Direct Photons in p+p and A+A Collisions: A Short Introduction

Lecture week of the Helmholtz Research School for Quark Matter Studies in Heavy Ion Collisions April 4 & 5, 2012, Strasbourg, France

Klaus Reygers

Physikalisches Institut University of Heidelberg, Germany

- Introduction
- Direct Photons in p+p
- Direct Photons in A+A: Overview
- Measurement of Direct Photons in A+A Collisions
- Results on Direct Photon Production in A+A Collisions (Measured With Real Photons)
- The Internal Conversion Method
- Direct Photon Flow

Why Direct Photons?

Direct Photons

- Definition (heavy-ion flavor): Photons not coming from hadron decays
- Definition (particle physics flavor): Isolated Photons
- Difficult measurement: Large Background from $\pi^0 \rightarrow \gamma + \gamma, \ \eta \rightarrow \gamma + \gamma$
- Exp. problem at high p_T (calorimeters, E(π⁰) > ~20 GeV): merging of π⁰ (η) decay photons

p+p:

• Late 1970's:

Direct Photons suggested presence of point-like charged objects within hadrons

- Test of QCD
- Focus now on constraining gluon distribution functions
 - Quark-Gluon Compton scattering contributes at leading order (LO)
 - This is in contrast to Deep Inelastic Scattering and Drell-Yan where gluon is involved only at NLO
- However, direct photon data often not used in global fits due to discrepancies between data and theory

Why Direct Photons in Nucleus-Nucleus Collisions? Because They Escape the Medium Unscathed!

- Direct photon yields at low p_T (< 5 GeV/c)</p>
 - Measure thermal photons
 → initial temperature of the fireball
 - Find further photon sources related to presence of the QGP (e.g. photons
 from jet-plasma interaction)
- Direct photon yields at high p_T
 - Confirm point-like scaling for hard processes
- Direct γ hadron azimuthal correlations
 - p+p: measure fragmentation function
 - A+A: $E_{\gamma} = E_{jet} \rightarrow \text{study parton energy loss}$ for partons with known initial energy

Direct Photon Measurement: Methods

Isolated photons + shower shape cuts

Statistical subtraction Method

- Measure inclusive photon spectrum and subtract photons from hadron decays
- Inclusive photon spectrum via
 - Electromagnetic calorimeters
 - External conversion
- Hanbury Brown-Twiss (HBT) Method
 - Bose-Einstein correlation expected for direct photons
 - Direct photon yield from correlation strength

Direct Photons in p+p

p+p(p bar) Direct Photon Data and pQCD – Status as of ~ 2006 (I)

Aurenche et al., Phys.Rev. D73 (2006) 094007

- Decent agreement at large \sqrt{s}
- Substantial deviations between data and NLO pQCD at small \sqrt{s}
- Questions:
 - Is there a systematic pattern of deviation?
 - If so, can the introduction of additional transverse momentum (k_T) of initial partons improve the agreement?
 - Are the data sets mutually consistent?

Is k_{τ} Broadening Needed to Describe Direct Photon Data?

E706, Phys.Rev.D70:092009,2004

Data from E706 fixed target experiment can be explained with $\langle k_T \rangle \approx 1.3 \text{ GeV/}C$

Is there evidence for k_T broadening in p+p at larger √s ?

p+p(p bar) Direct Photon Data and pQCD – Status as of ~ 2006 (II)

Only E706 data show strong deviation from NLO QCD. Probably need new data at low \sqrt{s} to settle the issue.

Isolation Cuts

Isolation Cuts

Isolated direct photons: Limit on transverse energy in a cone around the photon

An Example of an Isolated Photon Measurement (CMS)

Isolated Photon Measurement (CMS): Isolation Cuts

$$R^2 = (\eta - \eta^{\gamma})^2 + (\phi - \phi^{\gamma})^2$$

- Photon candidates must satisfy three isolation requirements that reject photons produced in hadron decays
 - IsoTRK < 2 GeV/c in 0.04 < R < 0.40, excluding a rectangular strip of
 Δη × ΔΦ = 0.015 0.400 to remove the photon's own energy if it converts into an e+e-
 - IsoECAL < 4.2 GeV (transverse energy in ECAL in 0.06 < R < 0.40, excluding again a central region for the photon)
 - IsoHCAL < 2.2 GeV (transverse energy in HCAL)</p>
- These conditions remove the bulk of the photons from neutral meson decays

CMS, Phys.Rev.Lett. 106 (2011) 082001

[Minimum Opening Angle of π^0 Decay Photons]

