Baby-steps beyond rainbow-ladder

Richard Williams

TU Darmstadt

Excited QCD09 – Zakopane, 9/02/09

Motivation

Desire:
- Poincaré covariant description of mesons
- formulated in the continuum
- description in terms of fundamental quantities of QCD

Natural framework:
- Bethe-Salpeter equations
- Schwinger-Dyson equations

Studied in detail for many years
- Rarely extended beyond simplest truncations
- Ad-hoc ‘improvements’ used.
- Severe approximations (e.g. M-N)

Richard Williams (TU Darmstadt)
Baby-steps beyond rainbow-ladder

2 / 32
Motivation

Rainbow-Ladder:

- successful description of light-mesons subject to an apposite phenomenological ansatz for the interaction.
- *e.g.* Maris-Tandy model.

 [P. Maris, P. C. Tandy, PRC 60 (1999) 055214]

Lacking in many regards:

- no unquenching effects – pion cloud

- no η/η' splitting – $U_A(1)$ anomaly

- admits $\bar{3}_c$ coloured diquark bound-states – but useful in studying Baryons

Moreover:
- Describes only pure $q\bar{q}$-states:
 - No flavour mixing
 - No decay channels
 - No exotics

Rainbow-Ladder provides ONLY
- $\gamma_\mu \otimes \gamma_\mu$ couplings
 - Simplicity of interaction means higher spin states of mesons are poorly represented.
 - No variety in attraction/repulsion.
Motivation

Goal:
- Consistent Green’s function approach
- Ghost/Gluon solutions of DSE
- Quark-Gluon vertex beyond γ^μ
- BSE kernel satisfying axWTI

“Break the ladder:”
- Unquenching effects
- Leading Yang-Mills corrections
1. Introduction
 - Bethe-Salpeter equations
 - Schwinger-Dyson equations
 - Rainbow-Ladder

2. Quark-gluon vertex
 - Basic structure

3. Beyond rainbow-ladder: Unquenching effects
 - Modelling the pion-cloud

 - Gluonic Corrections

5. Outlook/Conclusions
Outline

1 Introduction
 - Bethe-Salpeter equations
 - Schwinger-Dyson equations
 - Rainbow-Ladder

2 Quark-gluon vertex
 - Basic structure

3 Beyond rainbow-ladder: Unquenching effects
 - Modelling the pion-cloud

4 Beyond rainbow-ladder: Yang-Mills sector
 - Gluonic Corrections

5 Outlook/Conclusions
Bethe-Salpeter equations

Bound states:
- poles in $n \geq 3$-point colour singlet Green’s functions

\[
\Gamma_H(p, P) = r_H \frac{\Gamma_h(p, P)}{P^2 + m_H^2} + \text{regular terms}
\]

$\Gamma_h(p, P)$ solves homogeneous Bethe-Salpeter Equation:

Required inputs
- Quark propagator
- Gluon propagator
- Quark-Gluon vertex
- Scattering kernel K
Schwinger-Dyson equations

Basic objects are the propagators of the theory.

Quark

\[
\langle \bar{\psi}^a \psi^b \rangle \equiv S_F^{ab}(p) = \delta^{ab} \frac{i \phi + M(p^2)}{p^2 + M^2(p^2)} Z_f(p^2)
\]

Gluon†

\[
\langle A^a_\mu A^b_\nu \rangle \equiv D_{\mu\nu}(p) = \delta^{ab} \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) \frac{Z(p^2)}{p^2}
\]

Ghost

\[
\langle \bar{c}^a c^b \rangle \equiv D_G^{ab}(p) = -\delta^{ab} \frac{G(p^2)}{p^2}
\]

Each satisfy a SDE in terms of higher–Green’s fns.

(† in Landau gauge)
Basic objects are the propagators of the theory.

