The experimental quest for in-medium effects Episode I

Tetyana Galatyuk TU Darmstadt / GSI 02 April 2012, Strasbourg

FERMIONS			matter constituents spin = 1/2, 3/2, 5/2,		
Leptons spin = 1/2			Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3
e electron	0.000511	-1	d down	0.006	-1/3
ν_{μ} muon neutrino	< 0.0002	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
ν_{τ} tau neutrino	< 0.02	0	t top	175	2/3
au tau	1.7771	-1	b bottom	4.3	-1/3

BOSONS			force carriers spin = 0, 1, 2,			
Unified Electroweak spin = 1			Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	g gluon	0	0	
W ⁻	80.4	-1				
W+	80.4	+1				
Z ⁰	91.187	0				

Strong interaction:

- binds quarks into hadrons
- binds nucleons into nuclei
- Described by QCD:
 - interaction between particles carrying color charge (quarks, gluons)
- Mediated by strong force carriers (gluons)
- Very successful theory
 - jet production
 - particle production at high p_T
 - heavy flavor production
 - ...
- ... but with outstanding puzzles

Two puzzles in QCD: confinement

FERMIONS			matter constituents spin = 1/2, 3/2, 5/2,			
Leptons spin = 1/2				Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge
ve electron neutrino	<1×10 ⁻⁸	0		U up	0.003	2/3
e electron	0.000511	-1		d down	0.006	-1/3
ν_{μ} muon neutrino	< 0.0002	0		C charm	1.3	2/3
μ muon	0.106	-1		S strange	0.1	-1/3
ν_{τ} tau neutrino	< 0.02	0		t top	175	2/3
au tau	1.7771	-1		b bottom	4.3	-1/3

- Nobody ever succeeded in detecting an isolated quark
- Quarks seem to be permanently confined within protons, neutrons, pions and other hadrons
- It looks like one half of the fundamental fermions are not directly observable...

... how does this come about?

- If the distance between two quarks gets larger, more and more
- gluons contribute to the interaction between the quarks.
- Hence the potential energy grows with increasing distance.
- At some point, enough energy is stored in the field to produce
- a pair of quarks out of the vacuum (observed as jet).

 $V(r) \propto -\frac{\alpha_s(r)}{\kappa} + \kappa r$

Two puzzles in QCD: hadron masses

- A proton is thought to be made of two u and one d quarks
- The sum of their masses is around 12 MeV
- ... but the proton mass is 938 MeV!

How does nature generate massive hadrons from nearly mass-less quarks?

Evolution of the Universe

masses of elementary particles (quarks, leptons) generated by interaction with Higgs-field

 \Rightarrow search for **Higgs-particle** (LHC)

Higgs generates ~2% and

QCD generates **98%** of the mass of ordinary matter !!!

- How can we experimentally prove this scenario?
- Experiments at the large hadron collider (LHC) at CERN will search the Higgs particle, the missing piece in the Standard Model.
- However, the chiral condensate cannot be studied this way, it is not an observable. Theoretical models are used to link observables to the quark-condensate.

The nucleon is a complex object

Hadrons are very complex excitations of valence quarks in the present of quark and gluon condensates.

nucleon: mass not determined by sum of constituent masses $m = E/c^2$; "mass without mass" (Wilczek) mass given by energy stored in motion of quarks and by energy in color gluon fields Chiral symmetry = fundamental symmetry of QCD for massless quarks (m_q =0)

In the interaction among quarks by gluon exchange righthanded quarks q_R (spin and momentum parallel) stay righthanded and left-handed quarks q_L stay left-handed \rightarrow chirality is conserved

For m_q = 0 the QCD Lagrangian is invariant under the SU(3)_R \otimes SU(3)_L transformations

Chiral symmetry breaking

The ground state of QCD (vacuum) is populated by quark – anti-quark pairs (<qqbar> condensate) and does not share the symmetry of the Lagrangian

chiral condensate

A left-handed quark q_L can be converted into a right-handed quark q_R (spin and momentum parallel) by interaction with a scalar q - anti-q pair

Due to the condensate chiral symmetry is broken!

If chiral symmetry were to hold also in the hadronic sector we would expect chiral partners with same spin but opposite parity to be degenerate in mass:

Consequences of Spontaneous Breaking of Chiral Symmetry

• e.g., nucleon N: $J^{\pi} = 1/2^+$; chiral partner: $J^{\pi} = 1/2^-$ mass degenerate??

What happens if nuclear matter is compressed or heated?

Compressed (μ_B):

- Less volume for a given number of baryons
- ✦ Less condensate

Heated (T):

- Additional pions
- ✦ Less condensate

Properties of condensate in-medium

B.J. Schäfer and J.Wambach

• However, $\langle q \overline{q} \rangle$ is not an observable!!

