nonstrange condensate as a function of the energy

density, which can be seen in the lower plot in �gure 5.6.
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Variation in electron-baryon rate Ye
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Figure 5.7: The solutions of the condensate equations 5.108 for two di�erent

values of Ye in mean �eld approximation and with the fermion vacuum term

for the parameter choice mσ = 600 MeV, mq = 300 MeV, gω = 3, B1/4 =

100 MeV and T = 40 MeV as a function of the quark chemical potential

µq. The nonstrange and strange σ condensate are shown in the upper �gure,

whereas the vector �elds are shown in the three lower plots.

Figure 5.7 shows the behaviour of the �elds in mean �eld approximation

and with the vacuum term as a function of the chemical potential µq. The

in�uence of the vacuum term is analoguous to the situation discussed for

di�erent values of the temperature, that is the phase transition is shifted

to larger values of µq. Inclusion of the fermion vacuum contribution shifts

the ρ condensate to lower values at given µq compared to the case when

neglecting it. In the same amount the φ condensate is a�ected to somewhat

larger values. The in�uence of the vacuum term consequently a�ects the
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quark number densities and p(nB) in �gure 5.8. However, unlike as the

nonstrange �eld, σs does not reach the chirally restored phase for both cases,

i.e. respecting or neglecting the vacuum term. For both cases a lower electron

fraction means, that the the condensate melts away slightly faster, because

of the presence of more strange quarks, which can also be seen in the lower

plots in �gure 5.8. The repulsive vector �elds in the lower three plots in

�gure 5.7 underline the same statement. The nonstrange repulsive �elds ω

and ρ are proportional to the nonstrange quark density and thus larger for

lower electron fraction, whereas the strange �eld φ is suppressed for large

electron fraction. The ρ condensate is proportional to the di�erence between

up- and down quarks. If there is a region where more down quarks then up

quarks are present, its value is negative until the up quarks redominate the

system again, which is consistent with the lower plots in �gure 5.8.
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Figure 5.8: The pressure p and the fermion densities ni as a function of the

baryon number density nB in mean �eld approximation and with the vacuum

term for two di�erent values of Ye for the parameter choice mσ = 600 MeV,

mq = 300 MeV, gω = 3, B1/4 = 100 MeV and T = 40 MeV. The upper

plot p(nB) shows di�erences when respecting the vacuum contribution for

two di�erent values of Ye, whereas the lower plot shows the fermion densities

with the vacuum term.

Figure 5.8 shows the pressure as a function of the baryon number density.

As for di�erent temperatures, p(nB) is only a�ected around the chiral phase

transition (nB ' 0.18/fm3). The lower two �gures show the in�uence of Ye
on the quark number densities respecting the vacuum term20. The electron

fraction remains low for a low value of Ye. For Ye = 0.2 up to nB ' 0.4 there

are more down- then up quarks corresponding to a negative value of the ρ

�eld (see �gure 5.7), which couples to the isospin density. As has been the

20Comparing to mean �eld approximation the quark number densites are quantitatively
the same. The down and strange change only slightly around 0 ≤ nB ≤ 0.4
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case for di�erent temperatures, there is hardly any di�erence for the quark

number densities in mean �eld approximation to be seen.
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Figure 5.9: The pressure p and the scalar condensates as a function of the

energy density ε for two di�erent values of Ye in mean �eld approximation

and with the vacuum term for the parameter choice mσ = 600 MeV, mq =

300 MeV, gω = 3, B1/4 = 100 MeV and T = 40 MeV.

The EoS p(ε) is shown in the upper plot in �gure 5.9. p(ε) is sti�er for larger

Ye in the high density regime, because the strange scalar �eld reaches the chi-

rally restored phase later, see �gure 5.7, i.e the electron contribution to the

pressure becomes important since the strange quark is a bit more suppressed.

This statement is valid in mean �eld approximation and as well when consid-

ering the fermion vacuum contribution. The vacuum term in�uences the EoS

in the same manner as discussed for di�erent temperatures: The in�uence of

the nonstrange condensate as a function of the energy density (lower plot in

�gure 5.9) in�uences the sti�ness in the low energy regime, whereas for high

densites the EoS respecting the vacuum term becomes softer.
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Variation of the sigma meson mass

Figure 5.10 shows the scalar and vector condensates as a function of the

chemical potential in mean �eld approximation. For mσ = 400 MeV a �rst

order phase transition occurs, whereas for larger values of the sigma meson

mass mσ the scalar condensates are longer in the chirally broken phase and

the phase transition is smoother21.
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Figure 5.10: The solutions of the condensate equations 5.108 for di�erent

values of the sigma meson mass mσ in mean �eld approximation for the

parameter choice mq = 300 MeV, gω = 3, B1/4 = 100 MeV, T = 40 MeV

and Ye = 0.2 as a function of the quark chemical potential µq. The nonstrange

and strange σ condensate are shown in the upper �gure, whereas the vector

�elds are shown in the three lower plots.

This behaviour can be translated from the SU(2) model: The value of the

21As we will see, raising the repulsive vector coupling has the same in�uence on the
�elds, but sti�ens the EoS, whereas for larger mσ the EoS is softer.
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sigma meson mass determines the coupling λ (recall the discussion in section

4.4 and see equation 4.112), so that a larger value of the sigma meson mass is

proportional to a larger λ, i.e. more energy is needed to develop the second

minimum in the potential→ the phase transition is shifted to larger chemical

potentials, which is analoguous in the SU(3) case, although not immediately

that eyecatching.
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Figure 5.11: The solutions of the condensate equations 5.108 for di�erent

values of the sigma meson mass mσ in mean �eld approximation and with

the vacuum term for the parameter choice mq = 300 MeV, gω = 3, B1/4 =

100 MeV, T = 40 MeV and Ye = 0.2 as a function of the quark chemical

potential µq.

The incorporation of the vacuum term leads (as in any case considered so far)

to a smoothening of the �elds course, see �gure 5.11. For mσ = 400 MeV the

�rst order phase transition has become a crossover. Respecting the vacuum

contribution the phase transition however shifts to considerable larger values

of the chemical potential, which has already been observed in the SU(2)
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case as a function of the temperature, see �gure 4.15 in section 4.4.2, and is

therefore not surprising. The discussion in section 4.4.2 can be consultetd as

a guideline for various mσ and is also valid in the SU(3) case for running µq.
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Figure 5.12: The pressure p and the fermion densities ni as a function of the

baryon number density nB for di�erent values of the sigma meson mass mσ in

mean �eld approximation and with the vacuum term for the parameter choice

mq = 300 MeV, gω = 3, B1/4 = 100 MeV, T = 40 MeV and Ye = 0.2. The

upper plot p(nB) shows di�erences when respecting the vacuum contribution

for three di�erent values of mσ, whereas the lower plot shows the fermion

densities with the vacuum term.

Figure 5.12 shows the pressure as a function of the baryon number density. As

in the previous discussed cases, di�erences occur only around nB ' 0.18/fm3,

from there on the functions degenerate. A large value of the sigma meson

mass corresponds to more nonstrange quarks being present22. The strange

22This is reasonable, since the sigma meson consists of nonstrange quarks.
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quark density ns is therefore slightly suppressed, which can be seen in the

lower plots in �gure 5.12 and also in the behaviour of the φ condensate in

�gure 5.10.

The EoSs in mean �eld approximation and with the vacuum term are shown

in �gure 5.13. The EoSs become softer for larger mσ, because of its in�uence

on the vacuum parameters λ1 and m2
0 (recall the discussion in section 5.7.1)

which are mainly responsible for the potentials depth, i.e. the minimum in

the grand canonical potential. Di�erences occur again at low energy densi-

ties, where the vacuum term leads generally to a sti�ening. At high energy

densites the vacuum term respecting EoSs are softer.
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Figure 5.13: The pressure p as a function of the energy density ε for di�erent

values of the sigma meson mass mσ in mean �eld approximation and with

the vacuum term for the parameter choice mq = 300 MeV, gω = 3, B1/4 =

100 MeV, T = 40 MeV and Ye = 0.2.
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Variation of the repulsive coupling at Ye = 0.2
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Figure 5.14: The solutions of the condensate equations 5.108 for di�erent val-

ues of the repulsive coupling gω in mean �eld approximation for the parameter

choice mσ = 600 MeV, mq = 300 MeV, B1/4 = 100 MeV, T = 40 MeV and

Ye = 0.2 as a function of the quark chemical potential µq.

Figure 5.14 shows the scalar and the vector �elds as a function of the chemical

potential in mean �eld approximation. Small values of the repulsive coupling

exhibit a �rst order phase transition, which is not seen anymore when taking

into account the vacuum term, see �gure 5.15. As has been discussed before

for the other parameter variations, the vector �elds show hardly any in�uence

on the vacuum term.
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Figure 5.15: The solutions of the condensate equations 5.108 for di�erent

values of the repulsive coupling gω with the vacuum term for the parameter

choice mσ = 600 MeV, mq = 300 MeV, B1/4 = 100 MeV, T = 40 MeV and

Ye = 0.2 as a function of the quark chemical potential µq.

The pressure as a function of the baryon number density can be seen in

�gure 5.16. The �rst order phase transition for vanishing repulsion in mean

�eld approximation is responsible for the jump in nB in the upper �gure,

which disappears when respecting the vacuum term. The lower �gures show

the quark number densites. Choosing Ye = 0.5 the densities would change

according to the electron fraction, similar as in �gure 5.8.
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Figure 5.16: The pressure p and the fermion densities ni as a function of

the baryon number density nB for di�erent values of the repulsive coupling

gω in mean �eld approximation and with the vacuum term for the parameter

choice mq = 300 MeV, gω = 3, B1/4 = 100 MeV, T = 40 MeV and Ye = 0.2.

The upper plot p(nB) shows di�erences when respecting the vacuum contribu-

tion for two di�erent values of gω, whereas the lower plot shows the fermion

densities with the vacuum term.

Figure 5.17 shows the equation of state in mean �eld approximation (upper

�gure) and with the vacuum term (lower �gure). Neglecting the vacuum con-

tribution leads to a nonlinear behaviour of the EoS in the low energy regime,

whereas its consideration leads to a nearly equal start at ε ≤ 150MeV/fm3

but a splitting-up of the EoS at 200 ≤ ε ≤ 800MeV/fm3, to �nally degenerate

again. Respecting the vacuum term leads generally to a softer EoS.
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Figure 5.17: The equation of state in mean �eld approximation (upper �gure)

and with the vacuum term (lower �gure) for various values of the repulsive

coupling gω for the parameter choice mσ = 600 MeV, mq = 300 MeV, B1/4 =

100 MeV, T = 40 MeV and Ye = 0.2.

Raising the value of the electron-baryon rate in mean �eld approximation

leads to more separated EoSs in the high energy realm. As already men-

tioned at the end of section 5.7.1 the grand potential is independend of any

renormalization scale parameter Λ, and consequently is the equation of state.

If choosing Ye = 0.5 and varying the repulsive coupling, no noteworthy dif-

ference in the course of the scalar �elds is detectable. The repuslive �elds

are however e�ected due to a larger electron fraction, which suppresses the

φ-�eld and thereby the system has a lower strange quark density. Further-

more a larger Ye changes the percentage of the nonstrange densities. This

is not surprising due to the discussion on the variation of Ye before and is

important for the EoS, which is clearly more separated in the high energy

realm for large Ye. [58]
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5.9.

Supernovae

If the initial mass of an ordinary star exceeds eight solarmasses, carbon and

oxygen burning starts in the core. Around this very core is a shell of he-

lium, also fusioning. The star has a onion-like structure, since new burning

processes in the core will take place, surrounded by the outer burning shells.

The star largely expands and is called a Red giant23. Once iron is produced in

the core, no burning process is left to generate energy to fusion even heavier

elements. At some critical mass the iron core collapses and the electrons are

captured by the nuclei to form neutrons. The neutrons inside this core are

then degenerate just as the electrons are in a white dwarf24. The outer layers

bounce of the ultradense and (nearly) incompressible neutron core and gen-

erate a shock wave through the red giant star, which eventually will explode

in a core collapse supernova Type II.

This neutron core is called proto-neutron star and its temperature in the

core is ∼ 10MeV. After 10.000 years the temperature cools down to 100

keV25 mainly due to neutrino emission, and after that the stars cooling is

dominated by photo emissivity. The neutrino emissivity takes place through

charged (URCA process) and uncharged (Bremsstrahlung) weak interaction

processes [59, 60, 61, 62, 63, 64]. Studying the temperature evolution of such

proto-neutron stars, one can gain insight to the thermal conductivity, heat

capacity, solid state physics of the crust and super conductivity for instance

[65]. Cooling processes via neutrino emission are very sensitive to the EoS

and thereby to the mass and radius of the compact star. The evolution of the

star will be governed by the timescale for release of the trapped neutrinos,

refered to as deleptonization, and the timescale for thermal cooling, which

reduces the entropy to a small value26.

23The most famous Red giant Beteigeuze with 20M� has a radius of ∼ 1200R�.
24As we will see in chapter 6, degenerate neutrons are not su�cent to explain stars with

M ≥ 0.9M�. Repulsive interactions need to be taken into account.
25The temperature on the compact staars surface is about two magnitudes smaller.
26The di�erent types of compact stars in chapter 6 are indeed all calculated at

T = 0→ s = 0, s being the entropy density.
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5.9.1.

Isentropes: Constant entropy per bayron

The structure of a proto-neutron star is strongly in�uenced by the presence

of trapped neutrinos and, to a somewhat lesser extent, by the non-zero en-

tropy per baryon rate [66]. The de-facto evolution of the connection between

entropy- and neutrinofraction is a complex subject [67], but it is common use

to look for isentropes in the T − µ plane, i.e. lines of constant entropy per

baryon27.

In the outer layers of the proto-neutron star the entropy is rather large,

because of the shock wave through the progenitor and neutrino trapping.

This stage is hard to model via a constant entropy per baryon rate, but

s = 2 and Ye = 0.4− 0.5 is assumed to be a good approximnation after the

stars formation [68, 69].

The stage when deleptonization sets in and the entropy decreases, can be

approximated with s = 1 and Ye = 0.2 − 0.3 (or even less than 0.2). The

star can be considered as cold in beta equilibrium, see equations 5.103, 5.104,

5.105, 5.106, when the neutrinos have left the star. Then T → 0, i.e. s→ 0

and thereby Ye � 1.

27Recall the discussion from section 4.1 on the entropy density s.
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Figure 5.18: Temperature as a function of the chemical potential for isen-

tropes with S/A = 1 and S/A = 2 in mean �eld approximation (upper plot)

and with the vacuum term (lower plot) for two di�erent values of the electron

baryon rate Ye. The other parameters are mσ = 600 MeV, mq = 300 MeV,

gω = 3, B1/4 = 100 MeV.

Figure 5.18 shows lines of constant entropy per baryon (so calles isentropes)

in the T − µ plane in mean �eld approximation and with vacuum term. As

generally one can say that for T = 0 also s = 0, that is that all neutrinos

have left the (proto) neutron star, and a T → 0 approximation is justi�ed.

The region between the T = 0 axis and S/A = 1 indicates a boundary where

the neutrinos are leaving the (proto) neutron star and above S/A = 2 the

neutrinos are still trapped inside the proto neutron star. This statement

is physically reasonable because at high temperatures and low density (i.e.

low µq) the Supernova remnant has just formed. Increasing the density and

cooling of the star via neutrino emission, decreases the entropy per baryon.

Finally the star can be considered as cold and ultradense.
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All curves start at T = 0 around 300 ≤ µq ≤ 330 MeV:

The region where the chiral phase transition sets in, and increase at �rst

sight approximately linear. This linear behaviour of the isentropes can be

explained with considerations from the Stefan-Boltzmann limit for the Quark

Meson model, see section 4.1, just divide equation 4.5 by equation 4.6 to see

that s
nf

= S
A
∝ T

µ
.

As expected from the discussion above, the S/A = 2 curves are well above the

S/A = 1 curves and the electron-baryon rate Ye softens the course slightly

with increasing Ye, more noteable for S/A = 2 then for S/A = 1. The S/A

development is highly related to the EoS, because the entropy and the quark

densities enter in the energy density, see also the EoS for di�erent Ye in

�gure 5.9. The connection beteen EoS and S/A explains why there is more

deviation of the di�erent isentropes at low T and µ, than at larger values of T

and µ. The other parameters have not only been chosen in accordance with

the investigation on the �elds and the corresponding EoSs in section 5.8.2,

but also with the knowledge on the constraints and results in the compact

star sector to be exposed in chapter 6.



6
Compact stars

The �nal stages of the evolution of ordinary stars are so called compact

stars. The term compact stars illustrates that these objects are very dense

compared to matter mankind usually deals with and refers to White dwarfs,

neutron stars and in some sense to black holes. How these objects come to

exist will be described in the respective following sections. However, after

su�cient time a compact object will cool down, at least on nuclear scale.

Once the star has dropped in temperature below an MeV1 it is considered to

be cold enough to calculate the corresponding pressure and energy density2

in the T = 0 limit.

6.1.

White Dwarfs

Although not that compact to be described by general relativity a white

dwarf has its right to be shortly mentioned within this thesis, not only be-

cause it serves as an entrance to general relativistic e�ects, but also because

11eV= 11605 K
2Remember the discussion at the end of section 2.2.2

166
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of interesting astrophysics behind the scenes.

The nuclear process in an ordinary star will �rstly stop when all the helium is

burned up to carbon, nitrogen and oxygen, so that the temperature eventu-

ally decreases. The star shrinks and so the pressure in the core increases. If

the stars initial mass is ≤ 8M� the gravitational pull is to weak to reach the

required pressure to ignite carbon burning. The star sheds out its outer lay-

ers in a planetary nebula, and the remnant core is called White dwarf, whose

interior consits of a degenerate gas of electrons which are responsible for the

intrinsic high pressures. Because of their comparably small mass, electrons

are the �rst particles to become degenerate. Since there are no more fusion

processes, the dwarf needs a di�erent force than thermal pressure to main-

tain hydrostatic equilibrium. With increasing density the electrons �ll up

the phase space from the lowest energy state on. Due to the Pauli exclusion

principle only two electrons can occupy one energy level, i.e. the electrons sit

in physical states with high momentum, that is large pressure. This counter-

acts the gravitational pull and the dwarf is in an equilibrium state. Above

a critical mass of ∼ 1.44M�, the famous Chandrasekhar mass limit, even

the electrons cannot prevent the star from further collapsing. Typical white

dwarfs have masses around one solarmass and radii comparably to the earths

radius.

