

© Stephan Pastis/Dist. by UFS, Inc.

Dileptons in heavy ion collisions

Sascha Vogel

H-QM Lecture Week Strasbourg April 1-5

Everything you need to survive a dilepton meeting

Sascha Vogel

H-QM Lecture Week Strasbourg April 1-5

Outline

- A brief reminder on chiral symmetry why are we doing this?
- Quarks to dileptons
- Pions to dileptons
- Resonance decays to dileptons
- Other processes

Outline

- Formulas
 - More formulas
- Equations
 - More equations
 - Even more equations
- Physics?

Consider the Lagrangian of massless fermions and the following transformations:

$$\mathcal{L} = i\bar{\psi}_j \partial \!\!\!/ \psi_j$$

$$\Lambda_V: \ \psi \longrightarrow e^{-i\frac{\vec{\tau}}{2}\vec{\Theta}}\psi \simeq (1-i\frac{\vec{\tau}}{2}\vec{\Theta})\psi$$
$$\bar{\psi} \longrightarrow e^{+i\frac{\vec{\tau}}{2}\vec{\Theta}}\bar{\psi} \simeq (1+i\frac{\vec{\tau}}{2}\vec{\Theta})\bar{\psi}$$

$$\begin{split} i\bar{\psi}\partial\!\!\!/\psi &\longrightarrow i\bar{\psi}\partial\!\!\!/\psi - i\bar{\Theta}\left(\bar{\psi}i\partial\!\!\!/\frac{\vec{\tau}}{2}\psi - \bar{\psi}\frac{\vec{\tau}}{2}i\partial\!\!\!/\psi\right) \\ &= i\bar{\psi}\partial\!\!\!/\psi \\ V^a_\mu = \bar{\psi}\gamma_\mu\frac{\tau^a}{2}\psi \end{split}$$

The Lagrangian is invariant under this transformation.

 \boldsymbol{Z}

Chiral symmetry

 $\mathcal{L} = i\psi_i \partial \!\!\!/ \psi_i$

 $\Lambda_A: \qquad \psi \longrightarrow e^{-i\gamma_5 \frac{\vec{\tau}}{2}\vec{\Theta}}\psi = (1 - i\gamma_5 \frac{\vec{\tau}}{2}\vec{\Theta})\psi$ $\bar{\psi} \longrightarrow e^{-i\gamma_5 \frac{\vec{\tau}}{2}\vec{\Theta}}\bar{\psi} \simeq (1 - i\gamma_5 \frac{\vec{\tau}}{2}\vec{\Theta})\bar{\psi}$

$$\begin{split} i\bar{\psi}\partial\!\!\!/\psi &\longrightarrow i\bar{\psi}\partial\!\!\!/\psi - i\bar{\Theta}\left(\bar{\psi}\,i\partial_{\mu}\gamma^{\mu}\gamma_{5}\frac{\vec{\tau}}{2}\,\psi + \bar{\psi}\gamma_{5}\frac{\vec{\tau}}{2}i\partial_{\mu}\gamma^{\mu}\,\psi\right) \\ &= i\bar{\psi}\partial\!\!\!/\psi \\ A^{a}_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_{5}\frac{\tau}{2}\psi \end{split}$$

The Lagrangian is invariant under this transformation. Both transformations together are called "Chiral Symmetry"

What happens if we introduce a mass term?

$$\begin{split} \delta \mathcal{L} &= -m \left(\bar{\psi} \psi \right) \\ \Lambda_V : \ m \left(\bar{\psi} \psi \right) \longrightarrow m \left(\bar{\psi} \psi \right) \\ \Lambda_A : \ m \left(\bar{\psi} \psi \right) \longrightarrow m \bar{\psi} \psi - 2im \vec{\Theta} \left(\bar{\psi} \frac{\vec{\tau}}{2} \gamma_5 \psi \right) \end{split}$$

The mass term breaks the symmetry of the axial part, so it's not a good symmetry anymore. Yet, the quark masses are small compared to the relevant energy scales of QCD ($\Lambda_{QCD} \sim 200$ MeV), so one speaks of an approximate symmetry.