Isolated Photon Measurement (CMS): Signal Extraction

$$\sigma_{\eta\eta}^2 = \sum_{i=1}^{25} w_i (\eta_i - \bar{\eta})^2 / \sum_{i=1}^{25} w_i$$

$$w_i = \max(0, 4.7 + \ln(E_i/E))$$

$$\mathcal{K} = \frac{\gamma}{\gamma}$$

- Isolated photon yields extracted by fitting signal + background templates to measured shower width distribution
- Signal template from MC (Pythia + Geant)
- Background template determined in a data-driven way

Isolated Photon Spectrum in p+p at 7 TeV (CMS)

 The photon reconstruction and selection efficiencies are determined from PYTHIA:
 ε = 0.916 ± 0.034 (rather independent of photon energy)

 Spectrum corrected for finite energy resolution

CMS, Phys.Rev.Lett. 106 (2011) 082001

Isolated Photons in p+p at 7 TeV: Agreement with NLO pQCD

P. Aurenche et al., Eur. Phys. J. C 13 (2000) 347 (http://lapth.in2p3.fr/PHOX_FAMILY).

¹⁶ K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Direct Photon Search in p+p at the LHC at Low p_T : A Tough Job

Possible signal much smaller than systematic errors

Direct Photons in A+A: Overview

Hard direct photons: bremsstrahlung / fragmentation component

Preequillibrium photons

- Produced through rescattering of the primarily produced partons prior to thermalization
- Difficult to treat theoretically

Thermal photons

Reflect temperature of the system, produced over entire evolution

■ Significant direct photon source only at low *p*_T

Medium induced photon bremsstrahlung

Due to multiple scattering of quarks in the medium

Different theoretical predictions, likely rather small contribution

Summary: Direct Photons in A+A Collisions -Hard, Thermal, Hard+Thermal

Schematic Photon Spectrum in A+A

- Thermal photons expected to be significant contribution below p_T ~ 3 GeV/c
- Hard photons dominant direct photon source for p_T > ~ 6 GeV/c
- Jet-photon conversion might be significant contribution below p_T ~ 6 GeV/c
- Experimental challenge: Subtraction of decay photon background

Schematic Photon Spectrum in A+A

- Thermal photons expected to be significant contribution below
 p_T ~ 3 GeV/c
- Hard photons dominant direct photon source for p_T > ~ 6 GeV/c
- Jet-photon conversion might be significant contribution below p_T ~ 6 GeV/c
- Experimental challenge: Subtraction of decay photon background

Schematic Photon Spectrum in A+A

- Thermal photons expected to be significant contribution below p_T ~ 3 GeV/c
- Hard photons dominant direct photon source for p_T > ~ 6 GeV/c
- Jet-photon conversion might be significant contribution below p_T ~ 6 GeV/c
- Experimental challenge: Subtraction of decay photon background

Direct Photons in A+A: Realistic Calculation

Turbide, Rapp, Gale, Phys. Rev. C 69 (014902), 2004

Window for thermal photons from QGP in this calculation: $p_T = 1 - 3 \text{ GeV}/c$

Photon Rates in HG and QGP

- Final thermal photon spectrum: QGP and HG photon rates convoluted with space-time evolution of the reaction
- Very similar thermal photon rates for QGP and hadron gas at same temperature T

QGP rates:Arnold, Moore, Yaffe (2001)HG rates:Turbide, Rapp, Gale (2004)

Measurement of Direct Photons in A+A Collisions
Measurement of Direct Photons with the Subtraction Method

- Get clean inclusive photon sample
- Measure p_T spectrum of π⁰ and η mesons with high accuracy
- Calculate number of decay photons per π^0
 - Done with Monte-Carlo
 - $m_{\rm T}$ scaling for (η), η ', ω , ...
- Finally:
 - Subtract decay background from inclusive photon spectrum

Pocket formula:

$$\frac{1}{p_{\rm T}} \frac{dN_{\pi^0}}{dp_{\rm T}} \propto 1/p_{\rm T}^{n}$$

$$\Rightarrow \frac{\gamma_{\pi^0}^{\rm decay}}{\pi^0} = \frac{2}{n-1} \approx 0.28 \text{ at RHIC}$$

$$\gamma_{\rm direct} = \gamma_{\rm inclusive} - \gamma_{\rm decay}$$

Measurement of Direct Photons with the Subtraction Method

- Get clean inclusive photon sample
- Measure p_T spectrum of π⁰ and η mesons with high accuracy
- Calculate number of decay photons per π^0
 - Done with Monte-Carlo
 - m_{T} scaling for (η), η ', ω , ...
- Finally:
 - Subtract decay background from inclusive photon spectrum