6.2.

Neutron stars

The term �neutron� star refers to the remaining core with a mass ∼ 1.5M�

and a radius ∼12 km after a Supernova explosion type II (see section 5.9).

The central density may reach several times nuclear saturation density 0.16 fm−3.

Although neutrons dominate the nucleonic component, some protons and

electrons still exist (This is due to charge neutrality). Like for all relativis-

tic spherically symmetric non-rotating stars, solutions for the TOV equa-

tions 2.55 and 2.62 need an appropriate EoS as an input. For each EoS,

p(ε) = p(ε(r)), where p is the pressure and ε the corresponding energy den-
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sity at a given radius r, exists a solution which is parametrized by pc, the

central pressure of the star. Figure 6.1 shows a polytropic EoS, which can be

found in [70] and a density dependent EoS called DD2, to be found in [71],

which we will use within the following section on hybrid stars too. The DD2

is a sti�er EoS, that is, the pressure is higher for a given energydensity.
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Figure 6.1: Pressure versus energydensity: A so called equation of state.

Shown here is a polytropic EoS (blue) and a hadronic matter EoS named

DD2. The hadronic EoS is signi�cantly sti�er than the polytropic one.

These two EoS from �gure 6.1 yield typical mass radius relations for neutron

stars when solving the TOV equations 2.55 and 2.62.
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Figure 6.2: The resulting mass radius relations for the two EoS shown in

�gure 6.1. The polytropic EoS yields ∼ 1M� at ∼ 7 km radius. The density

dependend DD2 reaches up to ∼ 2.4M� at a radius of ∼12 km.

The polytropic EoS yields solutions with around one solarmass at the max-

imum with a radius of ∼ 7 km, whereas the density dependent EoS yields

solutions up to 2.4M� at a radius of ∼ 12 km3. The sti�er the EoS the higher

the resulting maximum mass. The di�erent slopes and other properties such

as the steep increase of the DD2 mass radius relation are of tremendous im-

portance for the stars properties and are discussed throughout the literature

[72, 73, 74, 75]. The particle composition in terms of neutrons, protons and

electrons for a �DD2�-star with 1.4M� and a radius of 13.1 km is shown in

�gure 6.11, and discussed in greater detail within the respective section 6.3.

However, a neutron stars density can reach and surpass nuclear density, that

3Because pulsars with M ≥ 1M� have been observed, nuclear (or: strong) interactions
need to be taken into account, i.e. the degeneracy pressure of neutrons is not su�cent to
describe compact objects.
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is 2.5·1014 g
cm3 or in terms of energy density, 145MeV

fm3 . At these super-nuclear

densities it is �eld of research if exotic particles, such as strangeness bearing

baryons, kaons or even decon�ned quarks appear. In the following sections

6.3 and 6.4 some of these possible features will be investigated in greater

detail.

Although this thesis does not touch the subject of black holes it has to be

mentioned that for ordinary stars withM > 20M� even the neutrons (or the

assumed exotic fermions occupying the center of the star) cannot stabilize

the compact object anymore and the star collapses to a black hole.

6.3.

Hybrid stars

A proto-compact star is formed in the aftermath of a supernova explosion,

which is one of the most extreme events to occur in the universe. At low tem-

perature and �nite baryon density these objects contain the densest matter

known to mankind, which exceeds even nuclear density (ρ0 ≈ 2.5·1014 g/cm3).

The recent measurements of the masses of the pulsars PSR J1614-2230 [76]

and of PSR J0348+0432 [77] with M = 2.01± 0.04M� impose considerable

constraints on the equation of state (EoS) for compact stars.

The inner regions of the most massive compact stellar objects might be oc-

cupied by a phase of quarks. In this section stable hybrid stars, i.e. compact

objects with an outer layer composed of nuclear matter and with a core con-

sisting of quark matter, will be discussed. This work has been carried out in

collaboration with Matthias Hanauske and Jürgen Scha�ner-Bielich and has

been published in Physical Review D [57]. For the outer nuclear layer we

utilize a density dependent nuclear equation of state and we use the chiral

SU(3) Quark-Meson model equation of state (as been discussed in section 5)

in the T = 0 limit with a vacuum energy pressure to describe the object's

core. How to calculate the T = 0 limit can be found in my master thesis [5]

or somewhat abbreviated described in the resulted publication [56] on pure

quark stars. The appearance of a disconnected mass-radius branch emerging
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from the hybrid star branch implies the existence of a third family of com-

pact stars, so called twin stars. Twin stars will be subject in section 6.5 in

greater detail.

The repulsive e�ect of the strong interaction triples the maximum obtainable

mass compared to a non-interacting Fermi gas of neutrons [78]. An appro-

priate EoS therefore should yield solutions for compact stars with & 2M�

and illustrates likewise the importance of the incorporated interactions.

Spherically symmetric compact stars are generally described by the Tolman-

Oppenheimer-Volko� equations 2.55 and 2.62, derived in section 2.2.2.

The solutions of these equations are determined by di�erent equations of state

(EoS), and the entire collection of masses and corresponding radii is called

the mass-radius relation of compact stars [70]. For each EoS, p(ε) = p(ε(r)),

where p is the pressure and ε the corresponding energy density at a given

radius r, exists a solution which is parametrized by pc, the central pressure

of the star.

Two di�erent types of compact stars containing quark matter ought to be

considered. The �rst one is based on the idea that the appearance of the

strange quark lowers the energy per baryon and consequently forms the true

ground state of nuclear matter, i.e. forms the whole star [79, 44, 46]. The

resulting object is called a pure quark star, brie�y discussed in the next

section 6.4, and entirely discussed within the SU(3) model in [5, 56]. The

second one is called a hybrid star, where a quark matter core is surrounded

by an outer crust of hadronic matter, see �g. 6.3.



Thermal evolution of massive compact strange objects 172

Figure 6.3: A nuclear crust (blue circle) surrounding a quark matter core

(red circle) with a sharp transition from one phase to the other: A Maxwell

construction

The transition from nuclear matter to quark matter can occur either in a

mixed phase (Gibbs construction) or, assuming that there exists a �rst order

phase transition at pt, at a sharp transition (Maxwell construction).

Now, the particle transformations described by the EoS may in�uence the

compressibility of the star, which can a�ect the stability. Is this e�ect sig-

ni�cantly enough to alter the properties of the resulting compact object, i.e.

give rise to a third family of degenerate stars, so called twin stars? These

objects would again be stable at a smaller radius but similar mass as the

former compact star. A possible evidence of twin stars goes along with a

discontinuity in the EoS [80, 81, 82, 83, 84, 85, 86, 87, 88]. In this section

we study various EoS and their solutions within the TOV equations using

a Maxwell construction. A stable hybrid star con�guration with pc ≥ pt is

given, if the mass of the star continues to increase after the quark matter

core appears [89, 90, 91]. As soon as the mass decreases with larger central

pressures pc, the con�gurations become unstable. If the mass then, after

decreasing, increases again with larger pc, a stable twin star con�guration

would have been established. This behaviour is determined by the energy

discontinuity ∆ε between the two EoS and the speed of sound within the
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object. The works of Alford et. al [89, 90, 91] con�rmed that a stable con-

nected hybrid star branch emerges from the hadronic branch if the energy

density discontinuity is less than a critical value. They used a constant speed

of sound parametrization within the �eld correlator method for the QM EoS

to provide a general framework for empirical testing and comparison. The

recent observations of the 2M�-stars [76, 77] constraints the constant speed

of sound parametrization. A sti�er HM EoS and c2
s ≥ 1

3
for the QM EoS

yields solutions with star sequences ≥ 2M� in their approach. We will work

with a density dependent (DD2) nuclear matter EoS [71] for the outer layers

of the star and a chiral SU(3) EoS derived from the Quark-Meson model

(section 5) for the stars core. In the last section we found that pure quark

star con�gurations ≥ 2M� for a small parameter range exist, whereas all

other solutions were hybrid stars completely built of a mixed phase of HM

and QM. We scan the same parameters of the SU(3) EoS as in [56] to look

for possible twin stars emerging from a stable hybrid star.

According to lattice QCD calculations, the phase transition at high baryonic

densities is of �rst order [92, 93, 94]. Based on this assumption the transition

from hadronic matter to quark matter is described via a Maxwell construc-

tion [95, 96, 97]. The quark-meson model couples mesons as mediators of

the strong interaction to quarks utilizing chiral symmetry [37] via a Yukawa

type coupling (Remember the discussion in section 4.4 for the SU(2) case).

The coupled equations of motions of the meson �elds derived from the grand

canonical potential have to be solved self-consistently and determine �nally

the EoS. The energy density and the pressure derived from the grandcanon-

iocal potential in mean �eld approximation (Section 5.6, equation 5.84) have
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to be determined for T = 0 and read4

ε = εe +
λ1

4
(σ2

n + σ2
s)

2 +
λ2

4
(σ4

n + σ4
s) (6.1)
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)
where the indices n=nonstrange (up- and down quarks) and s=strange quarks.

For the couplings and masses of the included �elds standard values are as-

sumed. A detailed treatment on the parameters, if maybe not su�cently

discussed within this thesis, can be found in [37, 38, 48, 56]. Since the

properties of the reviewed hybrid stars depend only on the parameters of

the quark sector, a broader overview shall be given compared to the nuclear

matter parameter range. Four parameters can be varied:

1. The constituent quark mass mq determines the scalar coupling for the

nonstrange gn and strange condensate gs via the Goldberger-Treiman

relation: gn = mq
fπ

and gs = gn
√

2, where gs is adopted from SU(3)

symmetry considerations.

2. The vector coupling is independent of the constituent quark mass, it

4See my Master thesis [5] for details.
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will be varied in the scale of the scalar coupling, gω ∼ gn, to study

its in�uences in an appropriate range. The strange coupling of the

φ-meson is �xed by SU(3) symmetry.

3. The experimentally not well determined mass of the σ-meson covers a

range from 400 MeV ≤ mσ ≤ 800 MeV [4, 52].

4. The Bag constant B
1
4 [MeV] models the con�nement and can be inter-

preted as a vacuum energy density term, remember section 5.1. The

�elds are independent of its variation, its impact is to sti�en or soften

the EoS. Physically reasonable ranges within this context are 60 MeV

≤ B
1
4 ≤ 200 MeV.

6.3.1.

Construction of the phase transition

At large densities hadronic matter is expected to undergo two phase tran-

sitions. The �rst one decon�nes hadrons to quarks and gluons. Note that

in a strict sense neither the decon�nement phase transition nor the chiral

phase transition can be described by an order parameter based on under-

lying symmetries of QCD. The second one restores chiral symmetry. Yet

it is an unsettled issue whether these transitions are real phase transitions

or crossover transitions [98]. We will study and compare various models at

ultrahigh densities to search for di�erences and similarities as well as their

resulting predictions for compact objects, i.e. the mass-radius relation. The

study of the decon�ned phase transition is related to the mixed phase. It has

been suggested, that the mixed phase in compact objects behaves more in

accordance with the Maxwell construction than with the Gibbs construction

[99, 97, 100]. Furthermore it is more likely that twin stars appear within the

Maxwell construction, according to [97]. In this approach we thus utilize a

Maxwell construction due to the above mentioned reasons. In refs [89, 90, 91]

the QM EoS was parametrized in a relatively simple form (see eq. 6.7) and

the transition from HM to QM can be constructed without any constraints
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concerning the chemical potential. Our approach on the other hand needs to

take into account the pressure as function of the chemical potential to �nd

the thermodynamically justi�ed transition pressure (see �g. 6.16 and the dis-

cussion there).

In electrically neutral stellar matter baryon number and charge have to be

conserved quantities. Under this assumption the chemical potential of species

i can be de�ned as

µi = BiµB +QiµQ (6.3)

where Bi is the baryon number and Qi the charge in units of the electron

charge and µB and µQ are the baryonic and electric chemical potentials re-

spectively. Note, that strangeness is not a conserved quantity. The phase

transition from HM to QM produces a mixed phase. Now, the Gibbs condi-

tion requires that the coexisting phases have opposite charge and it might also

happen that the mixed phase is energetically too expensive [97, 99]. Then

the two phases are in direct contact with each other, which corresponds to a

Maxwell construction, where

PHM(µB, µQ) = PQM(µB, µQ) (6.4)

µB = µHM = µQM (6.5)

The baryon chemical potential is continuous, but µQ jumps at the interface

of the two phases, so that the phase transition takes place if the pressure of

the QM phase equals the pressure of the HM phase at a given baryo-chemical

potential µB. The MC corresponds to constant pressure in the energy den-

sity interval of the mixed phase, whereas the pressure increases with baryon

density in the GC.

However, the existence of a quark phase in a compact star requires the tran-

sition pressure to be smaller than the central pressure pc of the star, which

is valid for the MC and also for the GC.
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6.3.2.

Stability Criteria

As long as the mass of the star is an increasing function of pc the compact

object will be stable. Since a hybrid star contains a QM-core, there exists

a threshold value in the jump in energy density ∆εc which determines the

star's stability when the QM-core �rst appears.

∆εc
εt

=
1

2
+

3

2

pt
εt

(6.6)

where εt and pt are the values of the energy density and pressure at the phase

transition to hadronic matter. ∆εc is the threshold value below which there

is in any case a stable hybrid star branch connected to the hadronic star

branch [89, 90, 91]. For a derivation and discussion of (6.6) see [101, 80, 81,

82, 102, 83, 103, 104].

For a high value of ∆ε the cusp in the MR relation is hardly detectable and

in the range of ∼ 10−4M� in agreement with [104, 89, 88], i.e. shortly after

the QM core appears the QM core is unable to counteract the gravitational

attraction from the HM and the star becomes unstable.

6.3.3.

Results

The appearance of a QM core within a compact star is entirely determined

by the transition pressure pt and the discontinuity in the energy density ∆ε.

If the pressure within the star lies below the transition pressure, the object

would be entirely determined by the HM EoS and could not be classi�ed as

a hybrid star. The relation ∆ε
εt

as a function of pt
εt

will become important

in context with eq. (6.6) when investigating for connected or disconnected

hybrid star branches [89, 90, 91].
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Various EoS and the corresponding mass-radius relations for �xed

B and di�erent gω

Figure 6.4 shows the total hybrid EoS for a �xed value of the vacuum pres-

sure B = 60 MeV while varying the vector coupling constant from 0 ≤ gω ≤ 3.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  500  1000  1500  2000  2500  3000  3500  4000

p
 [
M

e
V

/f
m

3
]

ε [MeV/fm
3
]

g
w
=0

g
w
=1

g
w
=2

g
w
=3

DD2

 0

 1

 2

 0  100  200

Figure 6.4: The EoS with �xed B1/4 = 60 MeV while varying gω at mσ =

600 MeV and mq = 300 MeV. The inlaid �gure accentuates the behaviour of

the EoS for gω = 0 and gω = 1 which else is hardly perceivable.

For increasing values of the repulsive coupling the transition pressure pt in-

creases. This is due to a higher intersection point of the hadronic EoS and

the corresponding QM EoS in the p − µ plane, see �g. 6.16. Larger gω goes

along with a sti�ening in the QM EoS.

The gω = 0 case corresponds to a transition from HM to QM at ε
ε0
≤ 1.

A transition occurring below saturation energy density is clearly unphysical

and shall therefore not be discussed any further (see upper x axis in �g 6.15).
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For gω = 1 the transition occurs at pt ' 1.05 MeV/fm3 and εt ' 102 MeV/fm3

(see inlaid �gure in �g. 6.4). The discontinuity in energy density here is

∆ε ' 122 MeV/fm3. In this case ε
ε0
' 1, see also �g. 6.15, which corresponds

to the leftmost data point on the gω = 0 line. Note that in �g. 6.4 and in all

following graphics the pure HM results are shown as a reference, denoted as

�DD2�.
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Figure 6.5: The mass-radius relation with �xed B1/4 = 60 MeV while varying

gω at mσ = 600 MeV and mq = 300 MeV.

The corresponding mass-radius relation is shown in �g. 6.5. For gω = 1 the

phase transition from HM to QM does not destabilize the star for a relatively

wide range in mass, i.e. the emerging QM core gets larger while the hybrid

star manages to stay stable up to ∼ 1.7M�. This behaviour is very similar

to the one of the hadronic mode �DD2�, but shifted to smaller masses and

radii.

A repulsive coupling of gω = 2 on the other hand results in a connected

hybrid star branch hardly detectable compared to gω = 1 and with a similar
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trend as the �DD2� case, but with solutions reaching & 2M�.

For gω = 3 the transition sets in at already unstable con�gurations for the

pure nuclear matter case.
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Figure 6.6: The radius- and mass curves as function of the central pressure

pc with �xed B1/4 = 60 MeV while varying gω at mσ = 600 MeV and mq =

300 MeV. The curves starting in the upper left region are the radius curves

whereas the curves starting on the lower left side are the mass curves.

Figure 6.6 displays the radius- and mass curves as function of pc with B1/4 =

60 MeV while varying gω at mσ = 600 MeV and mq = 300 MeV. The curves

starting in the upper left region are the radius curves for a given value of gω.

The curves starting on the lower left side are the mass curves. The associated

x-axis in �g. 6.6 shows the pressure pertaining to both curves. The curves

leave the hadronic �DD2� reference line at the respective transition pressure

pt and, still rising, yielding stable hybrid star solutions. Unstable solutions

can be read o� from the point where the mass decreases with increasing

pressure. These features are valid for all following radius- and mass curves
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as function of pc.

Figure 6.6 substantiates the hithero discussion regarding the increase of the

repulsive coupling by depicting up to which central pressure pc the hybrid

star con�gurations stay stable: With higher repulsive coupling, the appearing

hybrid star con�gurations become unstable, i.e. the smaller the resulting QM

core, though the masses are signi�cantly higher.
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Figure 6.7: The EoS with �xed B1/4 = 100 MeV while varying gω at mσ =

600 MeV and mq = 300 MeV. The inlaid �gure shows the behaviour of the

EoS for gω = 0 and gω = 1.