Let us consider a combination of quark fields with the correct quantum numbers of some mesons:

$$\vec{\pi} \equiv i\bar{\psi}\vec{\tau}\gamma_5\psi \qquad \qquad \sigma \equiv \bar{\psi}\psi \\ \vec{\rho}_{\mu} \equiv \bar{\psi}\vec{\tau}\gamma_{\mu}\psi \qquad \qquad \vec{a_1}_{\mu} \equiv \bar{\psi}\vec{\tau}\gamma_{\mu}\gamma_5\psi$$

Vector transformations:

$$\begin{aligned} \pi_i : \ i\bar{\psi}\tau_i\gamma_5\psi &\longrightarrow i\bar{\psi}\tau_i\gamma_5\psi + \Theta_j\left(\bar{\psi}\tau_i\gamma_5\frac{\tau_j}{2}\psi - \bar{\psi}\frac{\tau_j}{2}\tau_i\gamma_5\psi\right) \\ &= i\bar{\psi}\tau_i\gamma_5\psi + i\Theta_j\epsilon_{ijk}\,\bar{\psi}\gamma_5\tau_k\psi \\ &\quad \vec{\pi}\longrightarrow\vec{\pi}+\vec{\Theta}\times\vec{\pi} \\ &\quad \vec{\rho_\mu}\longrightarrow\vec{\rho_\mu}+\vec{\Theta}\times\vec{\rho_\mu} \end{aligned}$$

Axial transformations:

$$\begin{aligned} \pi_i : i\bar{\psi}\tau_i\gamma_5\psi &\longrightarrow i\bar{\psi}\tau_i\gamma_5\psi + \Theta_j\left(\bar{\psi}\tau_i\gamma_5\gamma_5\frac{\tau_j}{2}\psi + \bar{\psi}\gamma_5\frac{\tau_j}{2}\tau_i\gamma_5\psi\right) \\ &= i\bar{\psi}\tau_i\gamma_5\psi + \Theta_i\bar{\psi}\psi \\ &\qquad \vec{\pi}\longrightarrow\vec{\pi}+\vec{\Theta}\sigma \\ &\qquad \vec{\rho}_\mu\longrightarrow\vec{\rho}_\mu+\vec{\Theta}\times\vec{a_1}_\mu \end{aligned}$$

Since chiral symmetry is supposed to be a symmetry of the Lagrangian and the ρ state can be rotated into the a₁ state, both should have the same eigenvalues, i.e. the same masses.

Yet $m(\rho) = 770$ MeV and $m(a_1) = 1260$ MeV. The symmetry is broken.

Mexican hat

Broken Symmetry (excitations in x-direction cost energy, not in y-direction though)

Restored symmetry, neither movement into x-, nor in ydirection cost energy

V. Koch, Int.J.Mod.Phys.E6:203-250,1997

Restoration of chiral symmetry has effects on particle masses.

Chiral symmetry is broken in nature, which gives particles their "real" (QCD) mass.

~99% of the mass of the light quarks originates from chiral symmetry breaking.

Chiral symmetry...

- is a symmetry of the QCD Lagrangian
- is broken in nature
- is related to the mass of particles
- is expected to be restored at high temperatures and/or densities

CERES

Sergey Yurevich, PhD thesis

Understanding the vacuum

Understanding the vacuum

Understanding the vacuum

We need to understand the vacuum and kinematics before tackling 'in medium' physics!

 $q\bar{q} \rightarrow l^+ l^-$

Mandelstam variables

 $q\bar{q} \rightarrow l^+ l^-$

$$\sigma(q\bar{q} \to l^+ l^-) = \left(\frac{e_q}{e}\right)\sigma(M)$$

$$M = (p_q + p_{\bar{q}})^2 = (p_l + p_{\bar{l}})^2 = s$$

calculation done in quark CMS

Kinematics

Starting point:

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$

incident fermions

Starting point:

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

incident fermions

Starting point:

$$d\sigma = \frac{2m_{\bar{q}} 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{\ell i}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

incident fermions

relative velocity factor

Starting point:

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

incident fermions

relative velocity factor

Starting point:

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} (T_{fi}|^2 \frac{a^3 p_l}{2t^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

incident fermions

relative velocity factor

Starting point:

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

incident fermions

relative velocity factor

incident fermions

relative velocity factor phase space factors

Starting point:

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

incident fermions

relative velocity factor phase space factors

$\begin{aligned} \text{Starting point:} \\ d\sigma &= \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}}) \\ \\ \text{sincident fermions} \\ \end{aligned}$

relative velocity factor

phase space factors

Differential cross section

Starting point:

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

incident fermions

energymomentum conservation

relative velocity factor

phase space factors

transition matrix element (initial state i to final state f)

Integrating everything...

$$d\sigma = \frac{2m_q 2m_{\bar{q}}}{4[(p_q p_{\bar{q}})^2 - m_q^2 2m_{\bar{q}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_q + p_{\bar{q}} - p_l + p_{\bar{l}})$$

(plenty of integrations, using the delta function)

$$d\sigma = \frac{m_q^2 2m_{\bar{l}}^2}{(2\pi)^2} \frac{dt d\phi_l}{s(s-4m_q^2)} |T_{fi}|^2$$

