

Phasediagram of QCD

Chiral symmetry and density

Phasediagram of QCD

Measuring high µ_B with resonances/ dileptons

What you need to know to make people uneasy at dilepton meetings

Check density

- Several physical effects are density driven, e.g.
 - vector meson spectral function broadening
 - chiral phase transition
 - QGP phase transition
 - quarkyonic matter

Motivation

- Before including those density-driven effects into theoretical models one should check:
 - the maximum density which is reached in heavy ion collisions
 - the behaviour of the system without any medium effects
 - from what stage is the information one can gather experimentally from? and how?

Outline

- Quick UrQMD reminder
- Resonance kinematics
 - How deep can we look into heavy ion collisions using resonances/ dileptons? (does high transverse momentum change anything?)
 - Baryons @ low energies
 - a₁
 - Hadronic cocktail and what we learn from it

Dileptonic and hadronic decays

Dileptons	Hadrons
do not interact strongly with the surrounding medium	suffer from final state interactions
originate from various sources in various mass regions (note: Dalitz decays)	originate from various sources in various mass regions
Typical branching ratios on the order of 10 ⁻⁴ - 10 ⁻⁵	Typical branching ratios on the order of 0.1 - 1
when measured reflect the integrated collision history	when measured reflect the late stage (after freezeout) of the collision

Dileptonic and hadronic decays

Dileptons	Hadrons	
do not interact strongly with the surrounding medium	suffer from final state interactions	
originate from various sources in various mass regions (note: Dalitz decays)	originate from various sources in various mass regions	
Typical branching ratios on the order of 10 ⁻⁴ - 10 ⁻⁵	Typical branching ratios on the order of 0.1 - 1	
when measured reflect the nitegrated collision history	when measured reflect the late stage (after freezeout) of the collision	

Measuring resonances

- Resonances decay on timescales of fm ⇒ cannot be measured directly
- Resonances are measured via their decay products, cross section follows a Breit-Wigner law

Measuring resonances in p+p

Correlate all protons and kaons in the event, plot invariant mass.

Lots of uncorrelated pairs → background subtraction needed

500 Nentries 400 300 200 100 background normalized: $\Delta m = 1.6-2.1$ [GeV/c 9.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 $m_{inv}(p K') [GeV/c^2]$

Still a visible peak, but not as clear as before.

Measuring resonances in A+A

Different methods to subtract the background lead to slightly different results.

Measuring resonances in A+A

1.5

1.6

1.7

1.8

1.9

2.1

m_{inv} (p K) [GeV/c²]

2

2.2

Correlate all protons and kaons in the event, plot invariant mass.

Peak?

Dileptonic and hadronic decays

Model selection

The tool - UrQMD

103

10

10

10

10²

- Ultra Relativistic Quantum Molecular Dynamics
- Non equilibrium transport model
- All hadrons and resonances up to 2.2 GeV included
- Particle production via string excitation and -fragmentation
- Cross sections are fitted to available experimental data or calculated via detailed balance or the additive quark model
- Does account for canonical suppression

No explicit implementation of in-medium modifications!

Phys.Rev.C69:054907,2004 Phys.Rev.C74:034902,2006

Quantum Molecular Dynamics

Nucleon = Gaussian Wave-Packet

$$\phi_i(\vec{x}; \vec{q}_i, \vec{p}_i, t) = \left(\frac{2}{L\pi}\right)^{3/4} \exp\left\{-\frac{2}{L}(\vec{x} - \vec{q}_i(t))^2 + \frac{1}{\hbar}i\vec{p}_i(t)\vec{x}\right\}$$

N-Body-State = product of coherent states

$$\Phi = \prod_{i} \phi_i(\vec{x}, \vec{q_i}, \vec{p_i}, t)$$

QMD

Lagrangian Density

$$\mathcal{L} = \sum_{i} \left[-\dot{\vec{q}_{i}} \, \vec{p}_{i} - T_{i} - \frac{1}{2} \sum_{j \neq i} \langle V_{ik} \rangle - \frac{3}{2Lm} \right]$$

Equations of motion

$$\dot{\vec{q}}_i = \frac{\vec{p}_i}{m} + \nabla_{\vec{p}_i} \sum_j \langle V_{ij} \rangle = \nabla_{\vec{p}_i} \langle H \rangle$$
$$\dot{\vec{p}}_i = -\nabla_{\vec{q}_i} \sum_{j \neq i} \langle V_{ij} \rangle = -\nabla_{\vec{q}_i} \langle H \rangle.$$

Complicated N-Body Schrödinger Problem

Steps in UrQMD

Initialization

Collision criterium

When do particles collide?