Figure 6.7 shows the EoS for B1/4 = 100 MeV. The transition pressure in-

creases with an associate increase of the jump in energy density. For gω = 0

with �xed B1/4 = 100 MeV the respective values are pt ' 15 MeV/fm3,

εt ' 230 MeV/fm3 and ∆ε ' 90 MeV/fm3, see inlaid �gure in �gure 6.7

and see �g. 6.15 for ε
ε0
' 1.8 respectively. For gω = 1 and B1/4 = 100 MeV

we �nd pt ' 75 MeV/fm3, εt ' 380 MeV/fm3 and ∆ε ' 100 MeV/fm3 at
ε
ε0
' 2.8, see also �g. 6.15. The resulting mass-radius relations for these EoS
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are shown in �g. 6.8. The symbols 4 and © (see �gs. 6.8 and 6.9) mark the

positions of two individual stars which are later discussed in greater detail.
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Figure 6.8: The mass-radius relation with �xed B1/4 = 100 MeV while vary-

ing gω at mσ = 600 MeV and mq = 300 MeV. The symbols 4 and ©
represent two individual stars chosen from the EoS with gω = 1 to discuss

their individual properties.
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Figure 6.9: The radius- and mass curves as function of the central pressure

pc with �xed B1/4 = 100 MeV while varying gω at mσ = 600 MeV and

mq = 300 MeV. The curves starting in the upper left region are the radius

curves whereas the curves starting on the lower left side are the mass curves.

The symbols 4 and © represent two individual stars chosen from the EoS

with gω = 1 to discuss their individual properties.

However, increasing further the repulsive coupling leads to hybrid star con-

�gurations, which do not support a stable QM core (gω ≥ 2). The trends

of the curves obviously show di�erences to the B1/4 = 60 MeV parameter

choice. For values of gω ≤ 1 the transition pressures for B1/4 = 100 MeV

are higher compared to the B1/4 = 60 MeV case, see �gs. 6.6 and 6.9. Note

that for gω ≥ 2 the transition pressures change not signi�cantly, and the ap-

pearing QM core does destabilize the con�gurations nearly immediately (the

transition for gω = 3 happens already in the unstable regime of the branch).

The QM core for gω = 0 appears at ∼ 0.8M� at a radius of ∼ 12.5 km, see

�g. 6.9 where the mass and radius lines leaves the hadronic �DD2� reference
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line. The star does not get unstable up to ∼ 1.6M� at a radius of ∼ 11 km.

The QM core for gω = 1 appears at ∼ 1.6M�. The hybrid star con�gurations

stay stable up to ∼ 1.7M�, see �gs. 6.8 and 6.9. The appearance of the QM

core at gω = 1 destabilizes the star con�gurations faster than in the gω = 0

case for B1/4 = 100 MeV.

To demonstrate the particle occupation within the star con�gurations, we

picked out two individual stars from �gure 6.8 (and respective �gure 6.9),

marked with 4 and©, whose individual properties are denoted in table 6.1.

Star M/M� R pc εcent εcent/ε0

4 1.81 12.35 169.21 917.73 6.23

© 1.42 13.14 45.32 351.54 2.39

Table 6.1: The properties of the two individual stars 4 and© for the param-

eter choice B1/4 = 100 MeV, gω = 1, mσ = 600 MeV and mq = 300 MeV.

The entries display the mass in solar masses, the radius R of the star in

km, the pressure pc and the energy density εcent at the center of the star in

MeV/fm3 and the respective energy density in units of nuclear energy density.
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Figure 6.10: The energy density versus radius of the two selected stars 4
(continuous line) and© (dotted line) from �gs. 6.8 and 6.9 for the parameter

choice B1/4 = 100 MeV, gω = 1, mσ = 600 MeV and mq = 300 MeV. The

phase transition for 4 from hadronic matter to quark matter appears at ∼6.1
km, whereas © is purely hadronic.

We choose a hybrid star, marked with4, and a purely hadronic star, marked
with©, calculated from the EoS with the parameter choice B1/4 = 100 MeV,

gω = 1, mσ = 600 MeV and mq = 300 MeV.

Figure 6.10 depicts the energy density pro�les of the two stars, ranging from

their center at r = 0 up to their surface, where εcent = 0 and r = R, in-

dicating the radius of the star. The quark matter phase for 4 appears at

r ' 6.1 km at ε ' 500 MeV/fm3. The respective jump in energy density is

∆ε ' 100 MeV/fm3, which can also be seen in �gure 6.7. We want to point

out, that due to the used Maxwell construction of the phase transition, no

mixed phase region and therefore no crystalline (pasta-like) structure [105]

of mixed phase matter is present within our hybrid star model. The pro�le
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of the star © shows a continuous behaviour as the star does not reach the

pressure required for quark matter to appear.

Figure 6.11 demonstrates the particle fraction of the two individual stars,

plotted versus their respective radius. From the surface on at R4 = 12.35

km the star 4 is mainly composed of neutrons, which contribute ∼ 90%, and

consists of an equal number of protons and electrons (due to charge neutral-

ity), contributing ∼ 10%. With decreasing radius the respective hadronic

particle fraction decreases, but changes are not that signi�cantly. Yet at a

radius of ∼ 6.1 km, at εcrit ' 500 MeV/fm3 and pt = 64.81 MeV/fm3, the

phase transition from hadronic matter to quark matter takes place.
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Figure 6.11: The particle fraction versus radius of the two selected stars

4 (continuous lines) and © (dotted lines) from �gs. 6.8 and 6.9 for the

parameter choice B1/4 = 100 MeV, gω = 1, mσ = 600 MeV and mq =

300 MeV. 4 has a radius of R4 = 12.35 km and the phase transition happens

at 6.1 km. The appearing quarks form the whole star and the strange quark

becomes more and more signi�cant, and �nally makes up 20 % of the star in

its center. The particle composition of © is indicated by the thin dotted lines

and since the star is purely hadronic, no quarks appear. The star is mostly

composed of neutrons (∼90 %) and of protons and electrons (∼10 %).

Approaching the center of the star the contribution of the strange quark

increases, while the contribution of the down quark decreases in nearly equal

manner. The fraction of the up quarks stay (nearly) constant at ∼ 33%. The

increase of the strange quark contribution can be explained with the increase

in pressure approaching the center of the object [106, 107]. The particle

composition of the star ©, indicated by the thin violet dotted lines, on the

other hand does not reach the required pressure for the corresponding phase
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transition, pc = 45.323 MeV/fm3 ≤ pt ≤ 64.81 MeV/fm3, and therefore

remains purely hadronic. As in the case for 4 within the shell 6.1 km≤
r ≤ R©, the hadronic fraction, neutrons, protons and electrons, stays nearly

constant.

The star is mostly composed of neutrons (∼90 %), protons and electrons

(∼10 %).

The EoS for B1/4 = 140 MeV is shown in �g. 6.12. It shows an increase of

the transition pressure pt as expected. The discontinuity in energy density

increases too, but displays a nontrivial relation to pt which can be observed

in greater detail in the phase diagram shown in �g. 6.15. The resulting mass-

radius curve for B1/4 = 140 MeV is shown in �g. 6.13. A hybrid star branch

appears but is hardly noticeable.
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600 MeV and mq = 300 MeV.
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Figure 6.13: The mass-radius relation with �xed B1/4 = 140 MeV while

varying gω at mσ = 600 MeV and mq = 300 MeV.

As already mentioned, the transition for a value of gω = 3 sets in at an already

unstable con�guration, i.e. no stable hybrid star branch at all emerges.
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Figure 6.14: The radius- and mass curves as function of the central pressure

pc with �xed B1/4 = 140 MeV while varying gω at mσ = 600 MeV and

mq = 300 MeV. The curves starting in the upper left region are the radius

curves whereas the curves starting on the lower left side are the mass curves.

Fig. 6.14 shows the corresponding radius- and mass curve as function of the

central pressure pc. The hybrid star con�gurations follow the �DD2� curve,

and become unstable nearly immediately after the appearance of the QM

core. The repulsive force in the QM EoS is not strong enough to support a

large hadronic mantle. The star would collapse having a too large QM core.

Generally speaking: Raising the value of the vacuum pressure leads to shorter

hybrid star branches, i.e. the mass di�erence between the maximum mass on

the connected hybrid star branch and the mass of the purely hadronic star at

the phase transition (pc = pt) gets smaller. The phase diagram displayed in

�gure 6.15 depicts the ratio of pressure to energy density at the transition of

hadronic matter versus the discontinuity in energy density at the transition.

The upper x axis displays the corresponding central energy density in units
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of nuclear energy density ε0 ' 145 MeV
fm3 .

The transition for small values of B and gω occurs at a too small central

energy density εt
ε0
≤ 1. For large values of B and a small repulsive coupling

the transition occurs at 4− 10 times nuclear saturation density. Within the

range 100 ≤ B ≤ 140 MeV the transition for zero repulsion stays below the

constraint line, given by eqn. 6.6. It is interesting to note that all curves

gather in an area at around 0.55 ≤ pt
εt
≤ 0.65 and 0.4 ≤ ∆ε

εt
≤ 0.6 where

the central energy density is ∼ 10 times nuclear saturation density (even for

higher values of gω not displayed here).
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Figure 6.15: Phase diagram for hybrid stars with �xed B while varying 0 ≤
gω ≤ 3 at constant mσ = 600 MeV and mq = 300 MeV. The axes display the

transition pressure pt and the energy density discontinuity ∆ε in units of the

nuclear energy density at the transition εt. Note, that the �rst data point for

the B1/4 = 60 MeV line (on the left) corresponds to gω = 1. The following

data points are incremented by ∆gω = 0.25.

Figure 6.16 displays the pressure as a function of the chemical potential µ for



Thermal evolution of massive compact strange objects 192

the parameter choice mσ = 600 MeV, mq = 300 MeV and B1/4 = 100 MeV

while varying 0 ≤ gω ≤ 3. The intersecting point between the HM-and

the QM curve indicates where the transition pressure for a given choice of

parameters is located.
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Figure 6.16: The intersection in the pressure versus chemical potential µ

plane for 0 ≤ gω ≤ 3 within the parameter choice mσ = 600 MeV, mq =

300 MeV and B1/4 = 100 MeV, corresponding to �gs. 6.7, 6.8 and 6.9. The

MC requires that from the intersecting point on the dominance in the EoS

�ips, which creates a QM core within the star at the corresponding pressure.

The inlaid �gure shows the intersection for the gω = 3 case, which is out of

the plot range.

The intersection for gω = 0 takes place at p ' 15 MeV/fm3 and µ ' 355 MeV

and for gω = 1 at p ' 75 MeV/fm3 and µ ' 400 MeV, see also �gs. 6.7 and

6.9. It is interesting to note that within our approach a sti�er EoS has a

�softer� behaviour in the p− µ plane. Due to this softening the intersection

between the hadronic and the QM curve takes place at a higher pressure.
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That corresponds to a transition from HM to QM at a higher energy density

in terms of nuclear energy density, see �gs. 6.15 and 6.21 for comparison

(upper x-axis). An appearing QM core destabilizes the star quite soon, and

twin star solutions are ruled out, since these require a relatively low transition

pressure [94, 88].
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Figure 6.17: The speed of sound c2
s = dp

dε
as a function of the energy density ε

for 0 ≤ gω ≤ 3 within the parameter choice mσ = 600 MeV, mq = 300 MeV

and B1/4 = 100 MeV, corresponding to �gs. 6.7, 6.8 and 6.9. For this pa-

rameter choice the transition is marked by the symbols on the �DD2� curve.

In �g. 6.17 we examine the speed of sound for 0 ≤ gω ≤ 3 within the pa-

rameter choice mσ = 600 MeV, mq = 300 MeV and B1/4 = 100 MeV, cor-

responding to �gs. 6.7, 6.8 and 6.9. Since the Bag constant does not a�ect

the sti�ness of the EoS (it just changes the value of the vacuum pressure)

the slope of theses curves for any choice of B would remain the same. Only

the transition values of the energy density εt from one EoS to the other EoS

would change and in equal steps of ∆ε.
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For gω = 0 and gω = 1, ∆ε ' 95 MeV/fm3, see also the discussion in the

previous sections. The symbols on the �DD2� curve mark the point where

the transition takes place and the stars leave the hadronic branch. The corre-

sponding symbols on the QM lines mark then the points, where the QM core

appears. As one would expect, an increase of the repulsive coupling sti�ens

the EoS, which is equivalent to a larger speed of sound within the medium.

The gω = 0 line saturates at c2
s = 1

3
which is reasonable since ultrarelativistic

matter without interactions saturates at p(ε) = 1
3
ε [75, 8]. Since gω = 3

has far too high transition pressures for hybrid- and twin stars the highest

considered repulsive coupling gω = 2 reaches c2
s ' 0.5. That means that all

physically relevant and considered cases in this work lie within 0.3 ≤ c2
s ≤ 0.5.

This will become important in the following when we compare our results

with those from Alford et. al [89, 90, 91].

Various EoS and the corresponding mass-radius relations for �xed

gω and di�erent Bag constant

Figure 6.18 shows the EoS at �xed gω = 0 for various values of the Bag

constant B1/4. For increasing values of B the transition pressure pt increases.

As in the case of increasing B at �xed gω, increasing B1/4 while varying gω
leads to the same behaviour of the di�erent EoS.
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Figure 6.18: The EoS with �xed gω = 0 while varying B at mσ = 600 MeV

and mq = 300 MeV. The inlaid �gure shows the behaviour of the EoS for

B1/4 = 180 MeV.

For B1/4 = 80 MeV, pt ' 1 MeV/fm3, εt ' 92 MeV/fm3 and the discontinuity

in energy density is ∆ε ' 160 MeV/fm3 (see inlaid �gure). For the highest

chosen value of B1/4 = 180 MeV pt ' 202 MeV/fm3, εt ' 650 MeV/fm3

and ∆ε ' 1100 MeV/fm3, i.e. the discontinuity in the energy density ∆ε

increases also with B. Figure 6.19 shows the mass-radius relations for gω = 0

while varying B with mσ = 600 MeV and mq = 300 MeV. For the smallest

value of B1/4 = 80 MeV the QM core appears at already 0.11M� at a radius

of ∼ 25 km (see inlaid �gure), see also �g. 6.20.
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Figure 6.19: The mass-radius relation with �xed gω = 0 while varying B

at mσ = 600 MeV and mq = 300 MeV. The inlaid �gure accentuates the

behaviour of the mass-radius curve for B1/4 = 80 MeV which else is hardly

perceivable.

The shape of the curve is similar to the pure hadronic one but shifted to

slightly smaller values of mass and radius due to the appearence of the QM

core. The transition from HM to QM appears at ε
ε0
≤ 1, see �g. 6.21.

The inlaid �gure displays a disconnected mass-radius branch, which is an

indication for a twin star. These disconnected solutions were found up to

values of B ' 90 MeV, getting harder to detect with larger B and always at

physically too small transition energy densities 0.66 ≤ ε
ε0
≤ 1, see �gs. 6.21

and 6.25, and shall therefore not be discussed any further.

For B1/4 = 100 MeV the transition occurs at ε
ε0
' 1.8. The respective values

are pt ' 15 MeV/fm3, εt ' 230 MeV/fm3 and ∆ε ' 90 MeV/fm3 (see

also inlaid �gure in �g. 6.7, �g. 6.18 and �g. 6.20). The QM core appears

at ∼ 0.8M� at a radius of ∼ 12.5 km. The star con�guration does not
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get unstable up to ∼ 1.6M� at a radius of ∼ 11 km, which can altogether

be observed in �g. 6.20. The resulting mass-radius relation for this EoS is

also shown in �g. 6.8. Higher values of the vacuum energy term B lead to

much smaller hybrid star branches, hardly visible and in accordance with

[89, 90, 91]. The con�gurations get unstable nearly immediately after the

appearence of the QM core, which itself emerges at a higher mass. The case

B1/4 = 140 MeV reaches ∼ 1.9M� but after the transition has set in, the

star con�gurations get quickly unstable. These stars support, if they support,

only a very small QM core and subsequently become unstable.

Interesting to note is that, when varying the vacuum pressure B, the resultant

family of mass radius curves rotate clockcounterwise around a small region

where all of the curves pass through, see �g. 6.19. This behaviour has already

been found by Yudin et al. [108].
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Figure 6.20: The radius- and mass curves as function of the central pressure

pc with �xed gω = 0 while varying B at mσ = 600 MeV and mq = 300 MeV.

The curves starting in the upper left region are the radius curves whereas the

curves starting on the lower left side are the mass curves.

However, the transition pressure rises with the increase of gω, which generates

eventually an unstable QM core.
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Figure 6.21: Phase diagram for hybrid stars with �xed gω while varying

40MeV ≤ B ≤ 200 MeV at constant mσ = 600 MeV and mq = 300 MeV.

The axes display the transition pressure pt and the energy density disconti-

nuity ∆ε in units of the nuclear energy density at the transition εt.

The labelling of the axes in the phase diagram for �xed gω in �g. 6.21 is the

same as for �xed B in �g. 6.15. Generally, increasing the value of the repulsive

coupling of the QM EoS leads to a higher pt and also a larger discontinuity

∆ε for a given B. The higher the repulsive force within the QM core, the

higher is pt for a QM core to appear. For the transition to occur at 2ε0, B

has to be at least 104 MeV in case of zero repulsion (gω = 0), corresponding

to the minimum of the plotted data in �g. 6.21. For gω = 1, B has to be

at least 84 MeV to be located at 2ε0. Both cases lead to stable hybrid star

con�gurations, shown in �gs. 6.19 and 6.20 for gω = 0.

However, both trends are parabola like, crossing the constraint line twice,

whereas the gω = 2 and the gω = 3 case stay below the constraint (except

for the choice gω = 2 and B & 190 MeV). The gω = 2 case in the range 50 <
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B < 200 MeV corresponds to 4.5 ≤ εt
ε0
≤ 7. There a connected hybrid star

branch, even if very small and hardly observable, exists up to B ' 180 MeV.