Quark

\[\frac{-1}{\cdots} = \frac{-1}{\cdots} + \frac{-1}{\cdots} \]

Gluon (truncated)

\[\frac{-1}{\cdots} = \frac{-1}{\cdots} - \frac{1}{2} + \frac{-1}{\cdots} \]

Ghost

\[\frac{-1}{\cdots} = \frac{-1}{\cdots} + \frac{-1}{\cdots} \]

Each satisfy a SDE in terms of higher–Green’s fns. († in Landau gauge)
Symmetries help constrain system

Axial-vector WTI

\[
P_\mu \Gamma_{\frac{a}{5}\mu}^a(k; P) = S^{-1}(k_+) \frac{1}{2} \chi_f^a i \gamma_5 + \frac{1}{2} \chi_f^a i \gamma_5 S^{-1}(k_-) - M_\zeta i \Gamma_{\frac{a}{5}}^a(k; P) - i \Gamma_{\frac{a}{5}}^a(k; P) M_\zeta.
\]

- Symmetry preserving truncation in DSE and BSE
 → preserve Goldstone character of the pion

BSE

\[
\Gamma^{(\mu)}_{tu}(p; P) = \lambda(P^2) \int \frac{d^4 k}{(2\pi)^4} K_{tu;rs}(p, k; P) \left[S(k_+) \Gamma^{(\mu)}(k; P) S(k_-) \right]_{sr}
\]

Solve by introducing an eigenvalue \(\lambda(P^2) \)
Bethe-Salpeter equations
Rainbow-Ladder truncation

Replace quark-gluon vertex by tree-level form.

Quark-gluon vertex

\[\Gamma_{\nu}^{qg}(p_1, p_2, p_3) = \gamma_{\nu} \frac{Z_2}{\tilde{Z}_3} \Gamma_{YM}(p_3^2) \]

BSE Kernel constructed by considering AVWTI:

Quark scattering kernel

\[K_{tu;sr}(q, p; P) = g^2 \frac{Z(k^2) \Gamma_{YM}(k^2) Z_{1F}}{k^2} \left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} \right) \left[\frac{\lambda^a}{2} \gamma_{\mu} \right]_{ts} \left[\frac{\lambda^a}{2} \gamma_{\nu} \right]_{ru} \]

BSE obtained from quark SDE by the substitution:

\[\gamma^\mu S(k) \gamma^\nu \longrightarrow \gamma^\mu S(k^-) \Gamma_{M}^{(\rho)}(k; P) S(k^+) \gamma^\nu \]
Bethe-Salpeter equations

Rainbow-Ladder truncation

Pictorially

-1

=

-1

YM

Satisfies AV-WTI

Reproduces:
- masses of light pseudoscalar, vectors
- leptonic decay constants
- electromagnetic form factors, pion charge radius.
Moving beyond Rainbow-Ladder:
- akin to looking for a pot of gold at the end of a *rainbow*

Technically very challenging:
- Coupled integral equations
- Must preserve symmetries
- Computationally involved:
 - Calculate input Green’s functions
 - Solve normalisation conditions.

Want:
- Unquenching (quark-loops)
- Yang-Mills corrections
Be more humble and ask for some pi at the end of our rainbow.

- Arises from unquenching (pion-cloud)
- Hadronic contribution (decay widths?)
- Additional tensor structure → beyond the rainbow

Challenging, but tractable within further simplifying approximations.
Also mandatory to think about additional contributions from Yang-Mills sector.

- Use of *ab initio* quantities to determine:
 - gluon propagator
 - quark-gluon interaction

model determined dynamically

- non vector-vector couplings

richer pattern of chiral symmetry breaking exhibited by meson masses
Outline

1 Introduction
 • Bethe-Salpeter equations
 • Schwinger-Dyson equations
 • Rainbow-Ladder

2 Quark-gluon vertex
 • Basic structure

3 Beyond rainbow-ladder: Unquenching effects
 • Modelling the pion-cloud

4 Beyond rainbow-ladder: Yang-Mills sector
 • Gluonic Corrections

5 Outlook/Conclusions
Quark-Gluon vertex

Quark diagram Hadronic contributions

Ghost diagram Infrared leading

- [R. Alkofer, C. Fischer, F. Llanes-Estrada, MPL A 23, 1105 (2008)]

For all scales vanishing symmetrically, exhibit power law solutions

$$\Gamma^{n,m,l} \sim \left(\frac{p^2}{\Lambda_{QCD}^2} \right)^{(n-m)\kappa - l/2}$$
Quark-Gluon vertex

Quark-Gluon vertex

= + + + + ~

Quark-Gluon vertex – leading skeleton expansion

= + + + + ~
Vector and scalar dressing functions

\[\Gamma^\mu(p_1, p_2) = \sum_{k=1}^{12} \lambda_k(p_1, p_2)L^\mu(p_1, p_2) \]