1) Know cross section

2) Check collision criterium

Collision criterium

When do particles collide?

1) Know cross section

2) Check collision criterium

The tool - UrQMD

nucleon	Δ	Λ	\sum	[1]	Ω
N ₉₃₈	Δ_{1232}	Λ_{1116}	Σ_{1192}	Ξ_{1317}	Ω_{1672}
N_{1440}	Δ_{1600}	Λ_{1405}	Σ_{1385}	Ξ_{1530}	
N_{1520}	Δ_{1620}	Λ_{1520}	Σ_{1660}	Ξ_{1690}	
N_{1535}	Δ_{1700}	Λ_{1600}	Σ_{1670}	Ξ_{1820}	
N_{1650}	Δ_{1900}	Λ_{1670}	Σ_{1775}	Ξ_{1950}	
N_{1675}	Δ_{1905}	Λ_{1690}	Σ_{1790}	Ξ_{2025}	
N_{1680}	Δ_{1910}	Λ_{1800}	Σ_{1915}		
N_{1700}	Δ_{1920}	Λ_{1810}	Σ_{1940}		
N_{1710}	Δ_{1930}	Λ_{1820}	Σ_{2030}		
N_{1720}	Δ_{1950}	Λ_{1830}			
N_{1900}		Λ_{1890}			
N_{1990}		Λ_{2100}			
N_{2080}		Λ_{2110}			
N_{2190}					
N_{2200}					
N_{2250}					

The tool - UrQMD

0-+	1	0++	1^{++}
π	ρ	a_0	a_1
	K^*	K_0^*	K_1^*
η	ω	f_0	f_1
η'	ϕ	f_0^*	f_1'
1+-	2^{++}	$(1^{})^*$	$(1^{})^{**}$
b_1	a_2	$ ho_{1450}$	$ ho_{1700}$
$\begin{bmatrix} b_1 \\ K_1 \end{bmatrix}$	$\begin{array}{c} a_2\\ K_2^* \end{array}$	$\rho_{1450} \ K^*_{1410}$	$\rho_{1700} \ K^*_{1680}$
$\begin{bmatrix} b_1 \\ K_1 \\ h_1 \end{bmatrix}$	$egin{array}{c} a_2 \ K_2^* \ f_2 \end{array}$	$ ho_{1450} \ K^*_{1410} \ \omega_{1420}$	$ ho_{1700} \ K^*_{1680} \ \omega_{1662}$

Cross sections

$$\sigma_{1,2\to3,4}(\sqrt{s}) \sim (2s_3+1)(2s_4+1) \frac{\langle p_{3,4} \rangle}{\langle p_{1,2} \rangle} \frac{1}{\sqrt{s}} |M(m_3,m_4)|^2$$

Global fit with the same kind of matrix element for 5 channels

$$NN \to NN^*, N\Delta^*, \Delta\Delta, \Delta N^*, \Delta\Delta^*$$

$$|M(m_3, m_4)|^2 = A \frac{1}{(m_4 - m_3)^2 (m_4 + m_3)^2}$$

Data from elementary reactions are needed as an input into theory! (HADES?)

