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Abstract

We extend the standard solid-state quantum mechanical Hamiltonian containing only Coulomb
interactions between the charged particles by inclusion of 1/c2 terms representing (transverse) current-
current interaction. For its derivation we use the classical formulation of Landau-Lifshitz, however
consequently in the Coulomb gauge retaining only the physical degrees of freedom. Our Hamiltonian
does not coincide with the Darwin Hamiltonian. We emphasize the mathematical inconsistency in
the derivation of this last Hamiltonian. We show, that the quantized version of our Hamiltonian is
equivalent to the non-relativistic QED considering only states without photons and retaining only
terms of order 1/c2. The importance of this extended Hamiltonian lies in the possibility to distinguish
external from internal magnetic fields. This aspect may be relevant for theories of the Meissner effect.

1 Introduction

The standard Hamiltonian of solid-state theory considers a system of electrons and ions interacting only
through Coulomb forces. These are of zeroth order in the 1/c expansion. Besides relativistic corrections,
pure electromagnetic interactions contribute already terms of order 1/c2 that might be important. The
first classical Hamiltonian containing such terms was built up by Darwin [1] more than hundred years
ago. Later Landau-Lifshitz [2] re-derived the same result by the choice of a very special gauge.

The interest for this approximation continues until today. We refer to earlier papers cited in the
recent papers of Essen [3] [4]. This author also gave another derivation, instead of the 1/c expansion,
just by neglecting the radiation effects in the Maxwell equations. He underlined also the importance of
1/c2 corrections in its quantum mechanical version for solid state theory, particularly for the theory of
superconductivity, as well as for the inclusion of ultra-relativistic effects. The application into plasma
physics were discussed recently by Krause et al.[5], aimed at the Vlasov equation. It is worth to mention
also a paper by Bessonov [6], who found some strange solutions derived from the Darwin Lagrangian.

The aim of this paper is to derive the correct extension of the solid-state Hamiltonian including terms
of order 1/c2, since as we show, the Darwin Hamiltonian is misleading. Its derivation ignores some
delicate, but essential aspects of the canonical formulation of the electromagnetic theory. We derive
here the proper classical Hamiltonian using Landau-Lifshitz’s [2] way, but with the consequent use of the
Coulomb gauge. The 1/c2 terms we obtain describe a (transverse) current-current interaction very similar
to the density-density interaction of the Coulomb terms. We prove here also that the quantized version of
our Hamiltonian coincides with the 1/c2 approximation of the non-relativistic Quantum Electrodynamics
(QED), restricted to the states without photons. This proves definitely the correctness of our construction.

An important feature of the extended Hamiltonian is the possibility to distinguish the internal and
external magnetic fields. This might be important for a better understanding of superconductivity.
Indeed, ideal diamagnetism (Meissner effect), consist in the compensation of the external magnetic field
by the internal one. However, today’s theories of superconductivity operate within the frame of the
standard Coulomb model of solid state and therefore here the magnetic field is just a self-consistent one.
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2 The classical 1/c2 Hamiltonian in the Coulomb gauge

One can not formulate a Lagrangian theory of classical point-like charged particles interacting with the
electromagnetic field due to the divergent self-interaction.( From the Lorentz force one has to omit the
action of the field created by each charged particle on itself.) This impedes also the derivation of the
appropriate Hamiltonian. Usually, one defines the classical or quantum mechanical theory of charged
particles directly by a Hamiltonian including only Coulomb potentials without self-interacting terms.
Almost one hundred years ago Darwin [1] proposed a closed classical Lagrangian for N point-like charges
ei and mass mi (i, j = 1, . . .N) including terms up to order 1/c2 avoiding self.interaction and derived the
corresponding Hamiltonian

H =
∑

i

mi

2
~pi

2 +
∑

i>j

eiej
|~ri − ~rj |

(1)

−
∑

i>j

eiej
2c2mimj |~ri − ~rj |

[~pi · ~pj + (~pi · ~nij)(~pj · ~nij)] ,

where ~nij ≡
~ri−~rj
|~ri−~rj |

. His derivation is based on the expansion of the Liénard-Wiechert potentials to

second order in 1/c. Jackson [7] in his derivation uses the Coulomb gauge, but is forced to make one
more approximation to get the above result.