Richard Williams (TU Darmstadt)
Outline

1. Introduction
 - Bethe-Salpeter equations
 - Schwinger-Dyson equations
 - Rainbow-Ladder

2. Quark-gluon vertex
 - Basic structure

3. Beyond rainbow-ladder: Unquenching effects
 - Modelling the pion-cloud

 - Gluonic Corrections

5. Outlook/Conclusions
First steps

1. Subsume all Yang-Mills corrections into a vertex dressing
 - form inspired by quark-gluon vertex calculations
 - scales left free (but constrained) for parameter fitting

2. Gluon propagator obtained from SDE solutions

3. Focus on and quantify hadronic effects.

For investigatory purposes we simplify the truncation further:

- Gives idea of necessary difficulty
- Allows techniques to be refined:
 - Solving quark in the complex plane (Euclidean space)
 - Normalisation condition for non-trivial Kernel.
Beyond rainbow-ladder: Unquenching effects

Hadronic Quenching Effects (Pion Cloud)
Modelling the YM part

Yang-Mills part of quark-gluon interaction Γ_μ:
- $Z(k^2)\Gamma_{YM} \sim \alpha(k^2)$: for large momenta
- $\Gamma_{YM} \sim (k^2)^{-1/2-\kappa}$: IR soft-singularity in gluon momentum.

- For consistency with axWTI, use $\Gamma_\mu \sim \Gamma_{YM}\gamma_\mu$

Soft-Divergence

$$\Gamma_{YM}(k^2) = \left(\frac{k^2}{k^2 + d_2}\right)^{-1/2-\kappa} \times \left[\frac{d_1}{d_2 + k^2} + \frac{k^2 d_3}{d_2^2 + (k^2 - d_2)^2} + \frac{k^2}{\Lambda^2_{QCD} + k^2} \right] \times \left[\frac{4\pi}{\beta_0 \alpha_\mu} \left(\frac{1}{\log\left(\frac{k^2}{\Lambda^2_{QCD}}\right)} - \frac{\Lambda^2_{QCD}}{k^2 - \Lambda^2_{QCD}} \right)^{-2\delta} \right]$$
Yang-Mills part of quark-gluon interaction Γ_μ:
- $Z(k^2)\Gamma_{YM} \sim \alpha(k^2)$: for large momenta
- $\Gamma_{YM} \sim (k^2)^{-1/2 - \kappa}$: IR soft-singularity in gluon momentum.

- For consistency with axWTI, use $\Gamma_\mu \sim \Gamma_{YM} \gamma_\mu$

Soft-Divergence

![Graph showing soft-divergence comparison between Our Model and Maris-Tandy](graph.png)
Beyond rainbow-ladder: Unquenching effects

Modelling the pion-cloud

Quark-Gluon vertex - Hadronic unquenching

Truncation

\[
\begin{align*}
\text{Vertex} &= \text{Vertex} + \text{Vertex} + \text{Vertex} + \text{Vertex} + \text{Vertex} \\
\text{Vertex} &= \text{Vertex} + \text{Vertex} + \text{Vertex} + \text{Vertex} + (\ldots)
\end{align*}
\]

\[
\begin{align*}
\text{Vertex} &= \text{Vertex} - 1 - 1 \\
\text{Vertex} &= \text{Vertex} - 1 - 1 \\
\text{Vertex} &= \text{Vertex} - 1 - 1
\end{align*}
\]
AxWTI satisfied in χ-limit:

$$P_\mu \Gamma^{a\mu}_5(k; P) = S^{-1}(k_+) \frac{1}{2} \lambda^a_i i \gamma_5 + \frac{1}{2} \lambda^a_i i \gamma_5 S^{-1}(k_-)$$

$$- M_\zeta i \Gamma^{a}_5(k; P) - i \Gamma^{a}_6(k; P) M_\zeta .$$

Generalised GMOR relation well-satisfied:

$$f_\pi m^2_\pi = r_\pi \left(m_u(\mu^2) + m_d(\mu^2) \right) .$$
Pion-cloud effects in light mesons

Simple off-shell prescription

\[\Gamma_{\pi}^{j}(p; P) = \tau^{j} \gamma_{5} \frac{B_{\chi}(p^{2})}{f_{\pi}} \]
Beyond rainbow-ladder: Unquenching effects