Density calculation

• Lorentz-transform the CF density to the frame where the three-current vanishes (Eckart frame)

$$\vec{\beta}_{CF} = \frac{\sum_{j=1}^{N} \left(\frac{\vec{p}_j}{E_j}\right) \cdot P_j}{\sum_{j=1}^{N} P_j}$$

The zero-component of the transformed four-current is the relevant density

Density calculation

- Local baryon density is the zeroth component of the baryon four-current $\ j^{\mu}=(\rho_B,\vec{j})$ when the baryon is at rest
- UrQMD calculates in the Computational Frame (CF), which is usually the CMS (due to symmetry)
- $j_{CF}^{\mu}=(\rho_{B_{CF}},\vec{j}_{CF})\,$ can be calculated as a sum over Gaussians

$$\rho_{CF}(\vec{r_i}) = \sum_{j=1}^{N} \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^3 \gamma_z e^{\left(-\frac{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 \gamma_z^2}{2\sigma^2}\right)} \\ = \sum_{j=1}^{N} P_j$$

Rescattering

• well known effect, studied in

- statistical hadronization models
- transport models
- hydrodynamical models

Rescattering

well known effect, studied in ⇒ experiment

Markert et al. [STAR], J.Phys.G35:044029,2008

Time evolution of ρ_B

Reach in density

- Normalized density spectrum
- Most resonances originate from very low density

Reconstruction probability

Probability to reconstruct resonances from a certain density

p_T dependence

- average transverse momentum depends on density
- reconstructable resonances have higher p_T

p_T dependence

p_T dependence

- difference in p_{T} spectrum between observable and all decayed
- percentage of reconstructable resonances produced at ρ>2ρ₀ increases with p_T

Formation time

- formation time is mass and p_T dependent
- shaded areas indicate the estimated lifetime of the partonic phase

First conclusion

High p⊤ resonances might shed some light on the dense phase of heavy ion collisions!

(but are they really what we want to measure?)

Dileptons

Using dileptons... how far can we look into the dense phase?

(can we at all?)

Gain/Loss terms

- Resonances can stem from two processes
 - Collisions (e.g. $\pi\pi
 ightarrow
 ho$)
 - Decays of heavier resonances (e.g. $N^*_{1520}
 ightarrow N +
 ho$)
- Resonances can be destroyed by two processes
 - Decays (e.g. $\rho \rightarrow e^+ e^-$)
 - Absorption (e.g. $N+\rho \rightarrow N^*_{1520}$)

Integral values

- Consistency check: Sum of gain and collision agree
- Difference gives the number of resonances in the system

Dilepton approaches

1) Shining

- Evaluate lifetime of the resonance, weight accordingly
- 2) Full weight only when resonance decays ignore absorbed resonances
 - Weight decayed resonance with vacuum width / BR
- 3) Full weight when absorbed/decayed
 - Weight all decayed/absorbed resonances with vacuum width / BR (most optimistic approach)

na")

Time integration method ("shining")

Heinz and Lee, Nucl.Phys.A544:503-508,1992 Ko and Li, Nucl.Phys.A582:731-748,1995

Dileptons

What is the deal about them at low energies?

ρ meson in C+C @ 2AGeV

At low energies (~2 AGeV) contributions from baryon 0.16 resonance decays are dominant. 0.14 0.12 e V] 0.1 N*1520 contributes via the decay 0.08 d N/d m [G chain $N^*_{1520} \rightarrow N + \rho$ $\rho \rightarrow \pi^+\pi^- \text{ or } \rho \rightarrow e^+e^-$ 0.04 to the low mass part of the ρ meson mass spectrum. 0.02

0.0

0.0

0.1

SV, M. Bleicher, Phys.Rev.C74:014902,2006

0.5 0.6

m [GeV]

0.7

0.8

0.9

10

0.3

0.4

0.2

ρ meson at higher energies

ρ meson at higher energies

Due to the dependence on the baryon density the mass of the ρ meson is rapidity dependent.

The ρ meson mass drops towards higher rapidity.

Second conclusion

Controlling baryon kinematics is important

(otherwise some spectra seem more interesting than they are)

Measuring Chiral Symmetry

- Can we observe a chirally restored phase? (and how?)
- What happens to the ρ meson in the medium? What happens to the a₁ meson?
- What can we learn from reasonable hadronic dynamics (without a chirally restored phase)?

V. Koch, Int.J.Mod.Phys.E6:203-250,1997

The a₁ meson mass is expected to be equal to the mass of the ρ meson, in case of chiral symmetry restoration.

Problem: It is hard to measure.