The stars get unstable almost immediately after the appearance of the QM

core. A higher value of B leads to transitions at already unstable mass-radius

con�gurations. In case of even higher repulsion gω = 3 the transition takes

place at 10-14 times nuclear energy density at an already unstable mass-

radius con�guration. Our results match the results from [89, 90, 91].

An investigation in the phase space by variation of mσ and mq leads us to

the conclusion that neither ∆ε
εt
nor pt

εt
changes in an adequate amount to get a

relatively large jump in energy density accompanied with a small transition

pressure, which is an essential requirement for twin stars, see �g. 6.25. Their

attractive character through varying both quantities is far weaker than the

variation of gω and B1/4 [109, 51, 56].

Comparison with other models

In the last section we have analyzed the parameter dependence of the re-

sulting hybrid star properties within our HM-QM model. One main out-

come of our analysis is the absence of a twin star region within the physical

reasonable parameter space. Theoretically we have found a narrow param-

eter region where twin stars do exist (pt/εt < 0.05), however, within all of

these EoSs the HM to QM phase transition appears at irrelevant low density

(εt < ε0). As the existence of twin stars have been found in many di�er-

ent kind of phase-transition scenarios, e.g. hadron-quark phase transition

[110, 111, 96] (using a Maxwell- or Gibbs construction), hyperon phase tran-

sition [112], pion [113] and kaon condensation [114, 115], the question arises,

what the main reason is, that we do not �nd twins in our model? On the

one hand, in all the existing twin star models, the relevant EoS parameter

region where twins occur, is always narrow and a 'parameter �ne-tuning' is

needed to achieve an EoS which will result in a twin star behaviour. On the

other hand, we have carefully analysed the allowed parameter space in the

last section and did not �nd a twin star solutions where εt > ε0.
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Figure 6.22: The EoS for three di�erent parameter sets corresponding to a

QM-EoS given by eq. 6.7. The parameters of the three sets are displayed in

table 6.2.

We show that the non-existence of twin stars in our model is due to the

fact that the potential twin star area lies outside of our available parameter

region and therefore cannot be reached in our simulations. By constructing

the phase transition within our model we are not capable to choose arbitrary

values for ∆ε, εt and pt (like Alford et. al [89, 90, 91]), because we need

to match the HM-EoS with the QM-EoS in a consistent way, i.e. �nd the

intersection between pressure p and chemical potential µ for the transition

pressure pt.
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Star sequence pt/εt ∆ε/εt M1 R1 M2 R2

• Set A 0.17 0.56 1.69 13.26 1.70 11.72

� Set B 0.12 1.36 1.35 13.21 1.26 8.91

N Set C 0.08 1.68 0.96 13.05 1.20 7.90

Table 6.2: The parameter choice for a constant speed of sound c2
s = 1

3
of the

three di�erent sets of star sequences with the respective masses and radii of

the corresponding branches (�g. 6.23)

In this section we use the same density dependent DD2 EoS for the hadronic

part, but we use a much simpler model for the QM sector. Similar to [89, 90,

91] we take a QM-EoS, which is parameterized by the following three values:

pt, ∆ε and and cs (constant sound speed in quark matter) and which is given

by eq. 6.7. In order to construct a comparable QM-EoS with respect to our

model, we have used a �xed value of c2
s = 1/3 for the following calculations.

The EoS for p > pt in this simple QM model has the following form [89, 116]

p(ε) = c2
s (ε− ε∗) , with: ε∗ := εt + ∆ε− 1

c2
s

pt , (6.7)

where ε∗ is the energy density at zero pressure. Fig. 6.22 shows the resulting

EoSs for three choices of the parameters, which are given in tab. 6.2. In

contrast to our model the parameters can be chosen in such a way that twin

stars appear in a physically meaningful region.
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Figure 6.23: The mass-radius relation for three di�erent parameter sets cor-

responding to a QM-EoS given by eq. 6.7. The parameters of the three sets

are displayed in tab. 6.2. Set C shows impressive the appearance of a second

stable branch, where M2 > M1: The maximum mass of the second branch

is larger than the maximum mass of the �rst branch. All displayed solutions

are twin star solutions.

In Figs. 6.23 and 6.24 the mass-radius relations and the radius-mass curves

of the three chosen representative twin star parametrizations are displayed.

The Set A mass-radius relation has been calculated by using the parameter

con�guration: ∆ε/εt = 0.56 and pt/εt = 0.168, which is located below the

constraint-line given by eq. 6.6 (see �g. 6.25). This con�guration is located

right at the corner of the twin star region boundary lines and the di�erences

between the maximum masses of the �rst and second sequence is very small

(Mmax
1 = 1.69332M� and Mmax

2 = 1.69794M�). Set B displays a twin star

where the �rst sequence maximum mass lies above the maximum mass of

the twin star (∆ε/εt = 1.36, pt/εt = 0.12). The Parameter Set C curve
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shows the mass-radius relation of a twin star sequence with a rather high

value of ∆ε/εt = 1.68 but a low value of pt/εt = 0.08. The phase transition

starts at low density and the maximum mass of the �rst sequence is much

lower than the maximum mass of the twin star sequence (see table 6.2). In

this model too the neutron star sequence continuously moves to the hybrid

star branch and hybrid stars with a tiny quark core are stable for a short

period. The connected stable hybrid star branch is very small and di�cult

to recognize, as the hybrid stars get soon unstable after formation of the tiny

quark core. Nonetheless twin stars somehow manage to restabilize again at

a higher transition pressure.
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Figure 6.24: The radius- and mass curves for three di�erent parameter sets

corresponding to a QM-EoS given by eq. 6.7. The parameters of the three

sets are displayed in tab. 6.2. Set C shows the appearance of a second stable

branch, where M2 > M1. All displayed solutions are twin star solutions.

The curves starting in the upper left region are the radius curves whereas the

curves starting on the lower left side are the mass curves.
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We do not get maximum mass values of the twin star con�gurations which

are above the observational known value of M = 2.01M�, which means as a

consequence, that all the twin star EoS are ruled out by nature.
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Figure 6.25: Phase diagram for hybrid stars with the gω = 0-line and various

values of B, and B1/4 = 140 MeV at various gω, both with mσ = 600 MeV

and mq = 300 MeV. The axes display the transition pressure pt and the

energy density discontinuity ∆ε in units of the nuclear energy density at the

transition εt. The shaded regions displays the twin star regions with either

M1 < M2 (light blue) or M1 > M2 (blue) calculated with the QM-EoS given

by eq. 6.7. The three twin star parameters sets are labelled as Set A, Set B

and Set C.

In Fig. 6.25 the twin star region in the model utilized by Alford et. al

[89, 90, 91] is compared with the space of available parameters within our

model. It can be easily seen that the main part of the region where twin stars

exist lies out of our attainable values of ∆ε/εt and pt/εt. Solely for irrelevant

low values of pt/εt we �nd a twin star area, see �gure 6.19. The cusp at the
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lower end of the twin star region at (pt/εt = 0.18, ∆ε/εt = 0.51) overlaps in a

tiny region with the curve for gω = 0, however, we do not �nd any twin star

in this parameter range. The radius-mass properties of hybrid stars near to

the parameter region of the cusp, almost reach a twin-like structure (see e.g.

the curve with B1/4 = 120 MeV in �g. 6.20). The reason for this apparent

contradiction is the fact that the sound speed for gω = 0 is not constant and

slightly below the value which has been chosen to calculate the twin star

area (see �g. 6.17). As pointed out in [89], a decrease of c2
s has the e�ect of

scaling down the size of the twin star area and moves the cusp at the end

of the twin star region upwards. Therefore, the absence of twin stars at the

intersection of the cusp region is due to the energy dependence of the sound

speed, resulting in an average value below c2
s = 1/3. The line between the

shaded areas separates whether the mass of the �rst branch M1 lies above

(blue) or below (lighter blue) the mass of the second stable branch M2. The

gω = 0 line with B1/4 = 120− 124 MeV gets closest to the twin star region.

Nevertheless, twin stars resulting from a �rst order phase transition could ex-

ist in nature, as other models have been constructed [117, 118] that satisfy the

Mmax > 2.01M� constraint. We will see in section 6.5, that a even crossover

chiral phase transition within the pure SU(3) Quark Meson model generates

Twin Star solutions and that several other constraints can be ful�lled..

6.4.

Quark stars

This section is a small compendium of the publication [56] based upon the

my master thesis [5]. It is mentioned here mainly to the purpose of complet-

ing the discussion on compact stars, i.e. including all di�erent considered

types of stars during my studies.

Compact stars which are entirely made of quark matter, besides maybe a

small layer of a crust of nuclei, are also called strange stars [119, 120]. Strange

stars can only be realized in nature if strange quark matter is absolutely sta-

ble, i.e. the true ground state of matter [44, 46]. Pure quark stars based
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on the simple MIT bag model could be ruled out on the basis of this mea-

surement unless additional terms from an e�ective one-gluon exchange or

from color-superconductivity are incorporated [121, 122]. The quark-quark

interaction is, like in the case on hybrid stars 6.3, mediated by the exchange

of meson �elds. These interactions are conceptually di�erent from the NJL

model which considers point coupling terms between quarks. We consider

scalar- and vector meson contributions to e�ectively model the attractive

and repulsive character of the strong interaction, as has also been done in

the previous section 6.3 concerning hybrid stars. The maximum masses of

pure quark stars are calculated by solving the TOV equations (remember sec-

tion 2.2.2) for di�erent choices of the parameters of the SU(3) quark-meson

model at T = 0.

The properties of quark matter have to ful�ll certain conditions in order to

allow for the possibility of pure quark stars.

6.4.1.

Stability criteria

Normal matter, consisting of ordinary nuclei, is stable on cosmological

timescales, so it does not decay to quark matter with its quark constituents

of up-quarks and down-quarks. This observation requires that two �avor

quark matter can not be more stable than ordinary nuclear matter, meaning

that the energy per baryon has to be higher than the one of the most stable

known element in nature: 56Fe. We adopt a value of energy per baryon of

E/A = 930 MeV for nuclei and add a 4 MeV correction due to surface e�ects

of lumps of quark matter balls. Hence the critical condition for two-�avor

quark matter reads
E

3A

∣∣∣∣
p=0

=
ε

nq

∣∣∣∣
p=0

& 311MeV (6.8)

This condition guarantees the stability of atomic nuclei, meaning that atomic

nuclei do not dissolve into their constituent quarks (Recall section 5.1).

On the other hand three-�avor quark matter, i.e. quark matter consisting

of up, down and strange quarks, could be more stable than ordinary nuclei



Thermal evolution of massive compact strange objects 208

which is the Bodmer-Witten hypothesis [44, 46]. Ordinary nuclear matter

can not decay to strange quark matter, as there is a barrier between these

two states of matter due to strangeness conversion via weak interactions

with a corresponding conversion timescale much longer than the age of the

universe. The presence of the new degree of freedom, the strange quark, in

quark matter lowers the overall energy per baryon, so that this state could

be energetically favorable compared to nuclear matter. Hence, the condition

for absolutely stable strange quark matter of E/A < 930 MeV can be recast

in the form
E

3A

∣∣∣∣
p=0

=
ε

nq

∣∣∣∣
p=0

≤ 310MeV (6.9)

In the following the physical condition for two-�avor quark matter, eq. (6.8),

is denoted as the two-�avor condition (or two-�avor line in the plots) and

the one for three-�avor quark matter, eq. (6.9), the three-�avor condition (or

three-�avor line in the plots).

6.4.2.

Results

Figure 6.26 shows as a contour plot the dependencies of the maximum mass

of pure quark star con�gurations on the vacuum constant B1/4 and the vector

coupling constant gω. ForB1/4 = 120 MeV and gω = 2.0 one �nds a maximum

mass of about 1.6M�. In general, smaller values of the vacuum constant B

and higher values for the vector coupling constant gω lead to higher maximum

masses.

The two-�avor line indicates the two-�avor constraint (6.8) and the three-

�avor line the three-�avor constraint (6.9). In the area above the two-�avor

line the condition (6.8) is ful�lled, i.e. normal matter can not decay to two-

�avor quark matter as observed in nature. Hybrid star con�gurations, con-

sisting of an entirely mixed phase, are located in the parameter range above

the two-�avor line.

A high mass of the sigma meson seems to be necessary in order to ful�ll the

constraints for pure quark star con�gurations, i.e. equation (6.8) and (6.9),
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Figure 6.26: Maximum masses for three-�avor pure quark stars in the plane
of the vacuum constant B and the vector coupling constant gω. The two-
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Figure 6.27: Maximum masses and stability con�gurations for pure quark
star con�gurations with a vector coupling constant of gω = 3.0.

in contrast to the variation of the vector coupling constant. A projection on

the gω-mσ-plane on the other hand (with a �xed value of B1/4 = 120 MeV)

leads to a null result for pure quark star con�gurations due to the high value

of the vacuum constant. Only a small value of the vacuum constant leads to

pure quark star con�gurations.

The resulting maximum masses for a value of gω = 3.0 and lines of constraints

are shown in Fig. 6.27. There is an overall increase of the maximum mass as

expected for a greater repulsive interaction. For mσ ≥ 600 MeV the maxi-

mum mass increases with the σ meson mass again. This behavior indicates

a switch in the dominance of the scalar- and vector �eld contributions to the

sti�ness of the equation of state. Above a certain value, around gω ∼ 2.75,

the repulsive �elds gain on their in�uence on the maximum masses compared

to the attractive scalar �elds. A combination of gω & 2.75 andmσ ≥ 600 MeV

leads then to higher maximum masses with increasing σ meson mass instead.
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A particular behavior of the EoS has not been observed, so that most likely

the higher mass of the sigma meson and its in�uences via λ1, on the sponta-

neous symmetry breaking patterns may be responsible for that feature.

The lines of the two constraints intersect at B1/4 ∼ 32 MeV and mσ ∼
760 MeV. From this point on pure quark star con�gurations are realized

between the two lines of constraint as discussed above. At the intersecting

point at B1/4 ∼ 32 MeV and mσ ∼ 760 MeV the maximum mass of the

quark star would be ∼ 2.7M�, being smaller for larger values of the σ meson

mass mσ and larger values of the vacuum constant. A pure quark star with

a maximum mass of ∼ 2.0M� can be found at a vacuum constant of B1/4 =

70 MeV for σ meson masses between 900 MeV ≤ mσ ≤ 1000 MeV.

Weissenborn et al. [122] use an extended quark bag model. Strange stars

can reach maximum masses beyond 2M� in their work if additional terms

compared to the standard MIT bag model are introduced, either in the form

of some e�ective interaction motivated from one-gluon exchange or from a

large gap motivated from color-superconductivity. They found a maximum

mass for a pure quark star to be at 2.54M�, which is in the same order of

magnitude as in this work.

The variation of the vector coupling constant shows the highest impact on

the EoS. The higher its value, the sti�er the EoS, leading to maximum masses

in excess of 2M�. The dependence of the EoS with the constituent quark

mass mq in vacuum, which �xes the scalar coupling constant, is such that

the smaller mq, the sti�er the EoS. The mass of the σ-meson studied covers

a range from 400 to 1000 MeV. For a smaller mass of the σ-meson the EoS

becomes sti�er. Finally, the vacuum constant does not a�ect the values of

the meson �elds, it just shifts the energy density at a given pressure. The

EoS substantially sti�ens when decreasing the vacuum constant so that for

small values of B1/4 . 40 MeV maximum masses of up to ≥ 2M� could easily

be reached.

The stability of two-�avor and three-�avor quark matter have been checked

as well, to see whether or not the model parameter space allows for physically

reasonable quark matter properties in the SU(3)-�avor approach. The 2M�

limit set by the recently discovered millisecond pulsars PSR J1614-2230 [76]
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and PSR J0348+0432 [77] could be reached. Having considered the stability

constraints in the equations (6.8) and (6.9), most choices of the parameter

space were found to be hybrid stars5. Nonetheless, pure quark star con�gura-

tions with ∼ 2M� can be realized in a small physically reasonable parameter

range. A sizable additional repulsion mediated by the exchange of vector

mesons as well as a nonvanishing vacuum pressure seems to be crucial to

allow for maximum mass con�gurations of quark stars compatible with the

recent pulsar mass measurements. As mentioned, a more detailled treatment

on this subject can be found in [5, 56].

6.5.

Twin stars

Depending on the utilized EoS a compact star might be composed of a

hadronic phase (Neutron Star), a quark phase (Quark Star) or a mixed phase

(Hybrid Star). Even exotic EoS's can yield possible stable solutions. In

[123, 124] the authors constructed Quark Stars admixed with fermionic dark

matter. However, to construct hybrid stars with a quark matter core and

a hadronic shell, the EoS's decribing the two phases of ultradense matter

have to be united under certain corresponding assumptions via a Gibbs- or a

Maxwell construction [97, 57], remember the previous section 6.3. Depend-

ing on the microscopic properties, i.e. the EoS, a second stable branch in

the mass radius relation might appear (see �gure 6.23), the so called third

family of compact stars [125, 98, 87, 126, 127, 128], which could not be found

within the microscopic approach via the Maxwell construction with both uti-

lized EoS's in the previous discussion.

This section now deals with Twin star solutions resulting from the SU(3)

Quark Meson model EoS at vanishing temperature. These solutions have

not been detected earlier since in [57] the parameter range has been scanned

mainly for the 2M�-constraint at rather low gω. Twin star con�gurations

5Build of a completely mixed phase - to be distinguished from the hybrid stars discussed
in section 6.3, since these are constructed with two independend phases.
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however rise for large repulsive coupling and small vacuum pressure term.

A Twin Star con�guration resulting from one EoS has so far not been made

public. Apart from the 2M�-constraint we furthermore impose a new con-

straint: The Keplerian frequency for rotating compact stellar objects.

6.5.1.

Keplerian frequency: Rotating compact ob-

jects

Neutron stars are usually observed as pulsars, which are rotating compact

stars. The frequency is limited by the Keplerian (or mass-shedding) fre-

quency, which is a rotational limit obtained when the equatorial surface ve-

locity equals the orbital speed just above the surface. Lattimer and Prakash

determined an empirical formula for the mass-shedding limit for an arbitrary

neutron star mass, as long as the mass is not close to the maximum mass

[129]. The condition for a particle to rotate on an orbit at the stellar equator

is classically

Ωc =

√
M

R3
(6.10)

and it is known that the relativistic corrections lessens the classical value [8].