Pocket formula:

$$\frac{1}{p_{\rm T}} \frac{dN_{\pi^0}}{dp_{\rm T}} \propto 1/p_{\rm T}^{n}$$

$$\Rightarrow \frac{\gamma_{\pi^0}^{\rm decay}}{\pi^0} = \frac{2}{n-1} \approx 0.28 \text{ at RHIC}$$

 $\gamma_{\rm direct} = \gamma_{\rm inclusive} - \gamma_{\rm decay}$

Direct Photons: Statistical Subtraction Method

$$\pi^{0} \rightarrow \gamma + \gamma, \ \eta \rightarrow \gamma + \gamma, \ \dots$$

$$\gamma_{\text{direct}} = \gamma_{\text{inclusive}} - \gamma_{\text{backgr}} = \left(1 - \frac{\gamma_{\text{backgr}}/\pi^{0}}{\gamma_{\text{inclusive}}/\pi^{0}}\right) \cdot \gamma_{\text{inclusive}}$$

$$= \left(1 - 1/R\right) \cdot \gamma_{\text{inclusive}}$$
with
$$R = \frac{\gamma_{\text{inclusive}}}{\gamma_{\text{backgr}}} = 1 + \frac{\gamma_{\text{direct}}}{\gamma_{\text{backgr}}} = \frac{\gamma_{\text{inclusive}}/\pi^{0}}{(\gamma_{\text{backgr}}/\pi^{0})_{\text{calc}}}$$

$$\frac{\text{Calculated based on}}{\sum_{\text{measured }\pi^{0} \text{ and }\eta \text{ spectrum}}} \sum_{\substack{\text{(includes }\omega, \eta', \dots \text{ decays)}}} \sum_{\substack{\text{(includes }\omega, \eta', \dots \text{ decays})}} \gamma_{\text{backgr}} = 1 + \gamma_{\text{backgr}}$$

Pocket Formula for Decay Photons

Decay photon p_T distribution for $\pi^{0'}$ s with a given trans. momentum

$$g(p_{T,p_{T,\pi^{0}}}) \approx \begin{cases} 2/p_{T,\pi^{0}}, & p_{T} < p_{T,\pi^{0}} \\ 0, & \text{else} \end{cases}$$

For
$$\frac{1}{p_T} \frac{\mathrm{d}N_{\pi^0}}{\mathrm{d}p_T} \propto p_T^{-n}$$
:

$$\frac{\gamma_{\text{decay}-\pi^{0}}}{\pi^{0}}\Big|_{p_{T}} = \frac{\int\limits_{p_{T}}^{\infty} g(p_{T}, p_{T,\pi^{0}}) \frac{\mathrm{d}N_{\pi^{0}}}{\mathrm{d}p_{T,\pi^{0}}} \,\mathrm{d}p_{T,\pi^{0}}}{p_{T}^{-n+1}} = \frac{2 \cdot \int\limits_{p_{T}}^{\infty} p_{T,\pi^{0}}^{-n} \,\mathrm{d}p_{T,\pi^{0}}}{p_{T}^{-n+1}} = \frac{2}{n-1}$$

Decay Photon Calculation

- Simple Monte Carlo code
- Pure kinematics (no detector simulation needed)
- ~96% of the background photons from π⁰ and η decays

Background Photons from $K_s^{\ 0} \rightarrow \pi^0 + \pi^0$

36 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

$$\frac{1}{2\pi p_{\rm T}N_{\rm in}} \frac{{\rm d}^2 N_{\rm \gamma}}{{\rm d}p_{\rm T} {\rm d}y} \bigg|_{\rm incl} = \frac{1}{2\pi p_{\rm T}N_{\rm in}} \cdot \frac{(1-X_{\rm n\bar{n}}) \cdot (1-X_{\rm ch})}{\varepsilon_{\rm \gamma} \cdot a_{\rm \gamma} \cdot c_{\rm conv}} \cdot \frac{\Delta N_{\rm cluster}}{\Delta p_{\rm T} \Delta y},$$

Charged Background: **X**_{ch}

- X_{ch} > 0 at high p_T largely due to photon conversion
- Artificial decay photon-charged hit (PC3) correlations at high p_T:

final correction

Charged Background: **X**_{ch}

- X_{ch} > 0 at high p_T largely due to photon conversion
- Artificial decay photon-charged hit (PC3) correlations at high p_T:

Charged Background: **X**_{ch}

Neutral Background: X_{nn}

- Background from neutrons and antineutrons needs to be simulated (GEANT)
- Input neutron and anti-neutron spectra "determined" from measured proton and anti-proton spectra

$$\begin{aligned} \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}\Big|_{\bar{\mathrm{n}}} &= \left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\bar{\mathrm{p}}}, \\ \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}\Big|_{\mathrm{n}} &= \left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\bar{\mathrm{p}}} + \left(\left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\mathrm{p}} - \left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\bar{\mathrm{p}}} \right) \frac{A - Z}{Z} \end{aligned}$$

Result: Double Ratio

Multiply Inclusive Photon Spectrum by the double ratio to obtain directphoton spectrum (and add sys. errors of the inclusive photon spectrum which cancelled in the double ratio)

Systematic Uncertainties of the Subtraction Method

[talk by Andreas Arend]

- π^0 measurement
 - Peak extraction
 - Yield correction (acceptance + efficiency)
 - Energy scale
- Inclusive photon measurement
 - Non-photon background
 - Yield correction (acceptance + efficiency)
 - Energy scale

Systematic Uncertainties of the Subtraction Method

[talk by Andreas Arend]

- π^0 measurement
 - Peak extraction
 - Yield correction (acceptance + efficiency)
 - Energy scale
- Inclusive photon measurement
 - Non-photon background
 - Yield correction (acceptance + efficiency)
 - Energy scale

Non-linearity in the ÈM calorimeter is also crucial. It is vital, for instance, that two 3 GeV photons have the identical response as one 6 GeV photon.

Systematic Uncertainties of the Subtraction Method

[talk by Andreas Arend]

- π^0 measurement
 - Peak extraction
 - Yield correction (acceptance + efficiency)
 - Energy scale
- Inclusive photon measurement
 - Non-photon background
 - Yield correction (acceptance + efficiency)
 - Energy scale

Many systematic uncertainties of π^0 and photon measurements are highly correlated!

Non-linearity in the EM calorimeter is also crucial. It is vital, for instance, that two 3 GeV photons have the identical response as one 6 GeV photon.

Systematic Uncertainties (Example: PHENIX, Run-2 Au+Au)

	PbGl		PbSc	
π^0 error source	$3.25{ m GeV}/c$	$8.5{\rm GeV}/c$	$3.25{ m GeV}/c$	$8.5{ m GeV}/c$
Yield extraction	8.7%	7%	9.8%	7.2%
Yield correction	12%	12%	12%	13.3%
Energy scale	13.8%	14.1%	10.5%	11.4%
Total systematic	20.3%	19.5%	18.8%	19%
Statistical	10.6%	32.5%	3%	13.1%
γ error source				
Non- γ correction	2.4%	2.4%	3.2%	3.2%
Yield correction	10.2%	12.0%	10.4%	12.3%
Energy scale	15.7%	13.7%	12.4%	10.8%
Total systematic	18.9%	18.4%	16.5%	16.7%
Statistical	1.2%	14.1%	0.7%	7.9%
γ/π^0 syst.	10.4%	10.4%	10.6%	10.6%
γ/π^0 stat.	10.7%	37.7%	3%	16.5%

Systematic Uncertainties (Example: PHENIX, Run-2 Au+Au)

	PbGl		PbSc	
π^0 error source	$3.25{ m GeV}/c$	$8.5{\rm GeV}/c$	$3.25{ m GeV}/c$	$8.5{\rm GeV}/c$
Yield extraction	8.7%	7%	9.8%	7.2%
Yield correction	12%	12%	12%	13.3%
Energy scale	13.8%	14.1%	10.5%	11.4%
Total systematic	20.3%	19.5%	18.8%	19%
Statistical	10.6%	32.5%	3%	13.1%
γ error source		_		• •
Non- γ correction	2.4%	2.4%	reating photon	and π°
Yield correction	10.2%	12.0% w	ould yield a 28	% systematic
Energy scale	15.7%	13.7% <mark>u</mark>	n certainty for γ	$/\pi^0$
Total systematic	18.9%	18.4%	16.5%	16.7%
Statistical	1.2%	14.1%	0.7%	7.9%
γ/π^0 syst.	10.4%	10.4%	10.6%	10.6%
γ/π^0 stat.	10.7%	37.7%	3%	16.5%

Measuring Photons via Conversions

ALICE: photon conversion probability ~ 8% up to the middle of the TPC

Advantage of the conversion method: Better resolution and higher purity of the photon sample at low p_T