Landau-Lifshitz [2] have shown that Eq. 1 actually implies a very unusual choice of gauge, not the

usual Coulomb one. The choice of the gauge is however essential, since the physical magnetic field ~B, as
well as the photon in quantum electrodynamics (QED), have only two transverse degrees of freedom and
only in the Coulomb gauge (often called as the ”physical” or ”unitary” gauge) one is left just with these
two degrees of freedom for the electromagnetic field. The constraint on the vector potential (implied by
Landau-Lifshitz’s choice), after its elimination through the velocities, propagates on the velocities. It is
worth to recall here for example, that in the relativistic QED, in the Lorentz gauge, restrictions on the
allowed physical states have to be imposed to eliminate the longitudinal and temporal photons!

We follow here the way chosen by Landau-Lifshitz [2] to construct a classical Hamiltonian up to
terms of order 1/c2, however not in their choice of gauge, but in the Coulomb one. One starts with the
Lagrangian of a single electron in an external field (here in a non-relativistic approach!) produced by
some external sources ρext and ~iext

L(~r,~̇r) =
m~̇r

2

2
− eφext(~r, t) +

e

c
~Aext(~r, t)~̇r .

In the Coulomb gauge
∇ ~Aext(~r, t) = 0

the potentials are

φ(~r, t)ext =

∫

d~x
ρext(~x, t)

|~r − ~x|
; ~Aext(~r, t) =

∫

d~x
~iext⊥ (~x, t− |~r − ~x|/c)

c|~r − ~x|
,

where ρex(~x, t) is the external charge density, while~iext⊥ (~x, t) is the external transverse (∇~iext⊥ = 0) current
density

~iext⊥ (~x, t) ≡~iext(~x, t) +
1

4π
∇

∫

d~x′
∇′~iext(~x′, t)

|~x− ~x′|
.

As Landau-Lifshitz do it, one has to expand the retarded current density in powers of 1/c, however here
we need only the lowest approximation due to the already existent 1/c factor in the Lagrangian i.e.

~Aext(~r, t) ≈

∫

d~x
~iext⊥ (~x, t)

c|~r − ~x|
.

If the source of the fields is a single point particle of charge e′ at ~x(t) having the velocity ~̇x(t) then

ρext(~x,t) = e′δ(~x− ~x(t)), ~iext(~x, t) = e′~̇x(t)δ(~x− ~x(t)) ,
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with

φext(~r, t) =
e′

|~r − ~x(t)|

and

~Aext(~r, t) =
e′

c

[

~̇x(t)

|~r − ~x(t)|
−

1

4π

∫

d~x
1

|~r − ~x|
∇

(

~̇x(t)∇
1

|~x − ~x(t)|

)

]

.

Therefore the Lagrangian of the electron in the field of the another electron, in this approximation, is

L(~r,~̇r;~x,~̇x) =
mi~̇r

2

2
−

ee′

|~r − ~x(t)|

+
ee′~̇r

c2

[

~̇x(t)

|~r − ~x(t)|
−

1

4π

∫

d~x
1

|~r − ~x|
∇

(

~̇x(t)∇
1

|~x − ~x(t)|

)

]

.

By generalization one obtains for a system of N charged particles the total Lagrange function

L=
∑

i

mi

2
~vi

2 −
∑

i>j

eiej
|~ri − ~rj |

+
∑

i>j

eiej
c2

~vi

[

~vj
|~ri − ~rj |

−
1

4π

∫

d~x
1

|~ri − ~x|
∇

(

~vj∇
1

|~x − ~rj |

)]

.