One can use an empirical formula including the non-rotating mass Mnr and

radius Rnr, which are obtained by the TOV equations 2.55 and 2.63, rather

than solve the more computationally intensive general relativistic solutions

for rotating stars. In this article we follow a parametrization from Lattimer

and Prakash [129]. Here

Pmin ' (0.96± 0.03)

(
M�
Mnr

)1/2(
Rnr

10km

)3/2

ms (6.11)

with Mnr and Rnr referring to the non-rotating mass and radius from the

TOV equations and ν being the frequency given in milliseconds. Eq. (6.11)

can be used as a rough estimate to limit masses and radii for stars made of

quarks [122]. In order to constrain the allowed mass-radius for our compact
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stars, we will follow previous works [129, 130] and impose that the maximum

spin rate allowed is given by the most rapidly rotating pulsar observed up

to now, the PSR J1748-2446ad, with a spin rate of 716 Hz [131]. Several

constraints have to be full�lled by the mass-radius relation of a compact

object. In Refs. [132, 133] a rigorous causal limit for normal neutron stars

has been presented independent of any other assumptions about the EoS.

This sets the smallest radius possible for a given mass, being R ≥ 2.87M

[129].

6.5.2.

In�uence of the Bag Constant

In order to study the possible existence of Twin Stars, we start by varying the

value of the bag constant B1/4. The change of the value of the bag constant

modi�es the sti�ness of the EoS, and, hence, the maximum mass [46], while

the meson �elds are independent of this variation [2, 56, 57].

In Fig. 6.28 we show the EoS (upper plot) as well as the non-strange and

strange scalar �elds (lower plot) as a function of the energy density for the

parameter choice mq = 300 MeV, mσ = 600 MeV, gω = 4 and di�erent

values of the bag constant B1/4. As expected, we �nd that small values of

the bag constant of B1/4 ∼ 40-70 MeV sti�en the EoS, while the meson �elds

are una�ected by this change. The �nite value for the energy density at

zero pressure, typical for the EoS of self-bound stars such as strange quark

stars, gets closer to zero as we reduce the value of B1/4. As this happens,

a smooth non-linear behaviour of the pressure with the energy density for

100MeV/fm3 ≤ ε ≤ 210MeV/fm3 becomes noticeable at positive pressures.

This non-linearity results from a crossover-type chiral phase transition taking

place in this energy range, as seen in the behaviour of the scalar �elds in

the lower plot of Fig. 6.28. Moreover, this non-linearity for B1/4 . 100

MeV separates two di�erent energy-density regions with positive increasing

pressure, that gives rise to the appearance of two separate stable branches in

the mass-radius relation and, hence, the existence of Twin Stars, as we shall
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see next.

0

20

40

 100  200  300  400

p
 [
M

e
V

/f
m

3
]

B
1/4

=37.5 MeV
B

1/4
=52.5 MeV

B
1/4

=65.0 MeV
B

1/4
=100 MeV

20

40

60

80

 100  200  300  400

s
c
a
la

r 
fi
e
ld

s
 [
M

e
V

]

ε [MeV/fm
3
]

σn

σs

Figure 6.28: The EoS (upper plot) and the scalar �elds as a function of the

energy density (lower plot) for the parameter set mq = 300 MeV, mσ =

600 MeV, gω = 4 and various values of the Bag constant B1/4. The Bag

constant does not a�ect the �elds, it just shifts the EoS. The chiral phase

transition is crossover like and located at εcpt ' 180 MeV, which can also be

seen at the behaviour of the EoS in the same region.
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Figure 6.29: The mass radius relation for the parameter set mq = 300 MeV,

mσ = 600 MeV, gω = 4 and various values of the Bag constant B1/4. Lower-

ing the values of the bag constant leads to the development of a second stable

branch in the mass radius relation with relatively large radii and comparably

small increment of the mass. The green shaded area in the upper left region

is the causality limit, hence excluded, and the red shaded area on the right

hand side is the area excluded by the millisecond pulsar PSR J1748-2446.

The mass-radius relation for mq = 300 MeV, mσ = 600 MeV, gω = 4 and

di�erent values of B1/4 is depicted in Fig. 6.29. The upper left shaded region

of Fig. 6.29 is excluded due to causality whereas the lower shaded area on

the right-hand side is ruled out by the rotation of the millisecond pulsar PSR

J1748-2446ad, as described in Sec. 6.5.1, using Eq. (6.11). The horizontal

line indicates the 2M� limit.

We �rst note that heavier stars with larger radii are obtained for low values

of B1/4 as compared to the B1/4 = 100 MeV case, due to the fact that the

sti�ness of the EoS increases. The sti�er the EoS is, the larger the masses are



Thermal evolution of massive compact strange objects 217

and also the larger the radii become. Moreover, depending on the value of

the bag constant, we �nd di�erent scenarios for the mass-radius relation. The

smallest value B1/4 = 37.5 MeV gives rise to two stable mass-radius branches,

the Twin Star con�guration. For that particular value of B1/4, there exist

two maximum masses, Mmax
1 and Mmax

2 , being Mmax
1 &Mmax

2 . For the case

of B1/4 = 52.5 MeV, we obtain Mmax
1 ' Mmax

2 , while for B1/4 = 65 MeV we

�nd that Mmax
1 . Mmax

2 . The value B1/4 = 100 MeV does not yield to a

second stable branch, thus, only one maximum mass is obtained. The values

of the central pressure, central energy density, maximum mass and radius for

these maxima are shown in Table 6.3.

The appearance of two separate stable branches in the mass-radius relation

comes from the chiral phase transition that causes the non-linear behaviour

of the EoS for values of 100MeV/fm3 ≤ ε ≤ 210MeV/fm3 (see Fig. 6.28). The

physical interpretation is the following: a �rst branch of quark matter in a

chirally non-restored phase (massive quarks) develops until the chiral phase

transition sets in. After an unstable region, a new stable second branch of

chirally restored quark matter (massless quarks) emerges.

We also �nd that, for the given values of mσ and gω, the chiral phase tran-

sition is a crossover and not �rst order. This is in contrast to the studies

on Twin Stars coming from hybrid con�gurations, where a �rst-order phase

transition takes place [97]. As we increase the value of B1/4, the phase transi-

tion is moving from the outer parts to the inner core. When the bag constant

reaches values of B1/4 & 100 MeV, the chiral phase transition is shifted to

negative pressure values (Fig. 6.28) and, thus, no stable Twin Star solutions

are possible, as seen in Fig. 6.29. In this case, we recover theM ∝ R3 relation

for self-bound stars. Note that only the mass-radius branches inside the non-

shaded areas are allowed by causality and the rotation of PSR J1748-2446ad,

while the 2M� limit sets a lower limit for the masses.
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Figure 6.30: The pressure for the parameter set mq = 300 MeV, mσ =

600 MeV, gω = 4 and various values of the Bag constant B1/4. Lowering the

values of the bag constant leads to the development of a second stable branch

in the mass radius relation. The con�gurations for B1/4 < 100 MeV become

unstable at p ' 13MeV/fm3 and restablilize again for di�erent values of p

depending on the choice of B1/4.

Figure 6.30 shows the gravitational mass as a function of the central pressure.

The values of the maxima in the mass radius relation and the appropriate

values of the EoS are given in table 6.3.

At this stage it is pertinent to ask whether it is possible the collapse of a star

in the �rst branch (or second family) into a star with the same mass belong-

ing to the second branch (or third family) by introducing small perturbations

that conserve the baryon number, such as compression or temperature �uc-

tuacions. In order to assess this possibility it is necessary to show that, on

the one hand, a star in the �rst branch has the same mass as one in the sec-
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ond branch while having the same baryon number and, on the other hand,

the binding energy per baryon is higher for the twin partner sitting in the

second branch in order to have a more stable con�guration [134].

The baryon number of the stars

The baryon number NB of the di�erent stars can be calculated concurrent

with the gravitational mass [86], eq. 2.63. It is given as

NB(r) =
4π

3

∫ r

0

(
1− 2M(r)

r

)−1/2

ρq(r)r
2dr (6.12)

where ρq(r) is the quark density within the star.
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Figure 6.31: The baryon number nB as a function of the energy density for

the parameter set mq = 300 MeV, mσ = 600 MeV, gω = 4 and various values

of the Bag constant B1/4. Solid lines represent stable con�gurations, whereas

dotted or dashed lines correspond to unstable solutions.
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Parameters EoS [MeV/fm3] First maximum
mσ B1/4 gω p(ε) ε M1/M� R1(km)
600 37.5 4 13.6 151.2 2.99 28.46
600 52.5 4 12.99 153.75 2.46 23.54
600 65 4 13.55 210.87 1.89 19.44
600 100 4 404.04 1176.57 2.12 10.83

Parameters EoS [MeV/fm3] Second maximum
mσ B1/4 gω p(ε) ε M1/M� R1(km)
600 37.5 4 141.9 577.6 2.56 19.18
600 52.5 4 209.65 736.45 2.46 15.94
600 65 4 271 873.91 2.38 14.07
600 100 4 - - - -

Table 6.3: The values of the pressure and corrsponding energy density for the
values of the �rst and second maximum in the mass radius relation for the
parameter choice mq = 300 MeV, mσ = 600 MeV and gω = 4 at di�erent
values of the bag constant.

Then, the baryonic mass is given by MB = NBmq/3, with mq being the

constituent quark mass, and the binding energy per baryon is de�ned as

EB = (MB−M)/NB. Figure 6.31 shows the logarithm of the baryon number

as a function of the energy density for di�erent values of the bag constant as

chosen in the above �gs. 6.28, 6.29 and 6.30.

In Fig. 6.31 we show the logarithm of the baryon number as a function of the

energy density for mq = 300 MeV, mσ = 600 MeV, gω = 4 and the previously

chosen values of the bag constant B1/4. We observe that for B1/4 . 100 MeV

some stars of the two stable branches have the same mass (twin partners)

with the same baryon number. However, our calculations indicate that the

condition for collapse coming from the binding energy is ful�lled only by the

twin partners for B1/4 = 52.5 MeV. Moreover, only for B1/4 = 52.5 MeV it

is possible to have few stable twin partners in the second branch that sit in

the region that is not excluded by causality and rotation, as seen Fig. 6.29.
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6.5.3.

In�uence of the Bag Constant and the Vector

Coupling Constant

In this section we vary the sigma meson mass mσ and the vector coupling

constant gω to locate other possible nonlinearities in the EoS.
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Figure 6.32: The EoS (upper plot) and the scalar �elds as a function of

the energy density (lower plot) for mq = 300 MeV, mσ = 400 − 800 MeV,

gω = 1−8 and B1/4 = 37.5 MeV. The upper three curves in the lower plot are

the strange scalar �elds σs, and the lower lines correspond to the light quark

condensate σn. Unlike as in �gure 6.28 the �elds are a�ected by a variation

of mσ and gω, so that the chiral phase transition di�ers for each parameter

choice. The lower the value of mσ and the higher the value of the repulsive

coupling gω, the sti�er is the EoS. Since the bag constant is rather small,

all nonlinearities in the EoS are located at positive pressures in�uencing the

mass-radius relation.

A higher mass of mσ causes the chiral phase transition to become smoother

croosover-like and the corresponding EoS gets softer. Increasing the repul-

sive vector coupling leads to the same trend in the �elds but sti�ens the EoS.

Figure 6.32 shows the EoS (upper plot) and the scalar �elds as a function

of the energy density (lower plot). The value of the bag constant has been

chosen to be B1/4 = 37.5 MeV to guarantee that the non-linearity is above
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the pressure-zero axis. Note that, unlike as when varying the bag constant,

the �elds are a�ected by a variation of mσ and gω (compare �gure 6.28 with

�gure 6.32), so that the chiral phase transition di�ers for each parameter

choice. However, for both choices, mσ = 400 MeV where gω = 8 and for

mσ = 800 MeV where gω = 1 a slope like behaviour can be seen in the EoS.

Note, that varying the sigma meson mass or the repulsive coupling a rather

small amount causes the nonlinearities to vanish → no Twin star solutions

are found anymore. The particular slope like behaviour of the EoS resulting

in Twin Star solutions is found therefore in a narrower ZaTS area.

The chiral phase transition for mσ = 400 MeV and gω = 8 is almost a �rst

order phase transition and located at 40MeV/fm3 ≤ εcpt ≤ 85MeV/fm3.

For mσ = 600 MeV and gω = 4 the chiral phase transition is located at

100MeV/fm3 ≤ εcpt ≤ 210MeV/fm3, crossover like (recall the previous dis-

cussion and see also �gure 6.28), whereas for mσ = 800 MeV and gω = 1 it is

190MeV/fm3 ≤ εcpt ≤ 350MeV/fm3 and also a crossover. The lower plot in

�gure 6.32 shows the scalar �elds as a function of the energy density, where

the transitions behaviours are more evidentely seen. The corresponding val-

ues of the pressure at the �rst maximum are given in table 6.4.

The nonlinearity in the EoS appears in a small window for rather small

values of mσ and a high value of the repulsive coupling gω, and viceversa.

The corresponding Gibbs-like EoS yields small transition pressure values and

corresponding (relatively) high transition energy density values, which are,

following Alford et al [89, 90], important ingredients for Twin Stars to appear.
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Figure 6.33: The mass radius relation for mq = 300 MeV, mσ = 400 −
800 MeV, gω = 1 − 8 and B1/4 = 37.5 MeV. Raising the value of mσ needs

smaller repulsive coupling constants for Twin Stars to develop. The masses

for small mσ and large gω display rather large radii and masses. As in �g.6.29

the green shaded in the upper left region is the causality limit and the red

shaded area on the right hand side is the area excluded by the millisecond

pulsar PSR J1748-2446.

The resulting mass radius relations are shown in �gure 6.33. Figure 6.34 dis-

plays the gravitational mass as a function of the central pressure, where

one can read of the values of the central pressure and see at which en-

ergy density the maximum mass is located. For the choice mσ = 400 MeV

and the rather high value of gω = 8 the �rst maximum mass is located at

Mmax1 = 4.8M� and 41.94 km radius. The second stable maximum is lo-

cated atMmax2 = 4.14M� and 26.19 km radius. All these star con�gurations

are ruled out by the rotational constraint since they are located in the red

shaded area.



Thermal evolution of massive compact strange objects 225

The values for mσ = 600 MeV have been discussed above and for mσ =

800 MeV and gω = 1 both maxima are located at ∼ 1.6M� where r1 =

22.39 km and r2 = 12.66 km.

As has been shown in our previous work [56], a high value of the repulsive

coupling leads to a sti�er EoS resulting in very large and heavy star con�gu-

rations, so that the choice formσ = 400 MeV and gω = 8 is rather unphysical.

Furthermore do these stars not ful�ll the Keplerian frequency limit equation

6.11, as is the case for mσ = 600 MeV, gω = 4 and B1/4 = 37.5 MeV. Only a

part of the second stable branch for the third parameter choice is within the

allowed area, i.e. ful�lling all considered constraints.
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Figure 6.34: The pressure for mq = 300 MeV, mσ = 400 − 800 MeV,

gω = 1 − 8 and B1/4 = 37.5 MeV. Raising the value of mσ needs smaller

repulsive coupling constants for Twin Stars to develop. Solid lines indicate

stable solutions, whereas dashed or dotted lines represent unstable stars.

The �rst maximum for mσ = 400 MeV and gω = 8 is found to be in the

low pressure- and energy regime (see Tab. 6.4) and furthermore not ful�lling
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the rotational constraint. These stars are still consisting of con�ned quark

matter because the transition energy density is roughly 3/7 of nuclear en-

ergy density6. Here the second maximum should be the favoured state for a

decon�ned quark star.

Only for mσ = 800 MeV the energy density at the �rst maximum is 1.35ε0.

Here decon�nement of (light) quarks may already have set in.
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Figure 6.35: The baryon number nB as a function of the energy density for the

parameter set mq = 300 MeV, B1/4 = 37.5 MeV and mσ = 400− 800 MeV,

gω = 1 − 8. Solid lines represent stable con�gurations, whereas dotted or

dashed lines correspond to unstable solutions.

Figure 6.35 shows the logarithm of the baryon number as a function of the

energy density. Only the parameter choice for mσ = 800 MeV gives two

stable stars at equal baryon number. Since the �rst maximum is outside

the Keplerian frequency limit (i.e. in the allowed region), a star on the

6 ε0 ' 145 MeV
fm3
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Parameters EoS [MeV/fm3] First maximum
mσ B1/4 gω p(ε) ε M1/M� R1(km)
400 37.5 8 5.51 59.09 4.80 41.94
600 37.5 4 13.6 151.2 2.99 28.46
800 37.5 1 11.10 190.82 1.63 22.39

Parameters EoS [MeV/fm3] Second maximum
mσ B1/4 gω p(ε) ε M1/M� R1(km)
400 37.5 8 99.85 295.42 4.14 26.19
600 37.5 4 141.9 577.6 2.56 19.18
800 37.5 1 271 1379.79 1.56 12.66

Table 6.4: The values of the pressure and corrsponding energy density for the
values of the �rst and second maximum in the mass radius relation for the
parameter choice mq = 300 MeV, mσ = 400 − 800 MeV and gω = 1 − 8 at
�xed bag constant B1/4 = 37.5 MeV.

second stable branch would be stable. A possible scenario might be that

after a supernova explosion the proto compact object does not support the

conservation of angular momentum and instead of collapsing to a black hole

collapses to a star on the second maximum while conserving baryon number.

It has been shown that hot compact stars have larger radii and the same

mass, so that another possible explanation is that the star becomes unstable

due to temperature loss and restabilizes again, remember the discussion of

the EoSs at �nite temperature in Section 5.8.2.
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Figure 6.36: Contour lines in the gω versus B1/4 plane indicating Twin Star

solutions. Two stable branches with maxima Mmax
1 < Mmax

2 appear when

crossing the upper line from above. The middle line indicates stars with

Mmax
1 'Mmax

2 . The lower line shows the limit where Mmax
1 > Mmax

2 . Above

the upper line and below the lower line no Twin Stars are possible. The

vertical line gω = gn indicates the approximate boundary between �rst order-

and crossover phase transitions. The two- and three �avour lines provide

the stability conditions for dense matter. Twin Stars within the shaded area

full�ll the stability constraints.

