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Abstract. We show that the implementation of the 1/c2 transverse current–current interaction between
electrons resulting from the non-relativistic QED into the standard self-consistent electron BCS model in
bulk under thermal equilibrium in the stable superconductive phase ensures the full compensation of a
constant external magnetic field by the internal magnetic field created by the electrons, i.e. one has an
ideal diamagnet.

1 Introduction

Since its discovery by Kamerling-Onnes [1] at the begin-
ning of the twentieth century superconductivity became
a particularly important field of physics with wide tech-
nical applications. The identification of superconduc-
tors as perfect diamagnets, i.e. the Meissner effect [2]
was discovered in the thirties and was soon followed
by the beautiful phenomenological electromagnetic the-
ory of London [3,4]. The fundamental theoretical break-
through however is due to Bardeen, Cooper and Schrief-
fer [5]. They have shown that the origin of the supercon-
ductive phase transition lies in the correlation between
electrons of opposite momenta and spin resulted from
phonon exchange. While the most important and strik-
ing feature is the absence of resistance below a crit-
ical temperature, there is no deep understanding of
it. Within the present unsatisfactory status of non-
equilibrium statistical mechanics irreversibility (dissi-
pation) is introduced “by hand”, although there are
significant recent progresses in understanding the treat-
ment of open systems [6,7]. Therefore, the understand-
ing at least of the equilibrium properties is a central
point. The most important in this respect is the theory
of the Meissner effect to which we devote our discussion.

The standard modeling of the BCS idea within self-
consistent electron theories [8–10] offered no convincing
results for the Meissner effect. The failure is due to the
incorrect implementation of electromagnetism. Stan-
dard condensed matter theory includes just Coulomb
interactions of charged particles. This offers no basis
for the treatment of magnetic phenomena. One had to
introduce magnetic interaction between localized spins
to understand ferro-magnetism. The (dia)-magnetism
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resulted form the electronic currents remained still
ignored. However, at least on the mean-field level this
could be corrected by the introduction of the average
internal magnetic field based on physical intuition (see
[11]).

Starting from the non-relativistic quantum electrody-
namics a current–current magnetic interaction may be
derived [12,13]. We show in this paper that its inclusion
improves the standard bulk mean field theory explain-
ing within this frame the perfect diamagnetism. In this
sense we contradict our recent skepticism [13].

2 The standard theory of the Meissner
effect in bulk

The revelation of BCS that the source of supercon-
ductivity lies in the correlation of electrons of oppo-
site momenta and spin due to interaction with phonons
was decisive for the theory. However, to pursue this idea
within the many-body theory including phonons seems
difficult. Therefore, one tried to construct pure electron
many-body theories with a built-in “potential” giving
rise to such correlations and implicitly to a supercon-
ducting phase transition.
Such a model Hamiltonian is due to Rickayzen [8,9]
that we describe here. Its advantage is the explicit
coordinate-space formulation. The specific version of
Bogolyubov-de Gennes [10] is included in this frame.

Since one is concentrated on equilibrium properties
in a μ-system one considers H ≡ H −μN instead of the
Hamiltonian H . This is compulsory if one wants to treat
phase transitions like Bose condensation or supercon-
ductivity breaking particle fermion number conserva-
tion. Rickayzen introduces besides the kinetic energy in
the presence of classical time-independent given vector
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A(x) and scalar φ(x) potentials, an electron–electron
interaction by a “correlating” potential W (x), that pro-
duces no bound states, but gives rise to correlations of
BCS type. The second quantized wave functions of the
electrons ψσ(x) and ψ+

σ (x) obey the usual fermionic
anti-commuting rules, while the field A(x) is a classical
one and the operator H (in the absence of an external
scalar potential is defined as

H ≡ H − μN

=
∑

σ=± 1
2

∫
dxψ+

σ (x)
{

1
2m

(
−ı�∇ − e

c
A(x)

)2

−μ

}
ψσ(x) +

1
2

∫
dx

∫
dx′W (x − x′)

×
[
ψ+

1
2
(x)ψ+

− 1
2
(x′)ψ 1

2
(x′)ψ− 1

2
(x) + h.c.

]
. (1)

This Hamiltonian is invariant against time-independent
gauge transformations of the vector potential A(x).
We shall keep the discussion in a rather general frame
without choosing a definite potential W (x) and ignore
the Coulomb interactions (including a positive back-
ground) since they play no role in the next steps to
follow. Further, one resorts to a self-consistent Hartree–
Fock approximation including anomalous averages like
〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉.