Generally speaking, one has to use here Dirac’s canonical formalism [8, 9], since due to the velocity
dependent terms, there is a relationship between the canonical momenta, However, to lowest order in 1/c
we have

~pi =
δL

δ~̇ri
≈ m~̇ri

and therefore (according to Landau-Lifshitz), we may still remain in the frame of the standard canonical
formalism. The resulting classical Hamiltonian is

H =
∑

i

~pi
2

2mi

+
∑

i>j

eiej
|~ri − ~rj |

(2)

−
∑

i>j

eiej
c2mimj

~pi

[

~pj
|~ri − ~rj |

−
1

4π

∫

d~x
1

|~ri − ~x|
∇

(

~pj∇
1

|~x− ~rj |

)]

including 1/c2 terms. This Hamiltonian is not identical with the Darwin Hamiltonian Eq.1!

3 Quantum-mechanical electron Hamiltonian with 1/c2 terms.

Now we may start to formulate directly a second quantized version of the theory starting from the classical
Hamiltonian of Eq.2. For sake of simplicity we consider here a single sort of particles (electrons) of mass
m and charge e.

By introducing the charge and current densities:

ρ(~x) =
∑

i

eδ(~x− ~ri); ~i(~x) =
∑

i

e

m
~piδ(~x − ~ri)

one would be tempted to rewrite the classical Hamiltonia Eq.2 as

∑

i

1

2m
~pi

2 +
1

2

∫

d~x

∫

d~x′
ρ(~x)ρ(~x′)

|~x− ~x′)|
−

1

2

∫

d~x

∫

d~x′
~i⊥(~x)~i⊥(~x

′)

c2|~x− ~x′|
, (3)

where ~i⊥(~x) is the transverse part of the current density

~i⊥(~r, t) ≡~i(~r, t) +
1

4π
∇

∫

d~r′
∇′~i(~r′, t)

|~r − ~r′|
.
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However, due to the divergent self-interaction of point-like classical particles this expression is not mean-
ingful, even without the 1/c2 terms.

The quantum-mechanical version of this Hamiltonian for a system of identical particles (here fermions)
the problem is however milder. One cannot identify individual particles and therefore the self-interaction
is at least not obvious and one may eliminate it partially in the second quantization formalism by
considering a ”normal ordering” of the operators in the Hamiltonian, as it was done also in the case
of the Coulomb interaction. This ordering of the creation ans annihilation operators eliminates the
interaction in states that contain less than two particles. Therefore we may proceed with the second
quantization formulation of the theory directly form the last symbolic expression Eq.3.

One has to introduce the second quantized charge and the transverse part of the current density
operators expressed in terms of second quantized wave functions ψσ(~x) for fermions with spin 1/2

ρ(~x) = e
∑

σ=±1

ψ+
σ (~x)ψσ(~x)

~i(~x) =
e

2m

∑

σ=±1

ψ+
σ (~x)

h̄

ı
∇ψσ(~x) + h.c.

The resulting quantum mechanical Hamiltonian H in the second quantized formalism looks then as

H = −
∑

σ=±1

∫

d~xψ+
σ (~x)

h̄2

2m
∇2ψσ(~x) (4)

+
1

2

∑

σ,σ′=±1

∫

d~x

∫

d~x′ψ+
σ (~x)ψ

+
σ′ (~x

′)
e2

|~x− ~x′)|
ψσ′(~x′)ψσ(~x)

−
1

2

∫

d~x

∫

d~x′
:~i⊥(~x)~i⊥(~x

′) :

c2|~x− ~x′|
.