 QCD sum rules provide a link between hadronic observables and condensates: (T. Hadsuda and S. Lee, PRC 46 (1992) R34; S. Leupold and U. Mosel, PRC58 (1998) 2939)

$$\frac{Q^2}{24\pi^2} \int ds \frac{R(s)}{(s+Q^2)^2} = \frac{1}{16\pi^2} \left(1 + \frac{\alpha_s}{\pi}\right) + \frac{1}{Q^4} \left[m_q \langle \overline{q} q \rangle + \frac{1}{24} \langle \frac{\alpha_s}{\pi} G^2 \rangle\right] + \text{higher order terms}$$

hadronic spectral function:
$$R(s) \sim F^2 \frac{1}{\pi} \frac{\sqrt{s} \Gamma(s)}{(s-M_\rho^2)^2 + s(\Gamma(s))^2}$$

- Chiral condensate related only to integral over hadronic spectral functions;
 spectral function are constrained, but not determined
 - ⇒ Hadronic models are still needed for specific predictions of hadron properties !!

Medium modifications of hadrons

- Many models:
 - hadron mass and quark condensate are linked \rightarrow
 - expect modification of hadron spectral properties (mass m, width Γ)
 - How is this realized?
 - → Do the masses drop to zero (or simply change)?
 - → Do the widths' increase (melting resonances)?
 - Good questions, without (obvious) good answers
 - ... at least chiral partners should become degenerate.

Chiral symmetry restoration

- Light-quark sector of QCD: chiral symmetry
 - Spontaneously broken in vacuum
 - High temperature/density: restoration of chiral symmetry

Dileptons as probes in heavy-ion collisions

Challenge:

Extract information on the high density phase

Radiation from hot and dense matter

- The dilepton signal contains contributions from throughout the collision
- No strong final state interactions
 - \rightarrow leave reaction volume undisturbed
- Probes the electromagnetic structure of dense/hot hadronic matter

- $J^{P} = 1^{-}$ for both γ^{*} and Vector Meson
- Strong coupling of γ^{*} to Vector Meson
 → Vector Meson Dominance model
- *Observable:* vector mesons (ρ, ω, ϕ) .

Observable: vector mesons

Schematical spectral distribution of lepton pairs emitted in ultra-relativistic heavy ion collisions

The electron pair cocktail at low beam energies

spectral function of the p-meson in-medium

M. Post et al., nucl-th/0309085

Additional contributions to the $\rho\text{-meson}$ self-energy in the medium

More predictions for in-medium properties of the ρ meson:

	mass of ρ	width of ρ
Pisarski 1982	X	1
Leutwyler et al 1990 (π,N)	+	1
Brown/Rho 1991	X	+
Hatsuda/Lee 1992	X	+
Dominguez et. al1993	+	1
Pisarski 1995	1	1
Rapp 1996	+	1

One example where experiments have the potential to guide the theory

Experimental approach

Hadron decay in the medium:

$$H \rightarrow X_1 + X_2$$

reconstruction of invariant mass from 4-momenta of decay products:

$$m_H(\rho,T,\vec{p}) = \sqrt{\left(p_1 + p_2\right)^2}$$

- compare $m_H(\rho, T, \vec{p} \rightarrow 0)$ with m_H listed in PDG
- ensure that decays occur in the medium: \rightarrow select shortlived mesons ($c\tau = \frac{\hbar c}{\Gamma}$; ρ : 1.3 fm; ω : 23 fm; ϕ : 46 fm) \rightarrow cut on low meson momenta
- avoid distortion of 4-momenum vectors by final state interaction

 \Rightarrow dilepton spectroscopy: ρ , ω , $\phi \rightarrow e^+e^-$

Low-mass dileptons: what is been measured?

...a needle in a haystack

- Lepton pairs are rare probes (branching ratio < 10⁻⁴)
- at SIS energies sub-threshold vector meson production
- Large combinatorial background in e^+e^- from:
 - Dalitz decays (π⁰)
 - Conversion pairs
- Isolate the contribution to the spectrum from the dense stage

Why not $\rho \rightarrow \pi^+\pi^-$?

The branching ratios for hadronic decays of vector mesons are typically 4 orders of magnitude larger that for dilepton decays

Experiments addressing lepton pairs in HIC

time (advance in technology)

High Acceptance DiElectron spetrometer

under undebraking homeoniak sheriakieret

HADES experiment

Spectrometer with a...

- High geometrical acceptance
 - Full azimuth, polar angles 18° 85°
 - Pair acceptance ≈ 0.35
- High invariant mass resolution (3% at ρ/ω pole mass)
 - Low-mass tracking (superconducting toroidial magnet & multi-wire drift chamber (MDC), single cell resolution ≈100 µm)
- Powerful PID capabilities: d/π/K/p/e
 - RICH, TOF/TOFino, Pre-Shower, FW hodoscope: added 2007
- High background rejection & rate capability, dedicated LVL2 trigger:
 - LVL1: charge particle multiplicity
 - LVL2: single electron trigger

$$M_{l+l^-} = 2 \cdot \sin\frac{\theta_{l+l^-}}{2} \cdot \sqrt{p_{l+} \cdot p_{l^-}}$$

- Efficient track reconstruction
- Precise momentum determination
- Excellent electron/hadron identification

Particle identification

Using Cherenkov effect

Using Information on EM shower

Single electron spectra

Clean electrons...