Then, the self-consistent Hamiltonian is

Hs.c. =
∑

σ=± 1
2

∫
dxψ+

σ (x)
{

1
2m

(
−ı�∇ − e

c
A(x)

)2

−μ

}
ψσ(x) + 1

2

∫
dx

∫
dx′W (x − x′)

×
[
〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉ψ− 1

2
(x′)ψ 1

2
(x)

+ 〈ψ− 1
2
(x′)ψ 1

2
(x)〉ψ+

1
2
(x)ψ+

− 1
2
(x′)

−〈ψ+
1
2
(x)ψ+

− 1
2
(x′)〉〈ψ− 1

2
(x′)ψ 1

2
(x)〉

]
. (2)

One can show within this frame, that in the absence
of the field A(x) a phase transition may occur below
a critical temperature, provided the potential W (x)
ensures a non-vanishing solution for the symmetry
breaking gap parameter (Δ(k) �= 0) of the largely
described “gap equation” we do not give here. This con-
dition is equivalent to the vanishing of the first deriva-
tive of the free energy with respect to Δ(k).

The next step is to use equilibrium linear response
theory to get the relationship between the average
〈j(x)〉 of the current density operator

j(x) ≡ e

2m
ψ+(x)

(
−ı�∇ +

e

c
A(x)

)
ψ(x′) + h.c. (3)

and the weak vector potential A in the Coulomb gauge
∇A(x) = 0 andφ(x) = 0.

A peculiarity of the linear response within self-
consistent theories is that the deviation of the aver-

ages from their equilibrium values constitute so called
induced perturbations. This means, that the true per-
turbation (to first order in A) is

H′
s.c. = − 1

c

∫
dxj(x)A(x) +

∫
dx

∫
dx′W (x − x′)

×
[
η(x, x′)ψ− 1

2
(x′)ψ 1

2
(x) + h.c.

]
(4)

with

η(x,x′) ≡ 〈ψ+
1
2
(x)ψ+

− 1
2
(x′)〉 − 〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉0 (5)

being the deviations of the anomalous averages from
their values in the absence of the field A. The resulting
linear relationship between the Fourier transforms of
the two transverse vectors reads as

〈j̃μ(k)〉 = κ(k)Ãμ(k); (μ = 1, 2, 3), (6)

with the scalar coefficient κ(k) in an infinite homoge-
neous, isotropic system being a function of k =

√
k2.

Its explicit expression for any k was calculated explic-
itly [8] by neglecting the induced perturbations.

One is interested in this relationship only for small
wave vectors (slowly varying behavior in the coordinate
space!). If in the absence of the perturbation one had an
anomalous superconducting phase with a non-vanishing
gap Δ(k) at k = 0 one gets (without induced pertur-
bations [8]) that κ(0) is finite and strictly negative

κ(0) = − 1
cΛ

< 0. (7)

The same result is described in the frame of the anoma-
lous Green functions, under similar approximations by
Schrieffer [14].

It may be shown however [15], that under the condi-
tion of stability of the superconducting phase (which
amounts to a non-negative second derivative of the
free energy with respect to the gap parameter Δ(k) at
k = 0) Λ is indeed positive and the contribution pro-
duced by η(x, x′) does not change Rickayzen’s result.
For k �= 0 no sound results are available, since it
requires the full calculation considering the induced
perturbation terms.

So far, the calculations are OK. The problem resides
in the interpretation of these results. According to the
old interpretation (see [16]) Eqs. 6, 7 have to be com-
pared to the second London equation that reads as

∇ × i = − 1
cΛ

B or i = − 1
cΛ

A,

with i(x) being the macroscopic super-current density
and A(x) the total macroscopic field in the supercon-
ductor. Thus the Meissner effect would be explained
within this model Hamiltonian. Moreover, the parame-
ter Λ might be interpreted as the London penetration
length.
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Unfortunately, such a reasoning is misleading for sev-
eral reasons. If Meissner effect occurs, the total mag-
netic field B as well as the super-current are identically
null in the bulk whenever the source of the external
field lies outside the system ! The reference to the Lon-
don equation is based on the assumed behavior of the
kernel κ(k) for k �= 0. (See more in the discussion at the
end of the paper.) We intend to proof something less
ambitious, but implying no further assumptions about
the kernel.