The big elephant in the room...*

$$d\sigma = \frac{e^2 e_q^2}{8\pi} \frac{dt}{s^3 (s - 4m_q^2)} [2s(m_l^2 - m_q^2) + (t - m_q^2 - m_l^2)^2 - (u - m_q^2 - m_l^2)^2]$$
(integrating)

$$\sigma = \frac{4\pi}{3} \left(\frac{e_q}{e}\right)^2 \frac{\alpha^2}{s} \left(1 - \frac{4m_q^2}{s}\right)^{-1/2} \sqrt{1 - \frac{4m_l^2}{s}} \left(1 + 2\frac{m_q^2 + m_l^2}{s} + 4\frac{m_q^2 m_l^2}{s^2}\right)$$

$$d\sigma = \frac{e^2 e_q^2}{8\pi} \frac{dt}{s^3 (s - 4m_q^2)} [2s(m_l^2 - m_q^2) + (t - m_q^2 - m_l^2)^2 - (u - m_q^2 - m_l^2)^2]$$
(integrating)

$$\sigma = \frac{4\pi}{3} \left(\frac{e_q}{e}\right)^2 \frac{\alpha^2}{s} \left(1 - \frac{4m_q^2}{s}\right)^{-1/2} \sqrt{1 - \frac{4m_l^2}{s}} \left(1 + 2\frac{m_q^2 + m_l^2}{s} + 4\frac{m_q^2 m_l^2}{s^2}\right)$$

$$\sigma(M) = \frac{4\pi^2}{3} \frac{\alpha^2}{M^2} \left(1 - \frac{4m_q^2}{M^2}\right)^{-1/2} \sqrt{1 - \frac{4m_l^2}{M^2}} \left(1 + 2\frac{m_q^2 + m_l^2}{M^2} + 4\frac{m_q^2 m_l^2}{M^4}\right)$$

$$\pi\pi \to l^+ l^-$$

$$d\sigma = \frac{1}{4[(p_{\pi}p_{\bar{\pi}})^2 - m_{\pi}^2 2m_{\bar{\pi}}^2]^{1/2}} |T_{fi}|^2 \frac{d^3 p_l}{2\pi^3} \frac{m_l}{E_l} \frac{d^3 p_{\bar{l}}}{(2\pi)^3} \frac{m_{\bar{l}}}{E_{\bar{l}}} (2\pi)^4 \delta^4 (p_{\pi} + p_{\bar{\pi}} - p_l + p_{\bar{l}})$$

(the usual deal...)

$$d\sigma = \frac{m_l^2}{2(2\pi)^2} \frac{dt d\phi_l}{s(s - 4m_q^2)} |T_{fi}|^2$$

 $T_{fi} = \bar{u}(p_l, \varepsilon_l)(ie\gamma^{\nu})v(p_{\bar{l}}, \varepsilon_{\bar{l}})\frac{-ig_{\mu\nu}}{(p_{\pi} + p_{\bar{\pi}})^2}[-ie(p_{\pi}^{\mu} - p_{\bar{\pi}}^{\mu})]$

$$\pi\pi \to l^+ l^-$$

$$\sigma(M) = \frac{4\pi}{3} \frac{\alpha^2}{M^2} \sqrt{1 - \frac{4m_\pi^2}{M^2}} \sqrt{1 - \frac{4m_l^2}{M^2}} \left(1 + 2\frac{m_l^2}{M^2}\right)$$

Vector Meson Dominance

So far:

Photon propagator!

$$\frac{1}{(p_{\pi} + p_{\bar{\pi}})^2} = \frac{1}{s}$$

Vector Meson Dominance

Form factor scaling

Solution: Scale with the respective absolute values!

$$|F_{\pi}(m_{\pi})|^{2} = \frac{\left|\frac{1}{(p_{\pi}+p_{\bar{\pi}})^{2}-(m_{\rho}+i\Gamma_{\rho}/2)^{2}}\right|^{2}}{\left|\frac{1}{(p_{\pi}+p_{\bar{\pi}})}\right|^{2}}$$

$$|F_{\pi}(m_{\pi})|^2 \sim \frac{m_{\rho}^4}{(M^2 - m_{\rho}^2)^2 + \Gamma_{\rho}^2 m_{\rho}^2}$$

Form factor scaling

$$\sigma(M) = \frac{4\pi}{3} \frac{\alpha^2}{M^2} \sqrt{1 - \frac{4m_\pi^2}{M^2}} \sqrt{1 - \frac{4m_l^2}{M^2}} \left(1 + 2\frac{m_l^2}{M^2}\right) |F_\pi(m_\pi)|^2$$

$$\sigma(M) = \frac{16\pi}{(M^2 - 4m_\pi^2)} \frac{|F_\pi(m_\pi)|^2}{m_\rho^4} m_\rho \Gamma(\rho \to \pi\pi) m_\rho \Gamma(\rho \to e^+ e^-)$$

What about decays?