43 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Direct Photon Measurement via $\gamma\gamma$ -HBT

Background effects

- Two-photon correlations observed and attributed to Bose-Einstein correlations
- Direct photon yield extracted from correlation strength:

$$C_2(Q_{\rm inv}) = A[1 + \lambda_{\rm inv} \exp(-R_{\rm inv}^2 Q_{\rm inv}^2)]$$

$$N_{\gamma}^{\text{direct}}/N_{\gamma}^{\text{total}} = \sqrt{2\lambda} = \sqrt{8\lambda_{\text{inv}}K_TR_O}/\sqrt{\pi}\operatorname{Erf}(2K_TR_O)$$

WA98, Phys. Rev. Lett. 93 (022301), 2004

Direct Photon Measurement via $\gamma\gamma$ -HBT

- Two-photon correlations observed and attributed to Bose-Einstein correlations
- Direct photon yield extracted from correlation strength:

$$C_2(Q_{\rm inv}) = A[1 + \lambda_{\rm inv} \exp(-R_{\rm inv}^2 Q_{\rm inv}^2)]$$

$$N_{\gamma}^{\text{direct}}/N_{\gamma}^{\text{total}} = \sqrt{2\lambda} = \sqrt{8\lambda_{\text{inv}}K_TR_O}/\sqrt{\pi}\operatorname{Erf}(2K_TR_O)$$

WA98, Phys. Rev. Lett. 93 (022301), 2004

Results on Direct Photon Production in A+A Collisions (Measured With Real Photons)

Early CERN SPS Results: Upper Limits

		alrect	аскугоина
Experiment	<i>р</i> _т (GeV/ с)	System	Upper limit
HELIOS 2 ¹	0.1 – 1.5	p-W, O-W, S-W	13%
WA80 ²	0.4 – 2.8	O-Au	15%
CERES ³	0.4 – 2.0	S-Au	14%
WA80 ⁴	0.5 – 2.5	S-Au	12.5%

on γ

 \mathbf{N}

1.Z.Phys.C46:369-376,1990 2.Z.Phys.C51:1-10,1991 3.Z.Phys.C71:571-578,1996 4.Phys.Rev.Lett.76:3506-3509,1996

Early fixed target experiments at the CERN SPS only gave upper limits

WA98 Experiment

WA98 Result on Direct Photons

- No signal within errors in peripheral collisions
- 20% direct photon excess at high p_T in central Pb+Pb collisions at CERN SPS

Phys.Rev.Lett.85:3595-3599,2000

WA98 Direct Photon Spectrum: Hard Scattering + Nuclear k_T Broadening ?

- Better p+p and p+A measurement desirable
- Very unlikely that Pb+Pb spectrum is just hard scattering

Cronin-effect: Multiple soft scattering in p+A prior to hard scattering ("nuclear k_T ")

WA98 Direct Photon Spectrum: Hard Scattering + Nuclear k_T Broadening ?

- Better p+p and p+A measurement desirable
- Very unlikely that Pb+Pb spectrum is just hard scattering

Cronin-effect: Multiple soft scattering in p+A prior to hard scattering ("nuclear k_T ")

WA98 Direct Photon Spectrum: Hard Scattering + Nuclear k_T Broadening ?

- Better p+p and p+A measurement desirable
- Very unlikely that Pb+Pb spectrum is just hard scattering

Cronin-effect: Multiple soft scattering in p+A prior to hard scattering ("nuclear k_T ")

Interpretation of the WA98 Data

Interplay between T ad k_T , contribution from QGP small

Direct Photons at CERN SPS: T or k_T ?

51 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Direct Photons at CERN SPS: T or k_T ?

Direct Photons at CERN SPS: T or k_T ?

QGP + HG rates convoluted with simple fireball model plus pQCD hard photons
Direct Photons at CERN SPS: T or k_T ?

 QGP + HG rates convoluted with simple fireball model plus pQCD hard photons

51 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Direct Photons at CERN SPS: T or k_T ?

- QGP + HG rates convoluted with simple fireball model plus pQCD hard photons
- Data described with initial
 temperature T_i = 205 MeV
 + some nuclear k_T broadening
 (Cronin-effect)

51 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Direct Photons at CERN SPS: T or k_T ?