On the other hand, the classical field A in this
model has undefined sources and no magnetic field pro-
duced by the electrons is present at all in this the-
ory. Therefore it cannot be identified with the total
macroscopic magnetic vector potential A. Besides, this
Hamiltonian is invariant with respect to time indepen-
dent gauge transformations and therefore A has to be
identified with the external field. In the frame of the
non-relativistic QED the Hamiltonian is defined in a
fixed gauge, namely in the Coulomb gauge for the quan-
tized (“radiation”) electromagnetic field.

The primary task of the microscopical theory in the
bulk is just to show, that in thermal equilibrium a
homogeneous constant external magnetic field is com-
pensated completely by the internal one produced by
the electrons. Obviously, some ingredients are still miss-
ing. One is at the range of validity of the ordinary quan-
tum mechanics, that takes no magnetic interactions
between the electrons into account. Steps towards the
non-relativistic quantum electrodynamics of charged
particles are compulsory. This criticism of the electro-
magnetic aspects is pertinent also to the Ginzburg–
Landau non-linear theory of superconductivity [17].

3 The current–current interaction and the
theory of superconductivity

Already 100 years ago Darwin [18] has argued in the
frame of the classical electrodynamics of point-like elec-
trons, that up to order 1/c2 one might separate the
motion of the particles from that of the electromag-
netic field. From this separation emerges a magnetic
electronic current–current interaction. Since the classi-
cal electrodynamics of point-like charged particles is a
vicious theory having neither Lagrangian, nor Hamilto-
nian formulation, his derivation lacked any rigor, nev-
ertheless it contains a grain of truth and was consid-
ered later also by Landau and Lifshitz [19]. They have
shown that Darwin implicitly has chosen a certain very
strange non-linear choice of gauge. Such a gauge how-
ever imposes constraints on the velocities of the parti-
cles and therefore no ordinary canonical formalism is
allowed. See in this context Dirac’s theory of canonical
formalism with constraints [20,21].

Actually one needs a new analysis of the problem in
the frame of the non-relativistic QED (see [22,23] for a
modern presentation). A natural choice of the gauge is
here the Coulomb one. Indeed, in this gauge one has to
do only with the two physical degrees of freedom of the
photons and one is free from artificial constraints.

The non-relativistic QED is defined by the Hamilto-
nian (here just for electrons and photons) in the pres-
ence of time-dependent external electric and magnetic
potentials
HQED(t) =

∑

q,λ

�ωqb+q,λbq,λ

+

∫
dxN

[
1

2m

(
ı�∇ψ+(x)

+
e

c
(A⊥(x) +Aext(x, t))ψ+(x)

)

×
(

�

ı
∇ψ(x, t) +

e

c
(A⊥(x) +Aext(x, t)))ψ(x)

)]

+
1

2

∫
dx

∫
dx′ψ+(x)ψ+(x′)

e2

|x − x′|ψ(x
′)ψ(x)

+e

∫
dxVext(x, t)ψ+(x)ψ(x). (8)

with the transverse radiation field being

A⊥(x)=
∑

λ=1,2

√
�c

Ω

∑

q

1√|q|e
(λ)
q e−ıqx

(
bq,λ+b+−q,λ

)
,

(9)

while Aext(x, t) is a classical external vector potential.
The unit vectors e(λ)q are orthogonal to the wave vec-
tor q as well as to each other and according to the
general recipe of second quantization a normal order-
ing N [...] had to be introduced also with respect to the
photon creation and annihilation operators b+q,λ, bq in
the Hamiltonian and the photon frequency is ωq = c|q|.

This non-relativistic QED has been widely used in
the quantum optics of atoms and solids (see a recent
book [24] about).

Although in their basic paper “de Haas-van Alphen
Effect and the Specific Heat of an Electron Gas”, Hol-
stein, Norton and Pincus [25] already have shown, that
the non-relativistic QED current–current interaction is
the basic piece for understanding diamagnetism, their
ideas and proofs are ignored in the treatment of super-
conductivity.

In order to obtain a pure electronic Hamiltonian one
must restrict the discussion to the subspace of states
without photons. A good object to perform such a dis-
cussion is either the S-matrix, or the theory of Green
functions in terms of the Feynman diagrams. As it was
shown recently [12,13] the necessary steps are to neglect
time-retardation in the photon propagator and ignore
the “sea-gull” vertices . This restricts the validity of the
resulting theory to order 1/c2.