Fig. 6.36 and Fig. 6.37 depict the gω − B1/4 parameter plane at mσ =

600 MeV. By crossing the upper line from above we obtain two stable branches

with two maxima being related as Mmax
1 . Mmax

2 . At the middle line the

two stable branches have Mmax
1 ' Mmax

2 , whereas the second stable branch

disappears for small values of B1/4 and high values of gω below the lower line.
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From Fig. 6.36 we see that, for a �xed value of B1/4, low or high values

of gω cause the Twin Stars disappear as there is no chiral phase transition.

Moreover, the vertical line indicates the approximate boundary between �rst

order- and crossover phase transitions, that is given by gω ∼ gn for mσ = 600

MeV.
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Figure 6.37: Same contour lines in the gω versus B1/4 plane indicating Twin

Star solutions, as in Fig. 6.36, but including the two-�avour line, the 2 M�

limit and also showing the region excluded by the rotation of the millisecond

pulsar PSR J1748-2446ad. Twin Stars within the shaded area full�ll all these

constraints.

In Fig. 6.36 we also show the two-�avor line resulting from the stability con-

dition of nuclear matter and the three-�avor line7 coming from the Bodmer-

Witten hypothesis of stable strange quark matter [44, 46]. On the one hand,

the region above the two-�avor line indicates that two-�avor quark matter

cannot be more stable than ordinary nuclear matter, meaning that the most
7The same lines can be seen in Fig. 6.26
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stable known element in nature, 56Fe, cannot decay into two-�avor quark

matter. On the other hand, the area below the three-�avor line results from

the Bodmer-Witten hypothesis, that assumes that strange quark matter is

more stable than ordinary nuclei, remember Section 6.4 and in particular

eqs. 6.8 and 6.9. Since there is no overlap between both regions, absolutely

stable quark matter is not realizable.

There are further constraints to the allowed parameter range for Twin Stars

coming from astrophysical observations. In Fig. 6.37 we show that, for

gω & 2, the masses of the stars become larger than the 2M� limit while

the parameter range for Twin Star con�gurations lie inside the area allowed

by the rotation of PSR J1748-2446ad. These Twin Stars have radii 12 Km

. R . 22 Km, which are larger than the recent determinations below 13 km

(see the discussion in Ref. [135]).

Comparison with hybrid stars

The EoS for the values of 37.5 ≤ B1/4 ≤ 65 MeV from �gure 6.28 appear to be

constructed of two EoS's via a Gibbs construction with a smooth increasing

development within 100MeV/fm3 ≤ ε ≤ 210MeV/fm3 (crossover chiral phase

transition), where the pressure is nearly constant p ' 12MeV/fm3, increasing

sleekly. Based on the generic results on Twin Stars by Alford et al [89, 90],

also discussed in detail on our results for hybrid stars in the previous section

6.3, we are now able to investigate our obtained EoS more detailled on Twin

Star solutions. Alford et al used a constant speed of sound parametrization

where the transition pressure pt, the transition energy density εt, the energy

density discontinuity ∆ε and the quark matter speed of sound c2
s act as control

parameters for two EoSs, one for the nuclear crust and one for the ultradense

core. Repetitive, they conclude that Twin Stars may appear for rather low

pt/εt and rather high ∆ε/εt, independent of the utilized model. Recall that

in this approach we are working with only one EoS, but assuming a Gibbs-

constructed EoS within the chiral phase transition range for nearly constant

p ' 12MeV/fm3, we are now able to compare with the phase diagrams 6.15,

6.21 and 6.25 obtained in the previous section on hybrid stars 6.3. All our
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obtained mass radius con�gurations showing the second stable branch have

a rather low pt and a relatively high ∆ε, also in accordance with our results

on Twin Stars in [57] and the star con�gurations for B1/4 = 37.5, 52, 65 from

�gure 6.28 are indeed located within the Twin Star area in �gure 6.25. Note

however, that the quark matter speed of sound to calculate the Twin Star

area in �gure 6.25 has been chosen to be c2
s = 1/3 with a hadronic matter

EoS for the stars outer layer and the very SU(3) Quark Meson model EoS

for the stars core. As pointed out by Alford et al, an increase of the quark

matter speed of sound has the e�ect of enlarging the size of the twin star

area below the constraint line, moving the cusp in the phase diagram for

hybrid stars downwards (Ref.[89] �gure 4 and Ref.[57] �gure 22). Comparing

with �gure 6.17 the quark matter speed of sound for gω = 3 is roughly

c2
s = 1/2, so that for gω = 4 the speed of sound c2

s ' 3/5 so that we sure

are still within the Twin Star area. We conclude that we indeed have found

Twin Stars solutions, but the transition energy density of the �rst maximum

in the mass radius relation is in the range of the chiral phase transition,

indicating that the matter is to some extend still con�ned. The core of a

quark star on the second stable branch should be made of decon�ned matter

up to a certain stellar radius r, i.e. the central pressure and central energy

density of the star are located behind the chiral phase transition. Most stars

on the second stable branch ful�ll all considered constraints, so that these

results may impose a collapse scenario from the �rst stable branch to a star

on the second stable branch. Unfortunately the Bodmer Witten hypothesis,

equations 6.8 and 6.9, is not ful�lled in any considered case and even if

assuming di�erent quark �avour densities, the minimum of the energy per

baryon at vanishing pressure is lowest for matter in beta equilibrium.

The results considering Twin Stars have been submitted for publication in

Phys.Rev.D [136].



7
Conclusions and

Outlook

In this work, thermodynamical properties of strongly interacting matter

within a chiral SU(2)- and SU(3) chiral Quark Meson model have been anal-

ysed. Both e�ective models describe the development of the quark masses

in media via the corresponding �elds through chiral symmetry, which is ex-

pected to be restored at high temperatures and/or high densities, and spon-

taneously broken at low temperatures and/or densities. Spontaneous and

explicit chiral symmetry breaking patterns give rise to massive Goldstone

bosons, which are associated with the pions. Their chiral partners, the sigma

mesons, are expected to be degenerate in mass, which was what we studied

and observed at large temperatures/densities.

The derivation and computation of thermodynamical quantities and proper-

ties in both cases can for instance be used to study relativistic and hydro-

dynamic Heavy Ion Collisions and the early universe for vanishing baryon

number (SU(2)-case). They are also interesting for extreme astrophysical

scenarios, such as Supernova explosions and the thermal evolution of their

remnants, which has been among the topics of this thesis (SU(3)-case).

Inclusion of the zero point energy in the SU(2) model has been carried out

separately for the meson sector and for the quark sector as well as in a com-

232
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bined approach, where we learned, that the quark sector is quite dominant

and that the vacuum �uctuations of the meson �elds have little in�uence on

the order parameter1, but a�ect the relativistic degrees of freedom.

In the SU(3) case, the inclusion of the zero point energy in the quark sector

is much more computationally complex, but, as in the SU(2) case, is also not

negliable, as its in�uence also changes the thermodynamical quantities at

�nite temperatures in a nontrivial manner. Here some features of the Super-

nova equation of state have been studied, which look promising for further

investigations for Supernovae (proto neutron stars) and also for compact star

mergers.

The �nal chapter was dedicated to the di�erent remnants (Compact Stars)

of a Supernova explosion, which, under various assumptions and subject to

several constraints, may appear. These calculations have been carried out at

T = 0 within the SU(3) approach in mean �eld approximation2.

The following detailled conclusion is therefore divided into three separate,

but intimately related parts.

The importance of vacuum �uctuations

In chapter 4 we demonstrated the importance of the vacuum �uctuations

within the SU(2) Quark Meson model at zero chemical potential, and fur-

thermore included the vacuum �uctuations in the mesonic sector, where we

employed the 2PI formalism (Section 4.3)3. For both approaches, the con-

siderations from the mesonic sector from the quark sector (Section 4.4), were

combined to an uni�ed set of equations (Section 4.5). In the combined for-

1Besides being left with two renormalization scales, which, for one combined theory, is
physically non warrantable [42].

2A future work may study compact stars in the SU(3) Quark Meson model with inclu-
sion of the zero-point energy.

3In the appendix it is shown why an approach via the path integral formalism leads to
di�culties, and why therefore the 2PI formalism was employed.
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malism we also included the vacuum �eld �uctuations of quarks and mesons

and varied the sigma meson mass in the range 500 ≤ mvac
σ ≤ 900 MeV. The

main foci of this work were the di�erences in the σ �eld, the mass spectra

and thermodynamical ratios, i.e. the relativistic degrees of freedom.

The incorporation of the vacuum �uctuations in the quark sector is inde-

pendent of any renormalization scale [31, 53], and its inclusion yields similar

results when changing the value of the initial vacuum sigma meson mass,

namely that the chiral phase transition is shifted to higher temperatures.

The impact on the masses of the sigma and the pion is similar. In all cases

considered, no �rst-order phase transition is seen. The curves show di�er-

ences around the phase transition but saturate in the Stefan Boltzmann limit

at high temperatures.

In the mesonic sector the �elds for di�erent mvac
σ intersect, when neglecting

the vacuum term. This is not the case when including the vacuum �uc-

tuations, which are dependent on a renormalization scale. The transition

temperatures are much higher than in the quark case, e.g. in [36, 34, 38]. In

most cases the degenerate masses of the sigma and the pion show a smoother

rise as a function of temperature than in the quark case. Within the CJT

formalism, the behaviour of the in-medium pion mass with temperature can

lead to steep slopes in the p/T4 ratio, which gives rise to peaks within the

s/T3 ratio. We conclude that the inclusion of the vacuum contribution is in

both cases a small, but non-negligible correction.

Within the combined formalism we were left with the option of having two

renormalization scales, one from each sector. We investigated separately the

vacuum parameters λ, m2 and H as a function of the quark renormalization

scale Λ. We conclude that the main impact comes from the quark sector

and that there is a tiny window around Λ ∼ 1 GeV, where the results are

physically reasonable. The �elds and the mass spectra showed hardly any

di�erence when varying the renormalization scale. It seems however, that

the inclusion of the mesons have an in�uence within the temperature region

50 ≤ T ≤ 180 MeV for the p/T4 ratio, which gives rise to peaks within the

s/T3 ratio. We �nd that in all cases considered a chiral �rst order phase

transition is not seen.
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Ref. [137] compares the renormalized Linear sigma model with the NJL

model. Like in our case a crossover transition has been found for zero chemi-

cal potential and they stress the importance of the vacuum �eld �uctuations

to the thermodynamic properties.

In Ref. [36] the Linear sigma model including the vacuum �eld �uctuations,

containing quark and mesonic degrees of freedom, has been utilized. The

quark degrees of freedom have been integrated out and the resulting e�ective

action was linearized around the ground state. Sigma and π mesons were de-

scribed as quasiparticles and their properties were taken into account within

the thermodynamic potential. Their parameter choice is similar to ours and

they �nd a gradual decrease of the chiral condensate, which gives a crossover

type transition at temperatures 150 ≤ Tc ≤ 200 MeV. Also the results for

the masses are very similar to our results for the masses of the sigma and the

pion. Their thermodynamical ratios within the combined approach however

do not show such an in�uence from the mesonic sector in the low temper-

ature region. We argue that this feature comes from the utilization of the

CJT formalism within our work, which is a di�erent approach to the mesonic

contribution in their approach.

A future study could implement the Polyakov loop to model the quark con-

�nement [138, 139, 50, 32]. It would also be interesting to perform calcula-

tions for non-zero chemical potential to explore the QCD phase diagram [29]

or calculations with �nite isospin [50] respecting the vacuum �uctuations.

The implementation of the strange quark [140, 141] and, if applicable vector

mesons [142, 143], yields a model for astrophysical applications, such as for

Supernovae EoSs, proto neutron stars or compact star merger, which have

been studied in Chapter 5.

Strangeness, vacuum �uctuations and applications

We learned from our studies within the SU(2) approach the importance of

the inclusion of the fermion vacuum term. Therefore we considered its in�u-

ence when expanding to SU(3) in Chapter 5, but also compared the mean



Thermal evolution of massive compact strange objects 236

�eld results. Because the main in�uence on the thermodynamic properties

results from the quark sector, and inclusion of the meson �uctuations would

make the vacuum parameter determination disproportionately di�cult, we

decided to neglect mesonic excitations at this point. These can however also

be considered in a future work. Similar to the SU(2) case, the inclusion of

the fermion vacuum term leads to a shifting of the chiral phase transition

to larger chemical potentials and is also independent of any renormalization

scale [31, 53].

We scanned the di�erent parameters for the mean �eld approach as well as

for the case when the vacuum term was included and conclude that for larger

temperatures the onset of the chiral phase transition is earlier (Figure 5.3)

and the EoS likewise softens at larger values of the energy density (see �g-

ure 5.6), which can be backtraced to the behaviour of the nonstrange order

parameter. The strange �eld however is almost entirely una�ected.

Varying the electron-baryon rate hardly a�ects the �elds (Figure 5.7), whereas

the EoS is slightly sti�er for larger Ye in the high density regime (Figure 5.9),

because the strange scalar �eld reaches the chirally restored phase later, i.e

the electron contribution to the pressure becomes important since the strange

quark is slightly more suppressed.

On the other hand, low values of the sigma meson mass generate a �rst order

phase transition in mean �eld approximation. The inclusion of the fermion

vacuum term is in�uencial and means, that for every chosen value of mσ

a crossover and a smoothening in the nonstrange �elds occurs (see Figure

5.11). The strange �elds are hardly a�ected. The EoSs become sti�er (Fig-

ure 5.13) for low values of mσ because of the in�uence of the (scalar) vacuum

parameters. At high densities the vacuum term leads to a general sti�ening

of the EoS.

In the mean �eld approximation, the variation of the repulsive coupling gω
leads also to a �rst order phase transition for low values (gω ≤ 2.5). As has

been the case for di�erent mσ, the inclusion of the vacuum term smoothens

the order parameter to a crossover phase transition, even for vanishing re-

pulsive coupling (�gure 5.14). Unlike for various values of the sigma meson

mass, the EoS gets sti�er, and is more pronounced for larger values of Ye in
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the high density regime. Neglecting the vacuum term, the EoSs show sig-

ni�cant di�erences in the low energy sector. Inclusion of the vacuum term

extends these di�erences to some larger densities and the EoSs look more

bulged (Figure 5.17).

The investigations on isentropes S/A = 1 and S/A = 2 lead to the conclusion,

that di�erent values of the electron baryon rate hardly change the isentropes,

see Figure 5.18. The S/A = 1 is well below the S/A = 2 isentrope, which is

resonable. This feature can be explained by the number of neutrinos within

the proto neutron star [128]. Above S/A = 2 the neutrinos are still trapped

inside the proto compact star whereas S/A = 1 indicates their escaping. At

S/A = 0 the neutrinos have already escaped the star, which then can be

considered as cold. The inclusion of the fermion vacuum term leads to a

less pronounced steepening of the isentropes, with hardly any other noteable

di�erences. We conclude that the isentropes are strongly related to the cor-

responding EoS, see Figure 5.9, and hence show little di�erence for various

Ye values.

A phase transition from hadronic matter to quark matter can eventually lead

to interesting phenomenological consequences for compact stars after a core-

collapse supernova [128]4. Until now, the explosion mechanism however is

working for EoSs which do not ful�ll the 2M� constraint5. A future work

based on the results on the thermal equations of state within this Chapter

and on the results of compact stars in Chapter 6 may revive the subject,

because the SU(3) EoS in the mean �eld approximation yields solutions with

M ≥ 2M� and with two stable branches in the mass radius relation, since

the explosion mechanism has recently been identi�ed to be related with the

existence of a third family of compact stars [128]. Concerning the newborn

remnant of the Supernova explosion, this third family is present in the early

4We will study compact stars with a �rst order phase transition from hadronic- to
quark matter in chapter 6 in section 6.3

5The recent measurements of the masses of the pulsars PSR J1614-2230 [76] and of
PSR J0348+0432 [77] impose considerable constraints on the equation of state (EoS) for
compact stars. More on the subject of constraints for compact stars can be found in
chapter 6 in section 6.5.
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stages of the evolution of the compact star, and absent when the star tem-

perature is much less then the corresponding Fermi energy of the particles

and �elds the star is assumed to be made of6. The third family is a re-

sult of unusual thermal properties induced by the phase transition [66] and

motivates further investigations of the SU(3) Quark Meson model at �nite

temperatures.

Coalescing relativistic binary systems containing compact objects are very

interesting in the context of the EoS of hot and dense matter. They are

likely to be important sources of detectable gravitational waves by advanced

LIGO/VIRGO and KAGRA, possibly before 2020 [144, 145]. Additionally

they may represent a major source of heavy r-process elements in the Uni-

verse, because they eject extremely neutron rich matter initially. Utilizing

the SU(3) EoS at �nite temperatures, di�erent scenarios of compact star

merger could be simulated [146, 147, 148, 145, 149, 150]. Figure 7.1 shows

the temperature distributions in the x-y plane of the LS220-M132 binary,

where the isocontours correspond to T =10,20,30,40 and 50 MeV. One can

see that the object is not hottest in the center but in a region slightly further

out (at T = 40 MeV), mainly because of shearing7. In the left panel there are

two hot spots to be seen. Around these hot spots �uid elements rotate - they

represent vortices. The magnetic �elds generated within these vortices will

become important for the future space mission NICER (Neutron star Interior

Composition ExploreR) [151]. This mission aims to measure the radius of

compact objects with great accuracy by using these hot spots [152].

6At this stage it is justi�ed to approximate the stars temperature T → 0.
7Hence our choice of T = 40 MeV as a standart parameter value in Section 5.8.2.
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Figure 7.1: Distributions in the x-y plane of the binary LS220-M132 at t =

6.71 ms (left) and at t = 23.83 ms (right). The isocontours correspond to

T = 10, 20, 30, 40, 50 MeV. Credit: Matthias Hanauske (taken from [150]).