2 (1260) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Г1	$\pi^{+}\pi^{-}\pi^{0}$		
Γ2	$\pi^{0}\pi^{0}\pi^{0}$		
Гз	$(\rho\pi)_{S-wave}$	seen	
Γ4	$(\rho\pi)_{D-wave}$	seen	
Γ ₅	$(\rho(1450)\pi)_{S-wave}$	seen	
Γ ₆	$(\rho(1450)\pi)_{D-wave}$	seen	
Γ7	$\sigma\pi$	seen	
Г8	$f_0(980)\pi$	not seen	
Γ9	$f_0(1370)\pi$	seen	
Γ ₁₀	$f_2(1270)\pi$	seen	
Γ11	<i>KK</i> [*] (892) + c.c.	seen	
Γ ₁₂	$\pi\gamma$	seen	

The a₁ meson mass is expected to be equal to the mass of the ρ meson, in case of chiral symmetry restoration.

Problem: It is hard to measure.

	Mode	Fraction (Γ_{2}/Γ)
F	_+0	
	$\pi^{0}\pi^{0}\pi^{0}$	
2	$(\alpha \pi)$	
3	$(p\pi)S$ -wave	seen
4	$(\rho \pi)_{D-wave}$	seen
Γ ₅	$(\rho(1450)\pi)_{S-wave}$	seen
Γ ₆	$(\rho(1450)\pi)_{D-wave}$	seen
Γ7	$\sigma\pi$	seen
Г8	$f_0(980)\pi$	not seen
Γ9	$f_0(1370)\pi$	seen
Γ ₁₀	$f_2(1270)\pi$	seen
Γ11	$K\overline{K}^{*}(892) + cc$	seen
Γ ₁₂	$\pi\gamma$	seen

What about the other channels?

Experimentally not feasible:

Higher mass resonances are either not known or the decay channel analyses contradict each other (further exp. studies certainly useful!).

	a1(1260) DECAY MODES					
	Mode	Fraction (Γ_i/Γ)				
Г	$\pi^{+}\pi^{-}\pi^{0}$					
Γ2	$\pi^{0}\pi^{0}\pi^{0}$					
Γ ₃	$(\rho \pi)_{S-wave}$	seen				
Γ4	$(\rho \pi)_{D-wave}$	seen				
Γ ₅	$(\rho(1450)\pi)_{S-wave}$	seen				
Γ ₆	$(\rho(1450)\pi)_{D-wave}$	seen				
Γ ₇	$\sigma \pi$	seen				
Γ8	$f_0(980)\pi$	not seen				
Г9	$f_0(1370)\pi$	seen				
Γ ₁₀	$f_2(1270)\pi$	seen				
Γ ₁₁	$K \overline{K}^{*}(892) + c.c.$	seen				
Γ ₁₂	$\pi\gamma$	seen				

a1 meson - density

Density at the point of decay of the a_1 meson

Idea: Check the mass distribution from the transport code.

Next: trigger on the decay channel $a_1 \rightarrow \gamma \pi$ (assumed width = 640keV)

→ Mass dependent branching ratios

$$\Gamma_{i,j}(M) = \Gamma_R^{i,j} \frac{M_R}{M} \left(\frac{\langle p_{i,j}(M) \rangle}{\langle p_{i,j}(M_R) \rangle} \right)^{2l+1} \frac{1.2}{1 + 0.2 \left(\frac{\langle p_{i,j}(M) \rangle}{\langle p_{i,j}(M_R) \rangle} \right)^{2l}}$$

Low mass a_1 favors $\gamma \pi$ decay, not $\rho \pi$

Trigger on a₁ $\rightarrow \gamma \pi$ = trigger on low mass a₁ mesons

H. Sorge, Phys.Rev.C52:3291,1995

Below 900 MeV $\gamma\pi$ decay is dominant, $\rho\pi$ is kinematically suppressed.

Branching ratio folded with BW distribution

a₁ meson

Full model calculation

a₁ meson

Take home messages

 Experimentally reconstructable resonances are not sensitive to the high density region unless measured at high p_T

Beware of baryons kinematics

• $a_1 \rightarrow \gamma \pi$ might not be the golden channel

Take home messages

• Experimentally reconstructable resonances are not sensitive to the high density region unless measured at high p_T

Beware of baryons kinematics

• $a_1 \rightarrow \gamma \pi$ might not be the golden channel