Modelling the pion-cloud

Pion-cloud effects in light mesons

Normalisation

\[
\delta^{ij} = 2 \frac{\partial}{\partial P^2} \text{tr} \int \frac{d^4 k}{(2\pi)^4} \left[3 \left(\bar{\Gamma}^i_{\pi}(k, -Q) S(k + P/2) \Gamma^j_{\pi}(k, Q) S(k - P/2) \right) + \int \frac{d^4 q}{(2\pi)^4} \left[\bar{\chi}^i_{\pi} \right]_{sr} (q, -Q) K_{tu;rs}^\text{pion} (q, k; P) \left[\chi^j_{\pi} \right]_{ut} (k, Q) \right],
\]

Canonical condition:

Demand residue of bound-state in inhomogeneous Bethe-Salpeter equation is equal to unity.
Normalisation

\[\delta^{ij} = 2 \frac{\partial}{\partial P^2} \text{tr} \int \frac{d^4 k}{(2\pi)^4} \left[3 \left(\overline{\Gamma}^i_\pi(k, -Q) S(k + P/2) \Gamma^j_\pi(k, Q) S(k - P/2) \right) + \int \frac{d^4 q}{(2\pi)^4} [\overline{\chi}^i_\pi]_{sr}(q, -Q) K^{\text{pion}}_{tu;rs}(q, k; P) [\chi^j_\pi]_{ut}(k, Q) \right], \]

\[\delta^{ij} = \frac{\partial}{\partial P^2} \left[\right] \]
Results

Spectrum of light mesons

<table>
<thead>
<tr>
<th></th>
<th>Maris-Tandy w/o pi</th>
<th>Maris-Tandy incl. pi</th>
<th>Our Model w/o pi</th>
<th>Our Model incl. pi</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_π</td>
<td>140</td>
<td>138†</td>
<td>125</td>
<td>138†</td>
<td>138</td>
</tr>
<tr>
<td>f_π</td>
<td>104</td>
<td>93†</td>
<td>102</td>
<td>93†</td>
<td>93</td>
</tr>
<tr>
<td>M_σ</td>
<td>746</td>
<td>598</td>
<td>638</td>
<td>485</td>
<td>400 – 1200</td>
</tr>
<tr>
<td>M_ρ</td>
<td>821</td>
<td>720</td>
<td>795</td>
<td>703</td>
<td>776</td>
</tr>
<tr>
<td>f_ρ</td>
<td>160</td>
<td>167</td>
<td>159</td>
<td>162</td>
<td>156</td>
</tr>
<tr>
<td>M_{a_1}</td>
<td>979</td>
<td>913</td>
<td>941</td>
<td>873</td>
<td>1230</td>
</tr>
<tr>
<td>M_{b_1}</td>
<td>820</td>
<td>750</td>
<td>879</td>
<td>806</td>
<td>1230</td>
</tr>
</tbody>
</table>
Results

Spectrum of light mesons

<table>
<thead>
<tr>
<th></th>
<th>Maris-Tandy w/o pi</th>
<th>Maris-Tandy incl. pi</th>
<th>Our Model w/o pi</th>
<th>Our Model incl. pi</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_π</td>
<td>140</td>
<td>138†</td>
<td>125</td>
<td>138†</td>
<td>138</td>
</tr>
<tr>
<td>f_π</td>
<td>104</td>
<td>93† (90)</td>
<td>102</td>
<td>93† (90)</td>
<td>93</td>
</tr>
<tr>
<td>M_σ</td>
<td>746</td>
<td>598</td>
<td>638</td>
<td>485</td>
<td>400 – 1200</td>
</tr>
<tr>
<td>M_ρ</td>
<td>821</td>
<td>720</td>
<td>795</td>
<td>703</td>
<td>776</td>
</tr>
<tr>
<td>f_ρ</td>
<td>160</td>
<td>167 (167)</td>
<td>159</td>
<td>162 (165)</td>
<td>156</td>
</tr>
<tr>
<td>M_{a_1}</td>
<td>979</td>
<td>913</td>
<td>941</td>
<td>873</td>
<td>1230</td>
</tr>
<tr>
<td>M_{b_1}</td>
<td>820</td>
<td>750</td>
<td>879</td>
<td>806</td>
<td>1230</td>
</tr>
<tr>
<td>M_η</td>
<td></td>
<td></td>
<td>493</td>
<td>497</td>
<td>548</td>
</tr>
<tr>
<td>$M_{\eta'}$</td>
<td></td>
<td></td>
<td>949</td>
<td>963</td>
<td>948</td>
</tr>
</tbody>
</table>