- QGP + HG rates convoluted with simple fireball model plus pQCD hard photons
- Data described with initial temperature T_i = 205 MeV + some nuclear k_T broadening (Cronin-effect)
- Data also described without
 k_T broadening but with high initial
 temperature
 - $(T_i = 270 \text{ MeV})$

51 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

WA98: New low- p_T Points

Two-photon correlations

 observed and attributed to
 Bose-Einstein correlations of
 direct photons

- Correlation strength used to extract direct photon signal at low p_T
- Possible explanation:
 photon bremsstrahlung from
 hot hadron gas
 (Lui, Rapp, nucl-th/0604031)

WA98, Phys. Rev. Lett. 93 (022301), 2004

WA98: New low- p_T Points

Two-photon correlations observed and attributed to Bose-Einstein correlations of direct photons

- Correlation strength used to extract direct photon signal at low p_T
- Possible explanation:
 photon bremsstrahlung from
 hot hadron gas
 (Lui, Rapp, nucl-th/0604031)

WA98, Phys. Rev. Lett. 93 (022301), 2004

Direct Photons at CERN SPS: Conclusions

Data can be described under a variety of different assumptions, e.g.:

Turbide, Rapp, Gale (Phys.Rev.C69:014903,2004)	QGP + HG + pQCD with <i>k</i> _T	$T_i = 205 \text{ MeV},$ $\tau_0 = 1 \text{ fm/c}$
	QGP + HG + pQCD without <i>k</i> _T	T _i = 250 - 270 MeV, τ ₀ = 0,5 fm/ <i>c</i>
Renk (Phys.Rev.C67:064901,2003)	QGP + HG + pQCD	250 < <i>T</i> _i < 370 MeV, 0,5 < τ ₀ < 3 fm/ <i>c</i>
Svrivastava (nucl-th/0411041)	QGP + HG + pQCC (Bjorken hydro)	$T_i = 335 \text{ MeV},$ $\tau_0 = 0,2 \text{ fm/c}$
Huovinen, Ruuskanen, Räsänen (Nucl. Phys. A 650 (227) 1999)	QGP + HG + pQCD (Non-boost inv. hydro)	<i>T</i> _i = 214 - 255 MeV
	Pure HG + pQCD (Non-boost inv. hydro)	<i>T</i> _i = 213 - 234 MeV

- Data consistent with QGP picture, but also with pure HG picture
- Large variations in extracted initial temperature T_i
 (however, most models give T_i > T_c)

PHENIX: Photon and Electron Detectors

Pseudorapidity coverage : $|\eta| < 0.35$

- EMCal: PbSc (6 sectors) + PbGl (2 sectors)
- PbSc :
 - Highly segmented lead scintillator sampling calorimeter
 - Module size:
 5.5 cm x 5.5 cm x 37 cm
- PbGI:
 - Highly segmented lead glass Cherenkov calorimeter
 - Module size:
 4.0 cm x 4.0 cm x 40 cm
- Ring Imaging Cherenkov Detector (RICH):
 - Electron identification (together with E/p matching in EMCal)
 - No signal for charged pions with p < 4.6 GeV/c

How Do We Measure Direct Photons in PHENIX?

• Low p_T :

Virtual photons ($\gamma^* \rightarrow e^+e^-$) with RICH (internal conversion)

Assumption:
$$\frac{\gamma_{\text{direct}}}{\gamma_{\text{inclusive}}} = \frac{\gamma_{\text{direct}}^{*}}{\gamma_{\text{inclusive}}^{*}}\Big|_{m_{ee} < 30 \text{ MeV}}$$

55 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

⁵⁶ K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

56 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

⁵⁶ K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

⁵⁶ K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Centrality Dependence of the Direct Photon and $\pi^0 R_{AA}$ in Au+Au Collisions at 200 GeV

Direct photons follow *T*_{AB} scaling

Direct-Photon Production in p+p at \sqrt{s} = 200 GeV

- Direct-photon data in p+p at
 Vs = 200 GeV consistent with
 NLO pQCD
- No need for additional
 k_T broadening

$$R_{AA} = \frac{\mathrm{d}N/\mathrm{d}p_T(A+A)}{\langle T_{AA} \rangle \times \mathrm{d}\sigma/\mathrm{d}p_T(p+p)}$$

$$R_{AA} = \frac{\mathrm{d}N/\mathrm{d}p_T(A+A)}{\langle T_{AA} \rangle \times \mathrm{d}\sigma/\mathrm{d}p_T(p+p)}$$

Hadrons are suppressed whereas direct photons are not: Evidence for parton energy loss (as expected in the QGP)

pQCD: Bremsstrahlung/Fragmentation Component

- Bremsstrahlung/fragmentation contribution large
- Suppression of bremsstrahlung/fragmentation contribution expected in A+A

pQCD: Bremsstrahlung/Fragmentation Component

- Bremsstrahlung/fragmentation contribution large
- Suppression of bremsstrahlung/fragmentation contribution expected in A+A

pQCD: Bremsstrahlung/Fragmentation Component

- Bremsstrahlung/fragmentation contribution large
- Suppression of bremsstrahlung/fragmentation contribution expected in A+A