Dilepton sources

Dalitz decay (Δ)

Direct decay

Dilepton sources

Decay rate

 $\Gamma = \frac{\text{Number of decays per unit time}}{\text{Numbers of particles present}}$

$$d\Gamma = \frac{1}{2M} \left(\prod_f \int \frac{d^3 p_f}{(2\pi)^3} \frac{1}{2E_f} \right) |\mathcal{M}(M \to \{p_f\})|^2 (2\pi)^4 \delta^4 \left(P - \sum p_f \right)$$

Phase space:

$$\int d\Pi_n = \frac{1}{2M} \left(\prod_f \int \frac{d^3 p_f}{(2\pi)^3} \frac{1}{2E_f} \right) (2\pi)^4 \delta^4 \left(P - \sum p_f \right)$$

2 body phase space

$$\int d\Pi_2 = \int d\Omega \frac{1}{16\pi^2} \frac{|\vec{p}|}{\sqrt{s}}$$

2 body decay rate

$$d\Gamma = \frac{1}{2M} |\mathcal{M}(M \to \{p_f\})|^2 d\Pi_2$$

2 body decay rate

$$d\Gamma = \frac{1}{2M} |\mathcal{M}(M \to \{p_f\})|^2 d\Pi_2$$

Pion decay

Second vertex

 $i\mathcal{M}(\gamma^* \to e^+e^-) = -ie\varepsilon_\mu(k)\bar{u}(p)\gamma^\mu v(p')$

[calculating, calculating...]

$$|\mathcal{M}(\gamma^* \to e^+ e^-)|^2 = \frac{1}{3}e^2(4M_{\gamma^*}^2 + 8m_e^2)$$

$$p = \sqrt{\frac{M_{\gamma^*}^2}{4} - m_e^2}$$

$$\sqrt{s} = M_{\gamma^*}$$

$$\int d\Pi_2 = \int d\Omega \frac{1}{32\pi^2} \sqrt{1 - \frac{4m_e^2}{M_{\gamma^*}}}$$

[plugging it all in...]

$$\Gamma(\gamma^* \to e^+ e^-) = \frac{\alpha}{3} \frac{1}{M_{\gamma^*}} (M_{\gamma^*}^2 + 2m_e^2) \frac{4m_e^2}{M_{\gamma^*}}$$

Full process

$$d\Gamma(A \to Be^+e^-) = d\Gamma(A \to B\gamma^*)M\Gamma(\gamma^* \to e^+e^-)\frac{dM^2}{\pi M^4}$$

Final results:

$$\frac{d\Gamma(\pi^0 \to \gamma e^+ e^-)}{\Gamma(\pi^0 \to \gamma \gamma)} = 2\left(1 - \frac{M_{\gamma^*}}{m_{\pi^0}^2}\right)^3 |F_{\pi^0 \to \gamma\gamma}(M_{\gamma^*})^2|^2 M_{\gamma^*} \Gamma\gamma^* \to e^+ e^-) \frac{dM_{\gamma^*}}{\pi M_{\gamma^*}^4}$$

Final mass spectrum:

$$\frac{dN_{\pi^{0} \to \gamma e^{+}e^{-}}}{dM} = \frac{2\alpha}{3\pi M} \sqrt{1 - \frac{4m_{e}^{2}}{M_{\gamma^{*}}^{2}}} \left(1 + \frac{2m_{e}^{2}}{M_{\gamma^{*}}^{2}}\right) \left(1 - \frac{M_{\gamma^{*}}^{2}}{m_{\pi^{0}}^{2}}\right)^{3} |F_{\pi^{0} \to \gamma\gamma}(M_{\gamma^{*}})^{2}|^{2} \frac{\Gamma_{\pi^{0} \to 2\gamma}}{\Gamma_{tot}} \langle N_{\pi^{0}} \rangle$$

Dilepton sources

Pseudoscalar mesons: $\frac{dN_{A \rightarrow \gamma e^+ e^-}}{dM}$

$$= \frac{4\alpha}{3\pi M} \sqrt{1 - \frac{4m_e^2}{M^2}} \left(1 + \frac{2m_e^2}{M^2}\right) \left(1 - \frac{M^2}{m_A^2}\right)^3 \times |F_{AB}(M^2)|^2 \frac{\Gamma_{A \to 2\gamma}}{\Gamma_{tot}} \langle N_A \rangle$$