... but mainly from π^0 Dalitz decays or from γ conversion

Combinatorial background

Background rejection

Reconstruction of the combinatorial background

Same event like-sign:

$$\begin{split} CB_{geom.} &= 2 \cdot \sqrt{N_{e^+e^+} \cdot N_{e^-e^-}} \\ CB_{arith.} &= N_{e^+e^+} + N_{e^-e^-} \end{split}$$

- Event mixing:
 - inherently independent
 - Normalization done between 150-550 MeV/c² M_{ee}
 - ➤ sLS and mOS CB show same behavior for M_{ee}>150 MeV/c²
 - → For $M_{ee} < 150 \text{ MeV/c}^2$ deviations due to correlated background $\pi \rightarrow \gamma \gamma \rightarrow eeX$

What is known at few GeV regime?

DiLepton Spectrometer

- 1988 1993 at Bevalac
- 2 Arm-Spectrometer
 - Minimum opening angle: 40°
 - Each arm: 40° in Φ, ±7.5° in Θ
 - Trigger on electron-pairs
 - Opening angle 40°
 - Quasi-tracking: p > 0.05 GeV/c
 - Mass resolution: 15% at ω pole mass
 - 30-40% systematical error
- pp/pd, Ca+Ca, C+C

DiLepton Spectrometer

DLS: enhanced dilepton yields in A+A

Ca+Ca at E_{kin}=2 GeV/u 10^{3} Ca+Ca, 1.0 A GeV 10^{2} 'free' spectral function $d\sigma/dM \ [\mu b/(GeV c^2)]$ **10**¹ all ē pň πN 10° ππ $\omega \rightarrow \pi^0 e^+ e^-$ 10 10^{-2} 10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 $M [GeV/c^2]$

Strong dilepton enhancement over hadronic cocktails

<u>Data:</u> R.J. Porter et al.: PRL 79(97)1229 <u>Model:</u> E.L. Bratkovskaya et al.: NP A634(98)168, BUU, vacuum spectral function

Theory (folded with the DLS response): C. Ernst et al.

PRC 58 (1998) 447

UrQMD 1.3

DLS p+p data: more and different models ...

Data: Wilson et al. PRC 57 (1997) 1865

Theory (folded with the DLS response):

Faessler, Fuchs et al. J. Phys. G29 (2003) 603 (Resonances + decays)

RQMD

Theory (folded with the DLS response):

Bratkovskaya et al., HSD model (NN Bremstrahlung a-la Kaptari *et al.*, 2006)

DLS p+p data: fair agreement with theory The real trouble starts with p+d data!

Theory (folded with the DLS response): C. Ernst et al.

PRC 58 (1998) 447

UrQMD 1.3

Theory (folded with the DLS response):

Faessler, Fuchs et al. J. Phys. G29 (2003) 603 (Resonances + decays)

RQMD

Theory (folded with the DLS response):

Bratkovskaya et al., HSD model (NN Bremstrahlung a-la Kaptari *et al*., 2006)

DLS p+d data: not described by theory! pp vs. pd : What's different? DLS "pd Puzzle"?

Phase space coverage: HADES vs. DLS

For a comparison of HADES and DLS results the HADES yield has to be extrapolated to full phase space

Direct comparison

DLS Data: R.J. Porter et al.: PRL 79(97)1229

J. Carroll – presentation

International Workshop on Soft Dilepton Production August 20-22,1997, LBNL

\rightarrow HADES and DLS data agree

Hadronic cocktail

HADES Cocktail = long lived mesonic components

- π⁰ thermal source, anisotropic angular distribution according to measured π^{+/-}
- η isotropic
- ω m_T scaling isotropic decay pattern

Elementary reactions

- Beam energy E_{beam} = 1.25 GeV (s<s_{thres} for η production)
- LH2 target

p+p:

× one week of running in April 2006
 × ~2.6*10⁹ LVL1 events collected
 (MUL=>3 trigger)

d+p:

× two weeks of running in April 2007 × ~4.8·10⁹ LVL1 events collected (MUL=>2 && FW "p spectator") tag on np \rightarrow e⁺e⁻ X reactions

HADES pp and dp (tagged n) data vs. models

"If you are out to describe the truth, leave elegance to the tailor"+ + A. Einstein

Comparison of C+C to N+N collisions

- C+C data reproduced (within 20%) by superposition of N+N interactions
- Pair excess observed in C+C data has been traced back to anomalous pair production in n+p collisions

C+C = 12 * (Nukelon+Nukleon)?

Efficiency corrected dielectron spectra from Ar+KCl at $E_{kin} = 1.76 \text{ GeV/u}$

Summary: HADES and DLS

- Origin of the low-mass dielectron pair excess in nucleus-nucleus collisions at 1-2 GeV/u established
- *p+p* and *n+p* data are critical test for theoretical input
- light systems (i.e C+C) can be described by superposition of NN interactions
- "DLS puzzle"?
 - experimentally solved
 - theoretically only after *n*+*p* data is consistently explained

LESON: know your reference!