Effect of Parton Energy Loss

20-30% reduction of direct photon R_{AA} expected due to parton energy loss

Consistent with PHENIX data

The Puzzle of the Preliminary Direct Photon R_{AA} at high p_T (PHENIX, Run 4 Au+Au data)

Interpretation of the Direct-Photon Spectrum at RHIC $(p_T > 4 \text{ GeV}/c)$ (I)

Indication for relevance of photons from jet-plasma interactions for $p_T < 6 \text{ GeV}/c$?

Interpretation of the Direct-Photon Spectrum at RHIC $(p_T > 4 \text{ GeV}/c)$ (II)

Interpretation of the Direct-Photon Spectrum at RHIC $(p_T > 4 \text{ GeV}/c)$ (III)

Pb+Pb at the LHC: Test of *T_{AA}* Scaling With Prompt Photons (and Z Bosons)

γ-Triggered Away-Side Correlations: Basic Idea

Wang, Huang, Phys.Rev.C55:3047-3061,1997

67 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

p+p:

(Effective) jet fragmentation functions can be extracted from γ hadron azimuthal correlations (modulo initial k_T effect)

• A+A:

Modification of fragmentation function provides information on parton energy loss

Variables:

$$z_T = \frac{p_T^n}{p_T^{\gamma}}$$

$$D(z_T) = \frac{1}{N_{\text{trig}}} \frac{dN(z_T)}{dz_T}$$

γ-Triggered Away-side Correlations: Jet Fragmentation Function in p+p and Au+Au

Fit effective FF's with

$$\frac{\mathrm{d}N}{\mathrm{d}z_T} = N e^{-bz_T}$$

- p+p: b = 6.89 ± 0.64
- Au+Au: b = 9.49 ±1.37
- Difference reflects influence of the medium

γ-Triggered Away-side Correlations: Results

NLO calculation: Zhang et al. (ZOWW), arXiv:0902.4000v1

69 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

The Internal Conversion Method

70 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Direct Photons via Internal Conversion

Motivation:

Measure where thermal photons are expected and calorimetric measurements are difficult

- Internal conversion
 - Any source of real photons also emits virtual photons
 - Well known example:

$$\pi^{0}$$
 Dalitz decay $\gamma^{*} \qquad e^{-}$
 $\gamma \sim \pi^{0} \sim e^{+}$

- Rate and m_{ee} distribution calculable in QED (Kroll-Wada formula)
- Hadron decays: m_{ee} < M_{hadron}
- Essentially no such limit for point-like processes

Improve signal-to-background ratio by measuring e⁺e⁻ pairs with $m_{ee} > \sim M_{pion}$

Kroll-Wada Formula

Number of virtual photons per real photon (in a given $\Delta\eta \ \Delta\phi \ \Delta p_T$ interval):

Hadron

decay:

$$\frac{1}{N_{\gamma}} \frac{\mathrm{d}N_{ee}}{\mathrm{d}m_{ee}} = \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right) S$$

Point-like process:

$$S \approx 1$$

(for $p_{T}^{ee} \gg m_{ee}$)

 $\frac{1/N\gamma \, dN_{ee}/dm_{ee} \, (\text{MeV}^{-1})}{\text{Direct photon}}$

 $S = |F(m_{ee}^2)|^2 (1 - \frac{m_{ee}^2}{M_h^2})^3$
form factor

About 0.001 virtual photons with $m_{ee} > M_{pion}$ for every real photon

 → Avoid the π⁰ background at the expense of a factor 1000 in statistics

72 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction
Extraction of the Direct Photon Signal: Two-Component Fit

- Interpret deviation from hadronic cocktail (π, η, ω, η', φ) as signal from virtual direct photons
- Extract fraction r with twocomponent fit

$$\tau = \left. rac{oldsymbol{\gamma}^*_{ ext{direct}}}{oldsymbol{\gamma}^*_{ ext{inclusive}}}
ight|_{ ext{mee} < 30 \, ext{MeV}}$$

 Fit yields good χ²/NDF (13.8 / 10)

r

Direct Photon Fraction in p+p and Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

PHENIX, Phys.Rev.Lett. 104 (2010) 132301, (arXiv:0804.4168)