The in�uence of the other parameters of the Quark Meson model warrants

further investigation, because it would also be interesting to scan the QCD

phase diagram with respect to the astrophysical constraints on compact stars

[153, 154, 155]. Here the critical endpoint in the QCD phase diagram would

be of tremendous importance (see also [94]).

Compact stars

In Chapter 6 various types of compact stars were discussed. Within the

SU(3) approach in the mean �eld approximation, strange stars were already

the main subject in my Master thesis. In this thesis we used the EoS to

calculate Hybrid stars in order to search for Twin stars.

In the hybrid star approach we employ a density dependent hadronic matter

EoS and the chiral quark matter EoS in mean �elds approximation to �nd

the phase transition from one phase to the other within compact stars. We
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utilized a Maxwell construction, i.e. assume that there is a sharp transition

at a given transition pressure. The transition is therefore determined consis-

tently when the pressure in the quark phase equals the one of the hadronic

phase at the same baryochemical potential. From that point on the quark

matter EoS prevails with its corresponding energy density.

Within our parameter range we found stable hybrid star solutions and in-

vestigated the relation of the QM core size and the appropriate stability of

the star. In the SU(3) Quark Meson model utilized for the QM EoS, four

parameters can be varied, from which two of them (mσ and mq) have little

e�ect on the results. We conclude that a larger repulsive coupling, gω, and

a larger vacuum pressure, B, do not allow for a large QM core to appear

but instead reach the 2M� limit, whereas small values of both quantities

generate hybrid star solutions with a corresponding, large QM core, but the

con�gurations stay below the 2M� constraint.

Hybrid stars with high transition pressures are hard to distinguish from pure

hadronic stars because of the tiny QM core. An appearing QM core gener-

ates an additional gravitational pull on the hadronic mantle. If the core's

pressure can counteract this extra pull, the star is stable. For excessively

large discontinuities in energy density, the star becomes unstable since the

pressure of the core is not able to counteract the extra gravitational pull

[89, 90, 91].

Twin stars did not emerge as the transition pressure has to be relatively small

with a large jump in energy density, which could not be satis�ed within our

approach. This is, among other reasons, due to the fact that the speed of

sound in QM has to be relatively high, which can be accomplished by an

increase of the repulsive coupling. This increase on the other hand yields

transition pressures to high for twins stars to appear.

In [89] Alford et. al use hadronic EoSes based upon works from Heberler et.

al [156] and Shen et. al [157]. Their QM EoS is density independent and

is parametrized through pt, εt and, assuming a constant speed of sound, c2
s.

They conclude that for stars with at least 2M� a larger c2
s is advantageous,

whereas for c2
s = 1/3 a larger region in the phase diagram for stars with

≥ 2M� is excluded, which as a consequence restricts the other parameters
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pt and εt.

In a proximate work Alford et. al [90] apply the constant speed of sound

parametrization to a Field-Correlator-Method calculation. The correspond-

ing EoS is equipped with an additive density independent q̄q-potential, cor-

responding to our density dependent vector coupling constant, and with a

vacuum energy density term including gluon condensate contributions, anal-

ogous to the Bag constant utilized in our approach. Vacuum energy density

term and Bag constant are in both cases additive, i.e. density independent.

In both works the allowed region in the phase diagram for hybrid stars with

more than two solar masses is shifted to high transition pressures at several

times nuclear energy density (3.5 ≤ ε/ε0 ≤ 6.5). The family of the Field Cor-

relator Method EoSes (varying the two above mentioned quantities) covers

only a limited region in the phase diagram due to a nearly density indepen-

dent speed of sound (c2
s ' 1/3), whereas in our approach we achieved high

transition pressures assuming a higher vector coupling constant. This fea-

ture on the other hand raises the speed of sound up to values c2
s ∼ 0.6, which

would leave space in the phase diagram for the other parameters pt and εt,

only we had no direct in�uence on them.

However, we con�rm the results Alford et. al [89, 90, 91] obtained and in-

vestigate further why we were not able to �nd a third family (twin stars) of

compact stars within a physically meaningful parameter region. The conclu-

sion is that the chances for twins are best when the transition pressure is rel-

atively low and the energy density discontinuity on the other hand relatively

high, then an appearing QM core does not destabilize the star immediately.

Likewise it gets harder to achieve the 2M� regime. But if the discontinu-

ity in energy density is too large, the pressure of the QM core is unable to

counteract the additional downward pull and the star con�gurations becomes

unstable.

A future work could study the interplay between the hadronic- and quark

matter EoS in greater detail to work out how to achieve the appropriate

proportions between pressure and discontinuity in energy density for twin

stars. Furthermore kaon or pion condensation can be taken into account.

The appearance of kaon condensation also depends (aside the EoS) on the
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mass of the star and may signi�cantly in�uence the cooling of the compact

star [158, 159]. This has not been been considered within our approach.

We �nd that the appearance of two stable branches in the mass-radius re-

lation and, hence, the existence of twin stars is related to the onset of the

chiral phase transition in quark matter. When, instead of using two EoSs

like in the approach on hybrid stars discussed above, just the SU(3) Quark

Matter EoS is investigated with greater attention on the phase transition.

For the analysis we vary the SU(3) parameters of the model, that is, the

vacuum pressure, the vector coupling and the sigma mass. For a vacuum

pressure below B ∼ 100 MeV the EoS for quark matter exhibits a genuine

transition from a chirally broken phase to a restored one and, thus, allows

for the existence of twin stars.

The interplay between the vector coupling and the sigma mass is then crucial

for having Twin Star solutions that ful�ll causality and the stability condi-

tions of dense matter [44, 46] as well as the astrophysical constraints coming

from the rotation of the millisecond pulsar PSR J1748-2446ad [131] and the

2M� constraint [76, 77, 160]. For mσ = 600 MeV, twin stars ful�ll the 2M�
limit for gω & 2 whereas values of 30 MeV . B1/4 . 70 MeV are needed to

satisfy the stability conditions of dense matter. The constraint from rotation

of PSR J1748-2446ad further reduces the allowed parameter region. Smaller

values of mσ are ruled out by the rotational constraint while bigger values of

mσ imply masses below the 2M� observations. The radii of the Twin Star

con�gurations turn out to be above 12 Km. Recent determinations of stellar

radii suggest values of 11 km [161].

Outlook

With space missions such as NICER (Neutron star Interior Composition Ex-

ploreR) [162], high-precision X-ray astronomy will be able to o�er precise

measurements of masses and radii, with a 1 Km resolution [152]. The dis-

covery of two stars with the same masses but di�erent radii could indeed
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be a signal of the existence of twin stars implying the presence of a phase

transition in dense matter.

A possible scenario might furthermore be, that after a supernova explosion

the proto compact object does not support the conservation of angular mo-

mentum and instead of collapsing to a black hole collapses to a star on the

second maximum while conserving baryon number. It has been shown that

proto neutron stars have larger radii then cold neutron stars, so that another

possible explanation is that the star becomes unstable due to temperature

loss and restabilizes again, remember the discussion of the EoSs at �nite

temperature in Section 5.8.2.

Last but not least, dynamical simulations in a fully general relativistic frame-

work including the discussed EoSs are possible. Herein, the focus could be

laid on collapse scenarios of twin stars in which a star at the end of the �rst

sequence collapses to its corresponding twin star on the second sequence.

Such a collapse would be accompanied by neutrino, gamma ray and gravita-

tional wave burst [110, 163] and in addition could explain the two-component

structure in the recently observed fast radio burst FRB 121002 [164].

Another application is the implementation of our EoSs in neutron star merger

simulations. In [149] it has been shown that the f1 and f2 frequency peaks

of the emitted gravitational wave produced in the merger and post-merger

phase, correlate with several EoS-dependent quantities. The impact of a

twin star EoS on the spectral properties of the emitted gravitational wave

and the internal structure of the produced hypermassive neutron star is an

open question and the consequence involved might be observationally rele-

vant for future gravitational wave detections.



8
Appendix

In the appendix we perform a perburbation for the scalar �elds in the ex-

ponential of the Lagrangian from equation 5.33 to show explicitely that this

ansatz leads to di�culties in the bosonic sector1.

If the formalism will remind you of the fermionic case from section 5.6: This

is no incident. Apart from slightly di�erent Matsubara frequencies, you will

see: The devil is found to be in the details.

The complete path integral for σn

Separating the Lagrangian for σn-contributions and sorting them by either

linear, quadratic, cubic or quartic contributions, the bosonic path integral

for the σn �eld will be calculated in detail in this section. Since the other

mesonic �elds will be calculated analogously, just the results will be given.

Z =

∫
Dσne(

∫ β
0 dτ

∫
V d

3~rLmes) (8.1)

=

∫
Dσne(

∫ β
0 dτ

∫
V d

3~r[σn(~r,t)(Qn)σn(~r,t)+hnσn(~r,t)+O4
n(σn(~r,t))])

1As mentioned in section 5.5 The whole Lagrangian, the CJT formalism is capable of
circumventing these problems.
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where the index n denotes the nonstrange character.

Qn = −λ1

4
σ2
n

[
2σs

2 + 2π0
2 + 4π+π−

]
− λ2

8
σn

2
[
2π2

0 + 4π+π−
]

− m2
0

2
σ2
n +

cσs

2
√

2
σ2
n +

1

2
∂µσn∂

µσn (8.2)

and the perturbative terms in 4th-order are

On = −λ1

4

[
σ4
n + σ4

s + 2(π0σs)
2 + 4π+π−(π2

0 + σ2
s) + π4

0 + 4π2
+π

2
−
]

− λ2

8

[
σn

4 + π4
0 + 4π+π−π

2
0 + 4π2

+π
2
− + 2σ4

s

]
+ hsσs

− m2
0

2

[
σ2
s + π2

0 + 2π+π−
]

+
cπ2

0σs

2
√

2
+
cσsπ+π−√

2
(8.3)

The perturbation will be expanded in Taylor series

exp

(∫ β

0

dτ

∫
V

d3~rO4
nσn(~r, t)

)
' 1 +

∫ β

0

dτ

∫
V

d3~rO4
nσn(~r, t) (8.4)

so that

Z '
∫
Dσne(

∫ β
0 dτ

∫
V d

3~r[σn(Qn)σn+hnσn]) ·
(

1 +

∫ β

0

dτ

∫
V

d3~rO4
n

)
(8.5)

'
∫
Dσne(

∫ β
0 dτ

∫
V d

3~r[σn(Qn)σn+hnσn]) (8.6)

+

∫
Dσne(

∫ β
0 dτ

∫
V d

3~r[σn(Qn)σn+hnσn]) ·
(∫ β

0

dτ

∫
V

d3~rO4
n

)
(8.7)

Equation (8.6) will be treated �rst. The perturbative term (8.7) will be

dealt with afterwards. The �elds admits a Fourier expansion similar to the

fermionic case in equation 5.41.

σn(~r, t) =

√
β

V

∑
n,~k

ei(νnτ+~k~r)σn(~k) (8.8)
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Replacing the �elds in the exponent and using the following abbreviation

−An = −λ1

4
σ2
n

[
2σs

2 + 2π0
2 + 4π+π−

]
− λ2

8
σn

2
[
2π2

0 + 4π+π−
]

− m2
0

2
σ2
n +

cσs

2
√

2
σ2
n (8.9)

The exponent of the exponent of the path integral from equation 8.1 reads

∫ β

0

dτ

∫
V

d3~r

√ β

V

∑
n,~k

ei(νnτ+~k~r)σn(~k)(−An +
1

2
∂µ∂

µ)

√
β

V

∑
m,k̃

ei(νmτ+k̃~r)σm(k̃) + hnσn


(8.10)

The operator ∂µ∂µ acts on the second (Fourier-)exponential function

∫ β

0

dτ

∫
V

d3~r

√ β

V

∑
n,~k

ei(νnτ+~k~r)σn(~k)(−An + νm
2 − k̃2)

√
β

V

∑
m,k̃

ei(νmτ+k̃~r)σm(k̃) + hnσn


(8.11)

and collects two additive terms νm2 and k̃2. Since there are no more opera-

tors, the sum and the exponential can be moved in their relative positions,

∫ β

0

dτ

∫
V

d3~r

 β
V

∑
n,~k

∑
m,k̃

ei(νnτ+νmτ)ei(
~k~r+k̃~r)(−An + νm

2 − k̃2)σn(~k)σm(k̃) + hnσn


(8.12)

νnτ , νmτ , ~k~r and k̃~r are also translocated. Using the equations 5.45 one sum

vanishes and we are left with νn and ~k. The partition function then can be

written as

Z =

∫
Dσne

(
β
V

∫ β
0 dτ

∫
V d

3~r
∑
n,~k

[
σn(~k)

2
(ν2n−k2−An)+hnσn(~r,t)

])
(8.13)

Since being in momentum space the integration can now be performed in

equation (8.13). Because of the use of equation (8.8) the expression in the

brackets is diagonal already, the path integral collapses in a product of
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integrals, and the algebraic sign has been changed previsitative2.

Z =

∫
Dσne

(
β2
∑
n,~k

[
−(k2+An+νn)σn(~k)

2
])

(8.14)

=

∫
dσn1(

~k1)...

∫
dσni(

~ki)e

(
β2
∑
n

[
−(k2+An+νn)σn(~k)

2
])

(8.15)

=
∏
ki

∫
dσni(

~ki)e

(
β2
∑
n

[
−(k2+An+νn)σn(~k)

2
])

(8.16)

=
∏
ki

∏
νn

∫
dσni(

~ki, νn)e

(
β2
[
−(k2+An+νn)σn(~k)

2
])

(8.17)

Following [17] the formula for Riemann integrals with a constant matrix D

can be obtained at this point∫ +∞

−∞
dx1...dxne

−xiDijxj = π
n
2 (detD)−

1
2 (8.18)

or else: The much easier Gauss identity for quadratic integrals∫ +∞

−∞
e−x

2

dx =
√
π (8.19)

Equation (8.19) is easy to obtain, squaring and using polar coordinates yields∫ +∞

−∞
e−x

2

dx

∫ +∞

−∞
e−y

2

dy = 2π

∫ +∞

−∞
re−r

2

dr (8.20)

Substituting and deriving

r2 = a→ da

dr
= 2r = 2

√
a (8.21)

= 2π

∫ r=∞

0

e−a
√
a

2
√
a
da = π

[
−e−a

]r=∞
0

= π (8.22)

2Since
∑
n runs from −∞→ +∞ its algebraic sign is of unimportance, but previsivative

chosen positive



Thermal evolution of massive compact strange objects 248

Resubstituting and taking the square gives equation (8.19). By adding a

multiplicative in the exponent∫ +∞

−∞
e−ax

2

dx =

∫ +∞

−∞
e−y

2

dx (8.23)

y =
√
ax→ dy

dx
=
√
a (8.24)

→ 1√
a

∫ +∞

−∞
e−y

2

dy =

√
π

a
(8.25)

Identifying ν2
n + k2 + An from equation (8.14) as a in equation (8.23) and

logarithmise, the product becomes a sum

lnZ =
∑
ki

∑
νn

−1

2

[
ln(β2(k2 + An + νn))− ln(π)

]
(8.26)

Replacing νn = (2πn)2 as Matsubara frequencies and substituting k2 +An =

D2
n

lnZ =
∑
ki

∑
νn

−1

2

[
ln(β2D2

n + (2πn)2)− ln(π)
]

(8.27)

Now the following is obtained

ln
[
(2πn)2 + β2D2

n

]
=

∫ β2D2
n

1

dΘ2 1

Θ2 + (2πn)2
+ ln

[
1 + (2πn)2

]
(8.28)

First glance to the integral

∑
νn

∫ β2D2
n

1

dΘ2 1

Θ2 + (2πn)2
(8.29)

∫ β2D2
n

1

dΘ2

4π2

(∑
νn

1
Θ2

(2π)2
+ n2

)
=

∫ β2D2
n

1

dΘ2

4π2

2π2

Θ

(
1 +

2

eΘ − 1

)
(8.30)
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where (again [17])

∑
νn

1
Θ2

(2π)2
+ n2

=
2π2

Θ

(
1 +

2

eΘ − 1

)
(8.31)

Using dΘ2

dΘ
= 2Θ, cancelling in the fraction and changing the integration limits

∫ β2D2
n

1

dΘ2

4π2

2π2

Θ

(
1 +

2

eΘ − 1

)
=

∫ βDn

1

dΘ

(
1 +

2

eΘ − 1

)
(8.32)

= βDn − 1 + 2

∫ βDn

1

dΘ

eΘ − 1
(8.33)

Substituting eΘ = z and deriving dz
dΘ

= eΘ = z the following integral
∫

dz
z(z−1)

can be solved by expansion into partial fractions

1

z(z − 1)
=

a

z
+

b

z − 1
=
a(z − 1) + bz

z(z − 1)
(8.34)

→ az − a+ bz = 1→ z(a+ b)− a = 1 (8.35)

→ a+ b = 0→ −a = 1 (8.36)

→ a = −1 b = 1 (8.37)

The Integral then can easily be solved∫
dz

z(z − 1)
=

∫
dz

(
−1

z
+

1

z − 1

)
= − ln(z) + ln(z − 1) (8.38)

= ln
z − 1

z
= ln

(
eΘ − 1

eΘ

)
= ln(1− e−Θ) (8.39)

Having solved the integral, then equation (8.28) can be rewritten

ln
[
(2πn)2 + β2D2

n

]
= βDn − 1 + 2

[
ln(1− e−βDn)− ln(1− e−1)

]
+ ln

[
1 + (2πn)2

]
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and the logarithm of the partition function in equation (8.27) becomes

lnZ =
∑
ki

∑
νn

−1

2

[
ln(β2D2

n + (2πn)2)− ln(π)
]

(8.40)

lnZ =
∑
ki

−1

2
βDn − ln (1− e−βDn) + C (8.41)

where

C =
1

2
+ ln(1− e−1) + ln[1 + (2πn)2] +

ln(π)

2
(8.42)

The sum becomes an integral
∑

ki
→
∫

d3~k·V
(2π)3

and �nally we obtain

lnZ = V

∫
d3~k

(2π)3

[
−1

2
βDn − ln (1− e−βDn)

]
(8.43)

Equation 8.43 also contains a contribution from from the zero-point energy,

which needs to be regularized3

Since the calculation of the other path integrals is analoguous to the calcu-

lation for the σn-�eld, just the abbreviations and the results will be given.