The last term we did not write out explicitly, but just indicated the normal ordering by the : . . . : symbols,
since it is very lengthy and complicated in the coordinate space due to the additional integrals in the
definition of the transverse part. However, this term has a simple expression in the discrete ~k - space
basis (plane waves with periodical boundary conditions in a cube of volume Ω). It looks explicitly as

−
e2h̄2

m2c2Ω

∑

σ,σ′=±1

∑

~k,~p,~q

2π

q2

(

~k~p− ~q~k
1

q2
~q~p

)

a+~k,σa
+
~p,σ′a~p+~q,σ′a~k−~q,σ

(5)

This is the second quantized Hamiltonian of electromagnetic interacting electrons of order 1/c2. It
includes a (transverse) current-current interaction.

We still have to add the interaction with a classical external transverse vector potential ~Aext(~x, t).

According to the minimal rule, in the presence of ~Aext one has to replace everywhere −ıh̄∇ by −ıh̄∇−
e
c
~Aext. This implies not only the modification of the kinetic energy term, but also the modification of the

current density ~i⊥(~x) in the current-current term of the Hamiltonian. However, this will produce terms
of order 1/c3 one may ignore.

One has to keep in mind nevertheless, that the current density operator ~j(~x, t), whose average is of
interest, must contain the diamagnetic term

~j(~x, t) =
e

2m

(

ψ+(~x)

(

h̄

ı
∇−

e

c
~Aext(~x, t)

)

ψ(~x, t) + h.c.

)

.

For sake of simplicity we discussed here only the electromagnetic Hamiltonian of an electron system,
assuming implicitly a uniform positive background. Actually it concerns also the basic non-relativistic
Hamiltonian describing the electron-ion constituents of the solid state system and their e.m. interactions.
It is known, however, that magnetic interactions of the spins, as well as the spin-orbit interaction, pure
relativistic QED contributions, are often relevant and have to be included in solid-state theory.
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4 Connection to the non-relativistic QED

One may look now at these results to see their meaning from the other side, namely form the point of
view of the non-relativistic QED of electrons interacting with photons. This Hamiltonian in the Coulomb
gauge looks as

HQED =
∑

~q,λ

h̄ω~qb
+
~q,λb~q,λ

+
∑

σ=±1

∫

d~xψ+
σ (~x)

[

1

2m

(

h̄

ı
∇−

e

c
~A(~x)

)2
]

ψσ(~x)

+
∑

σ,σ′=±1

1

2

∫

d~x

∫

d~x′ψ+
σ (~x)ψ

+
σ′ (~x

′)
e2

|~x− ~x′|
ψσ′(~x′)ψσ(~x)

where the quantized transversal (∇ ~A(~x) = 0 ) e.m. potential

~A(~x) =
∑

λ=1,2

√

hc

Ω

∑

~q

1
√

|~q|
~e
(λ)
~q eı~q~x

(

b~q,λ + b+−~q,λ

)

was taken with periodical boundary conditions.
The photon frequency is ω~q = c|~q|, while the bosonic commutators are

[

b~q,λ, b
+
~q′,λ′

]

= δ′~q,~qδλλ′

and the unit vectors ~e
(λ)
~q are orthogonal to the wave vector ~q and to each other

~q~e
(λ)
~q = 0; ~e

(λ)
~q ~e

(λ′)
~q = δλλ′ ; ~e

(λ)
~q = ~e

(λ)
−~q ; (λ, λ′ = 1, 2) .

Actually in the kinetic energy term of this Hamiltonian the product of the vector potentials (”seag-

ull term”) e2

c2

∫

ψ+ψAA has to be normal ordered wit respect to the photon creation and annihilation
operators!

As usual in many body theories of solid-state, here the non-relativistic QED, contrary to the funda-
mental relativistic QED, is understood as a cut-off theory, where the bare parameters coincide with the
physical ones.

Let us discuss this QED Hamiltonian on the subspace of unperturbed states containing only electrons
and no photons (photon vacuum). Then, if we want to retain only contributions up to order 1/c2 we may

omit from the beginning the (normal ordered) seagull” term e2

c2

∫

ψ+ψAA. Being itself of order 1/c2 it
may have only even higher order non-vanishing matrix elements in this subspace.