- Lowest p_T ever measured
 in p+p
- Comparison to NLO pQCD (colored lines)
- p+p: Agreement
- Au+Au:

Strong enhancement at low p_{T}

Comparison Between the Internal Conversion Method and the Calorimeter Measurement

Low p_T Direct Photon Excess at RHIC: A Handle to Measure the Temperature of the QGP

⁷⁶ K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

p+p: spectrum described with

 $f_{p+p}(p_T) = A \cdot (1 + p_T^2 / b)^{-n}$

Au+Au:

Enhancement above p+p described by an exponential (as expected for a thermal source)

$$f_{Au+Au}(p_T) = \frac{N_{\text{coll}}}{\sigma_{\text{NN}}^{\text{inel}}} \times f_{p+p}(p_T) + B \times e^{-\frac{p_T}{T}}$$

Slope parameter (0-20%):
 T = (221 ± 23 ± 18) MeV

Expected to be a lower limit for the initial temperature!

Low p_T Direct Photon Excess at RHIC: A Handle to Measure the Temperature of the QGP

⁷⁶ K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

p+p: spectrum described with

$$f_{p+p}(p_T) = A \cdot (1 + p_T^2 / b)^{-n}$$

Au+Au:

Enhancement above p+p described by an exponential (as expected for a thermal source)

$$f_{Au+Au}(p_T) = \frac{N_{\text{coll}}}{\sigma_{\text{NN}}^{\text{inel}}} \times f_{p+p}(p_T) + B \times e^{-\frac{p_T}{T}}$$

Slope parameter (0-20%):
 T = (221 ± 23 ± 18) MeV

Expected to be a lower limit for the initial temperature!

Critical d+Au Check: No exponential excess in d+Au

Model Comparison

C. Gale, arXiv:0904.2184v1

Similar conclusions for essentially all hydro models on the market

- Model space-time evolution with ideal hydro
- This calculation (arXiv:0904.2184v1)
 - Hydro starts early

 (τ₀ = 0.2 fm/c) to take preequilibrium photons into account
 - Thermal equilibrium expected at τ₀ = 0.6 fm/c (T_{initial} = 340 MeV)
 - Photons from jet-plasma interaction needed

 $T_{\text{initial}} > T_{\text{c}} \approx 170 - 190 \text{ MeV}$ \rightarrow evidence for the formation of a quark-gluon plasma

PHENIX Low p_T Direct Photon Data:

Comparison with Different Hydro Models

Initial temperature above T_c in all models

Direct Photon Flow

Direct photon v_2 further constrains T_i

Significant Elliptic Flow of Direct Photons Found in Au+Au at 200 GeV for $p_T < 3$ GeV/c

⁸² K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Direct Photon v_2 at $p_T = 2 \text{ GeV}/c$ as larger as for Pions

Theory Comparison: A Big Puzzle (!?)

Theory calculation: Holopainen, Räsänen, Eskola arXiv:1104.5371v1 Hendrik van Hees, Charles Gale, Ralf Rapp, Phys.Rev. C84 (2011) 054906

Slope of low p_T direct photons spectrum points to early emission, v_2 suggests late emission from mixed/hadronic phase

K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Expected Thermal Photon Signal (from ALICE Physics Performance Report II)

Stay tuned for low *p*_T direct-photon data from the LHC!

Extra Slides

86 K. Reygers, Direct Photons in p+p and A+A Collisions: A Short Introduction

Photons escape the medium unscathed

High *p*_T photons

 \Rightarrow

- test hard scattering predictions
- measure rate of hard processes

Control Measurement

Low *p*_T photons

- reflect the initial temperature of the thermalized fireball $(T_i > T_c \Rightarrow QGP)$
- could indicate jet-plasma interactions

Thermometer

- Real photons with electromagnetic calorimeters
- Virtual photons (γ*→e+e-) with Ring Imaging Cherenkov

- Real photons with electromagnetic calorimeters
- Virtual photons (γ*→e+e-) with Ring Imaging Cherenkov

- Real photons with electromagnetic calorimeters
- Virtual photons (γ*→e⁺e⁻) with Ring Imaging Cherenkov

- Real photons with electromagnetic calorimeters
- Virtual photons (γ*→e+e-) with Ring Imaging Cherenkov

- Real photons with electromagnetic calorimeters
- Virtual photons (γ*→e+e-) with Ring Imaging Cherenkov

- Subtraction method at low p_{T} largely limited by uncertainty of π^0 measurement:
- Energy Scale
- Reconstruction Efficiency
- Peak Extraktion

Peak Extraktion

Peak Extraktion