The results for the σs �eld

The partition function for the σs �eld reads

Z =

∫
Dσse(

∫ β
0 dτ

∫
V d

3~r[σs(~r,t)(Qs)σs(~r,t)+O4
s(σs(~r,t))]) (8.44)

where the index s denotes the strange character and

Qs = −λ1

4
σ2
s

[
2σn

2 + 2π0
2 + 4π+π−

]
− m2

0

2
σ2
s +

1

2
∂µσs∂

µσs (8.45)

3The formalism derived and applied in section 4.3.1 after solving via the CJT formalism.
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and the perturbative terms in 4th-order are

Os = −λ1

4

[
σ4
n + σ4

s + 2(π0σn)2 + 4π+π−(π2
0 + σ2

n) + π4
0 + 4π2

+π
2
−
]

− λ2

8

[
(σn

2 + π2
0)2 + 4π+π−(σ2

n + π2
0) + 4π2

+π
2
− + 2σ4

s

]
+ hnσn

− m2
0

2

[
σ2
s + π2

0 + 2π+π−
]

(8.46)

Following equation (8.8) the abbreviation for the σs �eld in the exponent

reads

− As = −λ1

4
σ2
s

[
2σn

2 + 2π0
2 + 4π+π−

]
− m2

0

2
σ2
s (8.47)

after performing the derivation and having done the other steps from equa-

tion (8.11) to equation (8.26) the anew abbreviation reads k2 + As = D2
s .

Calculating further from equation (8.27) to equation (8.41), the logarithm of

the partition function reads

lnZ = V

∫
d3~k

(2π)3

[
−1

2
βDs − ln (1− e−βDs)

]
(8.48)

The result for the π0 �eld

Z =

∫
Dπ0e

(
∫ β
0 dτ

∫
V d

3~r[π0(~r,t)(Qπ0 )π0(~r,t)+O4
π0

(π0(~r,t))]) (8.49)

where

Qπ0 = −λ1

4
π2

0

[
2(σ2

s + σ2
n) + 4π+π−

]
− λ2

8
π2

0

[
2σ2

n + 4π2
+π

2
−
]

− m2
0

2
π2

0 +
cσsπ

2
0

2
√

2
+

1

2
∂µπ0∂

µπ0 (8.50)
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and the perturbative terms in 4th-order are

Oπ0 = −λ1

4

[
(σ2

n + σ2
s)

2 + 4π+π−(σ2
n + σ2

s)
2 + π4

0 + 4π2
+π

2
−
]

− λ2

8

[
σn

4 + π4
0 + 4π+π−σ

2
n + 4π2

+π
2
− + 2σ4

s

]
− m2

0

2

[
σ2
n + 2π+π− + σ2

s

]
+
cσ2

nσs

2
√

2
+
cσsπ+π−√

2
(8.51)

Following equation (8.8) the abbreviation for the π0 �eld in the exponent

reads

−Aπ0 = −λ1

4
π2

0

[
2(σ2

s + σ2
n) + 4π+π−

]
− λ2

8
π2

0

[
2σ2

n + 4π2
+π

2
−
]

− m2
0

2
π2

0 +
cσsπ

2
0

2
√

2
(8.52)

after performing the derivation and having done the other steps from equa-

tion (8.11) to equation (8.26) the anew abbreviation reads k2 + Aπ0 = D2
π0
.

Calculating further from equation (8.27) to equation (8.41), the logarithm of

the partition function reads

lnZ = V

∫
d3~k

(2π)3

[
−1

2
βDπ0 − ln (1− e−βDπ0 )

]
(8.53)

The results for the π+ and π− �elds

Since there are no quadratic terms either for π+ �eld nor for the π− �eld,

they will be treated as an unity, or else composed as tetraquark state, this

means π+π− = π̃2. Having solved the calculation for the tetraquark state

similar as for the σs and the π0, equation 8.6 is so far ready and would lead

immediately to the grandcanonical potential, when applying equation 5.35.

Technical di�culties

The problem however is the perturbation with the terms in fourth order,

equation 8.7, which one cannot just drop, because they represent three- or
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four legged interaction diagrams and are an important ingredients to the

potential. Neglecting terms here means that the spontaneous- and explicit

symmetry breaking would not be respected anymore, the potential would not

feature properties like shown in �gure 3.6 or like in �gure 3.7.

Because there is no way in solving equation 8.7, the expansion in Taylor series

leads to technical di�culties4, making this approach perturbative unsolvable,

This is the reason for the use of the CJT formalism as has been carried out

in section 4.3.

4As most authors claim without showing explicitely why these di�culties appear.
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10
Zusammenfassung

In dieser Arbeit wurden thermodynamische Eigenschaften eines chiralen Quark

Meson Modelles mit Bag-Konstante untersucht. Das chirale Quark Meson

Model beschreibt die starke Wechselwirkung über den Austausch von Meso-

nen, welche an die Quarkfelder koppeln, und zudem die thermische- und

dichteabhängige Entwicklung der Quarkmassen im Medium über die chirale

Symmetrie. Die chirale Symmetrie ist essentiell bei der Beschreibung quan-

tenfeldtheortischer Modelle, welche die starke Wechselwirkung untersuchen.

Diese Symmetrie ist im Vakuum gebrochen, was zu nicht-verschwindenden

Vakuumerwartungswerten für die entsprechenden Felder führt, und welche

bei hohen Dichten und/oder Temperaturen restauriert ist [38].

Zunächst wurde nur mit leichten Quarks (up und down), mathematisch: Der

SU(2) Gruppe, gearbeitet. Im Anschluss wurde noch das strange quark,

mathematisch: Die SU(3) Gruppe, mit einbezogen1.

Im SU(2) Model wurde zunächst in mean �eld approximation gearbeitet,

die Mesonen wurden als stationärer Hintergrund herausintegriert und nur

die Quarkfelder quantisiert. Im Anschluss wurden der divergente Vaku-

umterm mit einbezogen. Dazu musste das Modell regularisiert und an-

1SU(n) bezieht sich auf die mathematische Formulierung in der Gruppentheorie, wobei
S=Speziell und U=Unitär bedeutet.
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schliessend renormiert werden, um sich der auftretenden Unendlichkeiten zu

entledigen. Nach eingehender Untersuchung der Ergebnisse, unter anderem

durch Vergleich mit Arbeiten wie [31, 53, 36], wurden dann die rein ther-

mischen Mesonen�uktuationen studiert, anschliessend ebenfalls regularisiert

und renormiert [34, 38, 29]. In beiden Ansätzen verschiebt die Nullpunktsen-

ergie den chiralen Phasenübergang zu höheren Temperaturen, wodurch die

Massen bei höheren Temperaturen entarten. Beide Ansätze wurden dann zu

einem gemeinsamen Modell kombiniert, um den Ein�uss der Mesonen�uk-

tuationen auf Ordnungsparameter, Mesonenmassen und thermodynamische

Grössen zu untersuchen. Das kombinierte Modell wurde ebenfalls regular-

isiert und renormiert, da sich durch die Hinzunahme der Mesonen die Vaku-

umparameter des reinen Quark Modelles nicht-trivial ändern, zudem wurde

das Regularisieren und Renormieren mathematisch nachvollzogen und auf

das kombinierte Modell angepasst. Nachdem mit dem kombinierten SU(2)

Modell die thermodynamischen Eigenschaften, sprich: Der Verlauf des Ord-

nungsparameters, die Massenentartung der Pionen und Sigma Mesonen, im

besonderen jedoch die relativistischen Freiheitsgrade untersucht, und mit den

einzelnen Modellen verglichen, wurden, kann behauptet werden, dass sich

der Ein�uss der Mesonen�uktuationen in grösserem Maÿ auf die Thermo-

dynamik, als auf den Ordnungsparameter und die Massen auswirkt. Die

Vakuum�uktuationen der Mesonen im kombinierten Modell kann man je-

doch vernachlässigen, da deren Ein�uss verschwindend gering ist und man

zudem mit zwei Renormierungsskalen arbeiten muss, was für eine kombinierte

Theorie physikalisch unreell ist [34, 38, 42]. Diese Ergebnisse wurden zusam-

mengefasst und können in naher Zukunft verö�entlicht werden.

Für das chirale SU(3) Quark Meson Model wurde der Formalismus der Pfad-

integralmethode zu dessen Lösung herangezogen, auch hier wurde regular-

isiert und renormiert um den Ein�uss der Nullpunktsenergie auf die Ther-

modynamik zu untersuchen [38, 48]. Im SU(3) Modell wurden zudem Vek-

tormesonen mitberücksichtigt, welche die Repulsion zwischen den einzelnen

Freiheitsgraden modelliert. Für das eigentliche Ziel der Arbeit, eine Super-

nova Zustandsgleichung aufzustellen, wurde zudem neben der Ladungsneu-
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tralität noch die Elektron-Baryon Rate �xiert [51]. Verglichen mit der mean

�eld Analysis kann man man hier auf gewonnene Erkenntnisse aus dem

SU(2) Modell zurückgreifen, denn auch hier verschiebt sich durch den Ein-

�uss der Nullpunktenergie der chirale Phasenübergang (Ordnungsparameter)

zu höheren Dichten. Die Zustandsgleichung wird durch den Vakuum Term

etwas softer und zeigt ein ähnliches, wenn auch leicht abweichendes, Verhal-

ten im niederen Energiebereich. Untersucht wurde neben der Temperatur

T, die Elektron Baryon Rate Ye, die Sigma Mesonen Masse mσ noch der

Ein�uÿ der Vektorkopplung gω. Besonders interessant hervorzuheben ist das

Zusammenspiel von mσ, welches bei niedrigeren Werten den Phasenüber-

gang zu kleineren Dichten verschiebt und die Zustandsgleichung steifer wer-

den lässt, und der repulsiven Kopplung gω, welche bei niedrigen Werten den

Phasenübergang zu kleineren Dichten verschiebt, die Zustandsgleichung je-

doch weicher werden lässt.

Aus der Zustandsgleichung konnten dann Isentropen im T − µ Phasendia-

gramm errechnet werden, welche in naher Zukunft Aufschluss über eine dritte

Familie von kompakten Sternen2 in Zusammenhang mit der entsprechenden

Supernova Explosion geben könnte [128, 58].

Im letzten Kapitel wurde das chirale SU(3) Quark Meson Modell in mean

�eld approximation mit Bag-Konstante und bei verschwindender Temper-

atur benutzt, um die Existenz von Hybridsternen, Zwillingssternen, bzw.

rein aus Quarkmaterie3 bestehender kompakter Sterne zu analysieren. Auss-

chlaggebend dafür waren die Entdeckungen des Pulsars PSR J1614-2230

[76, 160] und PSR J0348+0432 [77] mit fast 2M�. Obgleich aus Arbeiten

wie etwa [74, 120, 8, 165] bekannt ist, dass ein weiterer Freiheitsgrad (die

strangeness) die Zustandsgleichung weicher werden lässt, und somit die Max-

imalmasse, vergleichen mit zwei �avor Quarkmaterie eher senkt, so ergaben

sich doch in einem relativ grossen Parameterbereich auch einige physikalisch

sinnvolle Lösungen für die Existenz solch exotischer Objekte, welche die 2M�

2Dritte Familie von Sternen nennt man auch Zwillingssterne. Diese haben die gleiche
Masse, jedoch unterschiedliche Radien.

3Dies war der Hauptaugenmerk in meiner Master Arbeit [5, 56].
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Bedingung erfüllen.

Über die aus dem Formalismus gewonnenen Grössen Druck und Energiedichte

stellten wir die Zustandsgleichung auf. Diese diente als Input für die Tolmann-

Oppenheimer-Volko�-Gleichungen, die die Masse-Radius Beziehungen kom-

pakter Objekte über eben jene Zustandsgleichung bestimmen. Die erhal-

tenen Ergebnisse wurden zum Zwecke der Validität mit diversen Arbeiten

verglichen [166, 122, 167], bevor eine Auswertung der erhobenen Daten stat-

t�nden konnte.

Bereits in meiner Master Arbeit [5, 56] wurde der Ein�uss der verschiedenen

Parameter4 studiert. Auf der Suche nach Twin Star Lösungen aus dem chi-

ralen SU(3) Quark Meson Model wurde zunächst ein Modell für Hybridsterne

entwickelt. In diesem diente die DD2-EoS [71] als Zustandsgleichung die

Kruste des Sternes, wohingegen im inneren (bei höheren Dichten) die Quark

EoS Anwendung fand. Der Phasenübergang von hadronischer zu Quarkma-

terie wurde über eine Maxwell Konstruktion generiert [97]. Im untersuchten

Parameterbereich fanden wir viele Hybrid Stern Lösungen, bei welchen der

Ein�uss des Quarkmaterie Kernes auf die Stabilität des Sternes untersucht

wurde. Für relativ hohe Repulsion gω und hohen Vakuumdruck5, welcher

über die Bag Konstante modelliert wurde, wurde die 2M� Grenze erreicht,

allerdings ist der Quarkmaterie Kern sehr klein. Fixiert man beide Werte

eher klein, erreicht man die 2M� Grenze nicht, hat jedoch einen Quarkma-

teriekern, welcher bis zur Hälfte des Radius des Sternes reichen kann. Das

Einsetzen des Phasenüberganges übt einen zusätzlichen gravitativen Zug auf

die hadronische Kruste aus. Der Stern ist stabil, wenn der Druck der Quark-

materie diesem zusätzlichen Zug standzuhalten vermag. Für einen zu grossen

Sprung in der Energiedichte werden die Lösungen allerdings instabil, siehe

dazu auch [89, 90, 91]. Zwillingssterne waren nicht unter den Lösungen,

da der Übergangsdruck relativ klein sein muss, während der Energiedicht-

esprung eher gross sein sollte. In diesem Zusammenhang wurde der Ein-

4Wie auch bei der um die Temperatur erweiterten Version des Modelles wurde die
repulsive Vektorkopplung gω, die experimentell nicht sicher bestimmte Sigma Mesonen
Masse mσ untersucht. Für die Berechnung von Masse Radius Relationen von kompakten
Sternen hat sich jedoch auch die Bag Konstante als wichtiger Parameter etabliert.

5Nicht zu verwechseln mit dem Vakuumterm der Nullpunktsenergie.
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�uss der Schallgeschwindigkeit im Medium untersucht, der für Zwillingssterne

ebenfalls groÿ sein sollte, was aber nur mit einer hohen Repulsivität erreicht

werden konnte. Dann allerdings wurden die Lösungen instabil. Diese Arbeit

wurde zusammen mit Dr.Dr. Matthias Hanauske ausgeführt und die Ergeb-

nisse verö�entlicht [57].

Das Auftreten zweier stabiler Äste in der Masse Radius Relation kann allerd-

ings mit dem SU(3) Modell und entsprechendem chiralen Phasenübergang

modelliert werden. Für einen gewissen Parameterbereich einhergehend mit

kleinem Wert des Vakuum Druckes B ≤ 100 MeV konnten Nicht-Linearitäten

in der Zustangsgleichung zur Lösung der TOV Gleichung beitragen. Diese

Nicht-Linearitäten de�nieren sich über den chiralen Phasenübergang. Im

Weitern ist das Zusammenspiel der Vektorkopplung und der Sigma Meso-

nen Masse ein�ussreich auf die Lösungen, welche auf Kausalität, Stabilität

[44, 46] und neben der 2M� Bedingung [76, 77, 160] noch auf Restriktionen

vom millisecond pulsar PSR J1748-2446ad [131] untersucht wurden. Für den

Standardwertmσ = 600 MeV und für gω & 2 wird das 2M� limit zwar erfüllt,

jedoch sind Werte für den Vakuumdruck von 30 MeV. B1/4 . 70 MeV nötig,

um die Stabilitätsbedingungen zu erfüllen. Der zulässige Parameterbereich

wird weiter restriktiert durch die Bedingung des Pulsars PSR J1748-2446ad.

Die Radien der Zwillingssterne fallen mit mindestens 12 km verhältnismäÿig

groÿ aus, denn neuere Studien zeigen, dass die Radien bei 11 km liegen soll-

ten [161]. Diese Arbeit wurde zusammen mit Dr. Laura Tolos gemacht und

ist zum gegenwärtigen Zeitpunkt zur Verö�entlichung bei Phys.Rev.D ein-

gereicht [136].

Mit Weltraummissionen wie etwa NICER (Neutron star Interior Compo-

sition ExploreR) [162] sollte die Radiusbestimmung kompakter Objekte in

Zukunft bis auf einen Kilometer genau bestimmt werden können. Die Ent-

deckung von zwei Sternen mit der gleichen Masse und unterschiedlichen

Radien wäre in der Tat ein Beweis für die Existenz von Zwillingssternen,

welche dann die Theorie des Phasenüberganges in dichter Materie unter-

mauern würde. Da das Modell Zwillingssterne zu generieren vermag, und
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der Formalismus bereits auf endliche Temeraturen erweitert wurde, kann

in diesem Zusammenhang eine dritte Familie von kompakten Sternen auch

mit einer entsprechenden Supernova Explosion in Verbindung gebracht wer-

den [128, 58]. Das Kollaps-Szenario eines Zwillingssternes würde weiteren

Aufschluss über Neutrino-Emmissivität, Gamma-ray burster und Gravita-

tionswellen Signale geben können [110, 154, 163]. Dynamische Simulationen

in allgemein relativistischem Kontext mit den hier diskutierten Zustands-

gleichungen sind bereits in Planung6. Eine weitere Anwendung wäre das

Einbetten der Zustandsgleichung in compact star merger Simulationen [149],

um Eigenschaften wie beispielsweise das Temperatur- und Dichtepro�l von

compact star mergern genauer zu analysieren [146, 147, 148, 145, 149, 150].

6Eine Zusammenarbeit mit der Arbeitsgruppe um Prof. Dr. Luciano Rezzolla, Dr.
Matthias Hanauske sowie Dr. Laura Tolos und Dr. Matthias Hempel.
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