The resulting electronic Hamiltonian (here with time-
independent external potentials) is

H =

∫
dxψ+(x)

[(
�

ı
∇ − e

c
Aext(x)

)2

+ Vext(x) − μ

]
ψ(x))

+
1

2

∫
dx

∫
dx′ N [ρ(x)ρ(x′)]

|x − x′|

−1

2

∫
dx

∫
dx′ N [j⊥(x)j⊥(x′)]

c2|x − x′| . (10)
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Here ρ(x) denotes the charge density operator

ρ(x) = eψ+(x)ψ(x), (11)

while j⊥(x) denotes the transverse part of the current
density operator

j(x) =
e

2m

(
ψ+(x)

(
�

ı
∇− e

c
Aext(x)

)
ψ(x) +h.c.

)
.

(12)
It is essential that the kinetic energy contains only the
external magnetic vector potential Aext(x). As we shall
see later, the internal magnetic field is directly gen-
erated by the current densities. The presence of the
covariant derivatives with respect to the external vec-
tor potential ensures the invariance with respect to
time-independent gauge transformations of the exter-
nal fields as it holds in the QED Hamiltonian Eq. 8
defined in the Coulomb gauge for the radiation field.

The current–current term is nothing else but the well-
known Biot–Savart law resulting from the exchange of
transverse photons responsible for magnetic forces. One
may argue that due to the smallness of the velocities
in the condensed matter such an 1/c2 term may be
neglected. This is obviously false. Our everyday expe-
rience teaches us, that a macroscopic number of slow
electrons may create enormous magnetic fields. We shall
show that exactly this term is necessary to complete the
theory of the preceding Section leading to the exact can-
cellation of a total constant magnetic field in the bulk.

Modifying accordingly the Hamiltonian of Eq. 1 and
taking into account the presence of just a time indepen-
dent external field Aext the complete BCS-Hamiltonian
looks now as

Hnew =
∑

σ=± 1
2

∫
dxψ+

σ (x)
{

1
2m

(
−ı�∇ − e

c
Aext(x)

)2

−μ

}
ψσ(x) +

1
2

∫
dx

∫
dx′W (x − x′)

×
[
ψ+

1
2
(x)ψ+

− 1
2
(x′)ψ 1

2
(x′)ψ− 1

2
(x) + h.c.

]

−1
2

∫
dx

∫
dx′ N [j⊥(x)j⊥(x′)]

c2|x − x′| . (13)

Then, within the mean-field approximation of the
current–current term in Eq.13 the modification of Eq.2
is

Hnew
s.c. =

∑

σ=± 1
2

∫
dxψ+

σ (x)
{

1
2m

(
−ı�∇ − e

c
Aext(x)

)2

− μ

}
ψσ(x) +

1
2

∫
dx

∫
dx′W (x − x′)

×
[
〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉ψ− 1

2
(x′)ψ 1

2
(x)

+ 〈ψ− 1
2
(x′)ψ 1

2
(x)〉ψ+

1
2
(x)ψ+

− 1
2
(x′)

−〈ψ+
1
2
(x)ψ+

− 1
2
(x′)〉〈ψ− 1

2
(x′)ψ 1

2
(x)〉

]

−
∫

dx

∫
dx′ j⊥(x)〈j⊥(x′)〉

c2|x − x′| . (14)

In the above expression one may already identify the
internal transverse vector field

Aint(x, t) =
∫

dx′ 〈j⊥(x′, t)〉
c|x − x′| (15)

or in Fourier transform

Ãμ
int(k) =

4π

ck2
〈j̃μ(k)〉. (16)

As before we choose the external vector potential
Aext again to be transverse (∇Aext = 0). Its longi-
tudinal part would have been anyway irrelevant for the
magnetic field Bext = ∇ × Aext. Thus all the vectors
are implicitly transverse an no need to mention it in the
notations.

The terms of first order in Aext differ from those of
the previous approach only by the replacement

jA ⇒ j(Aext + Aint)

in the perturbation Eq. 4. This could have been
obtained also on intuitive physical grounds [11]. How-
ever, it is important to stress, that this replacement
would not be correct overall in the Hamiltonians of Eqs.
1, 2 , but just in the first order terms.