Yang-Mills part of vertex too simple.
Vector vs. Pseudoscalar mass

Mass plots

- Quenched, $N_f=0$
- Unquenched, $N_f=2$

M_{ρ}^p [MeV]

$(M_\pi)^2$ [MeV2]
Outline

1. Introduction
 - Bethe-Salpeter equations
 - Schwinger-Dyson equations
 - Rainbow-Ladder

2. Quark-gluon vertex
 - Basic structure

3. Beyond rainbow-ladder: Unquenching effects
 - Modelling the pion-cloud

 - Gluonic Corrections

5. Outlook/Conclusions
Gluonic corrections

Quark-Gluon vertex

Consider the approximated system:
Gluonic corrections

Challenges

Solving vertex SDE for real Euclidean Momenta
- Nowadays ROUTINE.

 all basic QCD vertices tackled to date within some approximation

Bound-states in Euclidean space $\rightarrow P^2 = -M^2$.
- Need both quark propagator and Quark-Gluon vertex for \mathbb{C}-momenta
- Only a (very) technical difficulty – surmounted.
Gluonic corrections
Bethe-Salpeter equation

We \textit{really} calculate these two-loop diagrams

No Munczek-Nemirovsky

Axial-Vector WTI preserving truncation.
Gluonic corrections
Simple exploratory model

- Replace three-gluon vertex with tree-level form

\[\Gamma^{(0)}_{\mu\nu\rho}^{abc}(p, k, q) = g f^{abc} \left(\delta_{\mu\nu} (p - q)_\rho + \delta_{\nu\rho} (q - k)_\mu + \delta_{\rho\mu} (k - p)_\nu \right) \]

- Replace internal quark-gluon vertices with \(\gamma_\mu \).
- Replace gluon with some integrated strength

\[Z(p^2) = \frac{g^2}{4\pi} \frac{\pi D}{\omega^2} p^4 \exp \left(-\frac{p^2}{\omega^2} \right) \]

NOT representative of what we expect in nature:

- think of effective gluon interaction compensating for lack of internally dressed vertices.
- no ultraviolet support - renormalisation trivial.
Gluonic corrections

Simple exploratory model

- Replace three-gluon vertex with tree-level form

\[
\Gamma_{\mu\nu\rho}^{(0) abc}(p, k, q) = g f^{abc} \left(\delta_{\mu\nu} (p - q)_{\rho} + \delta_{\nu\rho} (q - k)_{\mu} + \delta_{\rho\mu} (k - p)_{\nu} \right)
\]

- Replace internal quark-gluon vertices with \(\gamma_\mu\).
- Replace gluon with some integrated strength
Gluonic corrections
Simple exploratory model – Results

Parameter Set

Richard Williams (TU Darmstadt)
Baby-steps beyond rainbow-ladder
Outline

1. Introduction
 - Bethe-Salpeter equations
 - Schwinger-Dyson equations
 - Rainbow-Ladder

2. Quark-gluon vertex
 - Basic structure

3. Beyond rainbow-ladder: Unquenching effects
 - Modelling the pion-cloud

 - Gluonic Corrections

5. Outlook/Conclusions
Outlook

- Unquenching: Improve pion off-shell prescription
- Inputs: Employ solutions from SDE solutions
- Results: Meson spectrum, EM form factors

Seven down - two to go. But we must still solve . . .
Outlook

Normalisation

$$\delta_{ij} = \frac{\partial}{\partial P^2} \left[\begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2} \\
\text{Diagram 3} \\
\text{Diagram 4} \\
\text{Diagram 5} \\
\text{Diagram 6} \\
\text{Diagram 7} \\
\text{Diagram 8} \\
\text{Diagram 9} \\
\end{array} \right]$$

Need in order to determine leptonic decay constants
Conclusions

Summary

Quark-Gluon vertex **critical** object. Contains
- Hadronic unquenching effects
- Yang-Mills corrections

Demonstrated that effects from the pion-cloud:
- are generally attractive
- generate effects of right size
- can be successfully modelled in a simple model

Presented progress on state-of-the-art calculations:
- incorporation of leading corrections to vertex
- full two-loop calculations - no kinematic restrictions.