Therefore, besides the standard Coulomb term one is left only with the photon-current interaction
− 1

c

∫

i⊥A. It appears in the S-matrix theory of adiabatic perturbations within the considered subspace
without photons only by Feynman diagrams constructed by the basic graph having four electron legs and
two current-photon vertices connected by a photon propagator as shown in Fig.1. After neglecting the
term −ω2/c2 in the denominator of the photon propagator in Fourier space (i.e. eliminating corrections
of higher order as 1/c2 already contained in the vertex parts) it looks as

1

q2
(δµ,ν −

qµqν
q2

); (µ, ν = 1, 2, 3)

and one can convince oneself that this diagram of second order coincides with the first order diagram of
the S matrix of the theory of the preceding Section. (The factor −1/2 in front of the current-current
interaction term in Eq.4 takes care of this last aspect!)

Therefore, we may conclude, that the quantum mechanical 1/c2 electron Hamiltonian (more precisely
the S-Matrix !) we obtained by the Landau construction in the Coulomb gauge, coincides indeed with
the corresponding approximation in the non-relativistic QED.

(The author realized the above interpretation after consulting the first use of the term ”current-current
interaction” by Holstein, Norton and Pincus [10] friendly suggested by P. Kopietz.)
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Figure 1: The basic current-current graph in QED.

5 Relevance for the theory of superconductivity

All theories of superconductivity are formulated in the frame of the lowest order in 1/c solid-state Hamil-
tonian describing Coulomb interacting electrons and ions. They are rather successful in the phenomeno-
logical explanation of many experimental aspects. We have in mind mainly the Bardeen-Cooper-Schrieffer
[11] (BCS) theory of the phase transition as being due to the anomalous correlation of electrons of op-
posite momenta and spins, caused by phonon exchange. The implementation of this idea is however
performed within different further approximations. Among them the Bogolyubov-de Gennes equation
[12] is the most efficient, since by considering a contact potential for the implementation of the BCS idea,
this theory succeeds to formulate a description in the real space and implicitly also at the boundaries.
Another succesful theory is due to Landau-Ginzburg [13] based on original postulates without reference
to a microscopical substrate.

Despite all their successes neither of these theories is able to give a convincing explanation of the
electromagnetic properties of superconductors. Here we do not think about the hopeless proof of current
flow without dissipation. This would be a task for the theory of open systems. Unfortunately, this theory,
in spite of the big progresses of the last 60 years, is not yet able to answer such questions. (See a good
review of the state of art by Spohn [14].)

We mean here just the understanding of already the simplest phenomenon, the Meissner effect. Ob-
viously, the expulsion of the magnetic field from a superconductor in equilibrium is just the ideal dia-
magnetism, the internal magnetic field compensating the external one. Although, seemingly one succeeds
with today’s theories to show the failure of the penetration of the magnetic field, one remains confused
about the underlying physical mechanism, since within the zeroth order in 1/c description one can make
no distinction between the external and internal magnetic fields. All today’s theories have to resort to a
self-consistent treatment of the magnetic field. A distinction between the external and internal magnetic
fields is possible either within the QED or its 1/c2 approximation described in this paper. To formulate
a theory of superconductivity within this new frame is not at all simple, but desirable.

6 Conclusions

We have built up the correct extension of the basic Hamiltonian of classical interacting point-like charged
particles in order to include electromagnetic effects of order 1/c2 using Landau-Lifshitz’s [2] construction,
however in the adequate Coulomb gauge. We have shown also, that its quantized version is equivalent to
ignoring higher than 1/c2 corrections in the QED Hamiltonian and restricting the theory to the subspace
of free electron-ion states without photons. This implies omitting the ”sea-gull” vertex and the retardation
in the photon propagator. We stressed also the importance of the inclusion of current-current interaction
for a convincing theory of the Meissner effect. We hope, that this extended 1/c2 theory may be relevant
also in other fields of solid-state theory, as well as, in the classical version, for the plasma theory.
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