Therefore, due to the new induced term now we get
instead of Eq. 6 with the same previously defined
κ(k) the relationship

〈j̃μ(k)〉 = κ(k)
(
Ãμ

ext(k) + Ãμ
int(k)

)
; (μ = 1, 2, 3).

(17)
Multiplying this equation by 4π

ck2 one recovers on the
left-hand side again the internal field Ãint

μ (k), therefore

Ãμ
int(k) =

4π
ck2 κ(k)

1 − 4π
ck2 κ(k)

Ãμ
ext(k); (μ = 1, 2, 3). (18)

For the internal and external magnetic fields holds sim-
ilarly

B̃μ
int(k) =

4π
ck2 κ(k)

1 − 4π
ck2 κ(k)

B̃μ
ext(k); (μ = 1, 2, 3). (19)

This last equation has been explicitly obtained by
Tinkham [11] as already mentioned and may be also
obtained through Zubarev’s early reasoning [26] based
just on the macroscopic Maxwell equations, without
any reference to a Hamiltonian. He obtains the linear
response to the field B from the known linear response
to the field H.
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Since it was proven already [8,15] that under the con-
dition of a stable superconductive phase κ(0) is finite,
from Eq. 19 follows

B̃μ
int(0) = −B̃μ

ext(0). (20)

This proves that in the frame of this modified s.c.
BCS model in the stable superconductive phase no con-
stant magnetic field in the bulk may survive! (Actu-
ally the vanishing of the constant magnetic field in real
space still needs the easily accepted assumption that a
homogeneous external field induces also a homogeneous
magnetic field in the bulk.) The internal magnetic field
of the electrons compensates fully the applied external
magnetic field. The finite value of the coefficient κ(0)
of Eq. 7 remains the criterion for the Meissner effect
[16], however, without supplementary assumptions and
approximations it cannot be related to the London pen-
etration length and its sign is irrelevant for the proof.

4 Conclusions

By improving the standard bulk model of BCS super-
conductivity in its electromagnetic aspects, we have
proven that in its mean-field approximation, if the
superconductive phase transition is stable, the Meiss-
ner effect results in the sense of the perfect compen-
sation of a constant external magnetic field by the
internal magnetic field i.e. we have an ideal diamagnet.
This confirms the intuitive argumentation of [11] Over
the whole derivation no definite “correlating potential”
W (x) was considered, but just the general require-
ment of the minimum of the free energy with a non-
vanishing gap parameter. Our result implies no sup-
plementary assumptions nor new approximations, but
just the implementation of the ordinary non-relativistic
QED up to order 1/c2.

The true relevance of the Hamiltonians Eqs. 13,14
manifests itself in the non-linear “sea-gull” term e2

2mc2 ψ+

ψA2 , where the replacement of the vector potential A
by the total average vector potential Aext +Aint, defy-
ing simple intuition, would be wrong. Of course, beyond
the mean field approximation and linear response this
aspect must be even more important.

Of course, a microscopic derivation of the London
equations remains highly desirable, but within this bulk
approach it is an almost impossible task. One needs
anyway to consider a specific potential W (x) and cal-
culate the correct linear response for any k includ-
ing also the induced terms. One must consider then
a local external magnetic field embedded in the bulk
(a solenoid). On the other hand, a local relation in the
k-space does not imply a local (or at least an almost
local) relation in the x-space. One might consider alter-
natively the boundary problem (in a half space) with
a homogeneous magnetic external field. Again linear
response in coordinate space without strongly local-
ized correlations leads nowhere. It seems plausible that

one needs one more ingredient, destroying spatial long-
range correlations typical for phase transitions, without
destroying the phase transition itself.

In this context it is useful to remind the situation
with the Debye electric field penetration in a semicon-
ductor. It may be obtained in a model of free classical
electrons with a s.c. potential in equilibrium (Maxwell–
Boltzmann distribution) within the linear approxima-
tion. However, a quantum mechanical derivation within
linear response needs short range correlations in real
space, that the free electron model cannot deliver. Here
also some ingredient is necessary, although it is easier
to imagine one since no phase transition is involved.
Nevertheless, an analogous relation to Eq. 19 may be
derived for the electric field with a non-vanishing ker-
nel at k = 0 showing that in equilibrium no constant
electric field survives in bulk.

To conclude, with the implementation of the current–
current interaction, the standard mean field theory [9]
can explain ideal diamagnetism in bulk, but not yet the
London equation.
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