Vector mesons:

$$\frac{dN_{A\to Be^+e^-}}{dM} = \frac{2\alpha}{3\pi M} \sqrt{1 - \frac{4m_e^2}{M^2}} \left(1 + \frac{2m_e^2}{M^2}\right) |F_{AB}(M^2)|^2 \frac{\Gamma_{A\to 2\gamma}}{\Gamma_{tot}} \langle N_A \rangle \\ \times \left(\left(1 + \frac{M^2}{m_A^2 - m_B^2}\right)^2 - \left(\frac{2m_A M}{m_A^2 - m_B^2}\right)^2\right)^{3/2}$$

Direct decays:

$$BR(V \to e^+ e^-) = \frac{\Gamma_{V \to e^+ e^-}(M)}{\Gamma_{tot}}$$

$$\Gamma_{V \to e^+e^-}(M) = \frac{\Gamma_{V \to e^+e^-}(m_V)}{m_V} \frac{m_V^4}{M^3} \sqrt{1 - \frac{4m_e^2}{M^2}} \left(1 + 2\frac{m_e^2}{M^2}\right)$$

Dilepton sources

Δ baryon:

$$\frac{dN_{e^+e^-}}{dM} = \int \frac{dN_{\Delta \to Ne^+e^-}}{dM} (M_{\Delta}) \frac{dN_{\Delta}}{dM_{\Delta}} dM_{\Delta} = \int \frac{2\alpha}{3\pi M} \frac{\Gamma(M_{\Delta}, M)}{\Gamma_{\Delta 0}^{tot}} \frac{dN_{\Delta}}{dM_{\Delta}} dM_{\Delta}$$

$$\Gamma(M_{\Delta}, M) = \frac{\lambda^{1/2}(M^2, m_N^2, M_{\Delta}^2)}{16\pi M_{\Delta}^2} m_N [2\mathcal{M}_t(M, M_{\Delta}) + \mathcal{M}_l(M, M_{\Delta})]$$

$$\lambda(m_A^2, m_1^2, m_2^2) = (m_A^2 - (m_1 + m_2)^2)(m_A^2 - (m_1 - m_2)^2)$$

$$\mathcal{M}_l = (efg)^2 \frac{m_\Delta^2}{9m_N} M^2 4(m_\Delta - m_N - q_0)$$

$$\mathcal{M}_t = (efg)^2 \frac{m_{\Delta}^2}{9m_N} [q_0^2 (5m_{\Delta} - 3(q_0 + m_N)) - M^2 (m_{\Delta} + m_N + q_0)]$$

L.G. Landsberg, Phys.Rept.128:301-376,1985 P. Koch, Z. Phys. C57:283-304, 1993

Hadrons are no point particles!

 \Rightarrow Form Factors!

Important: no first principle calculations! Huge model dependence. Need to be adjusted experimentally!

$$F_{\pi^0}(M^2) = 1 + b_{\pi^0} M^2$$
$$F_{\eta}(M^2) = \left(1 - \frac{M^2}{\Lambda_{\eta}^2}\right)^{-1}$$
$$\left|F_{\omega}(M^2)\right|^2 = \frac{\Lambda_{\omega}^2 (\Lambda_{\omega}^2 + \gamma_{\omega}^2)}{(\Lambda_{\omega}^2 - M^2)^2 + \Lambda_{\omega}^2 \gamma_{\omega}^2}$$

$$|F_{\eta'}(M^2)|^2 = \frac{\Lambda_{\eta'}^2 (\Lambda_{\eta'}^2 + \gamma_{\eta'}^2)}{(\Lambda_{\eta'}^2 - M^2)^2 + \Lambda_{\eta'}^2 \gamma_{\eta'}^2}$$

Charm decays

$g + g \rightarrow c + \bar{c}$

$$q + \bar{q} \to g^* \to c + \bar{c}$$

Huge mass, need lots of energy \Rightarrow initial collisions

Bremsstrahlung

Long thought to be negligible.

Different treatment of proton and neutrons might enhance importance...

(see Tatyana?)

Different results?

Medium evolution

Dilepton calculation

Take home messages

- Plenty of dilepton sources
- Disentangling them is hard (more by Hendrik tomorrow)
- Often model dependent \rightarrow experimental input needed

Take home messages

- Plenty of dilepton sources
- Disentangling them is hard (more by Hendrik tomorrow)
- Often model dependent \rightarrow experimental input needed

Thanks!