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Sheet No. 3 – Solutions

will be discussed on Nov/29/16

1. Tensor gymnastics

(a) Let Qab = Qba be a symmetric tensor and Rab = −Rba be an antisymmetric tensor. Show
that

QabRab = 0.

Solution: From the symmetry of Qab we have QabRab = QbaRab, and from the antisymmetry
of Rab that is QbaRab = −QbaRba. Now we can rename the indices b → a and a → b over
which is summed. So we have QabRab = −QabRab, from which necessarily follows QabRab = 0.

(b) Let Qab = Qba be a symmetric tensor and Tab be an arbitrary tensor. Show that

TabQ
ab =

1

2
Qab (Tab + Tba) .

Solution: From the symmetry of Qab we have TabQ
ab = TabQ

ba. Renaming again a↔ b gives
TabQ

ba = TbaQ
ab. Thus one has 2TabQ

ab = Qab(Tab + Tba), and that we had to prove.

2. At the corners of a square of length 2a point masses m and M are located as shown in the figure
in the xy plane (z = 0) of a Cartesian coordinate system.
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(a) Calculate the components of the tensor of inertia,

Θij =
∑
k

mk(~xk · ~xkδij − xikx
j
k),

with respect to the Cartesian coordinate sytem (x, y, z) and with respect to (x′, y′, z′) (red),
where z = z′. The sum over k runs over the four point masses.

Solution: In the original frame the position vectors of the masses can be read off the diagram
as

~x1 = (a, a, 0)T, ~x2 = (−a, a, 0)T, ~x3 = (−a,−a, 0)T, ~x4 = (a,−a, 0), (1)

and the masses are m1 = m3 = M and m2 = m4 = m. Using the definition of the tensor of
inertia given in the problem yields

Θ̂ = (Θij) = 2a2

 m+M −(M −m) 0
−(M −m) m+M 0

0 0 2(m+M)

 . (2)

In the primed frame we read off the coordinates of the mass points as

~x′1 = (a
√

2, 0, 0)T, ~x′2 = (0, a
√

2, 0)T, ~x′3 = (−a
√

2, 0, 0)T, ~x′4 = (0,−a
√

2, 0)T. (3)

Using again the formula for the tensor components gives

Θ̂′ = (Θ′ij) = 4a2diag(m,M,m+M). (4)

(b) Determine the rotation matrix Dk
i that transforms the vector components of the position

vectors according to x′k = Dk
ix
i.

Solution: We have a counter-clock-wise rotation of the original frame by π/4 around the z
axis. With cosπ/4 = sinπ/4 =

√
2/2 thus the rotation matrix reads

D̂ = (Di
j) =

√
2

2

 1 1 0
−1 1 0
0 0 1

 (5)

(c) Show through explicit calculation that the components of the tensor of inertia transform as
the components of a second-rank tensor should, i.e., according to

Θ′kl = Dk
iD

l
jT

ij .

Solution: In matrix-product notation the formula claims

Θ̂′ = D̂Θ̂D̂T, (6)

and performing the matrix multiplications using (2) and (5) indeed leads to (4) as claimed.

3. Geodesics1

A great circle of a sphere is the intersection of the sphere and a plane which passes through the
center point of the sphere.

Show that geodesics on a sphere are great circles. Use

ds2 = R2(dθ2 + sin2 θdφ2)

with u1 = θ, u2 = φ and R = const.

1In this exercise we follow the lecture given by Prof. Greiner on Tuesday, November 08!



(a) Determine the metric and the affine connections given as

Γhki =
1

2
ghl
(
∂glk
∂ui

+
∂gli
∂uk
− ∂gik
∂ul

)
Solution The metric components read

g11 = R2, g12 = g21 = 0, g22 = R2 sin2 θ

g11 =
1

R2
, g12 = g21 = 0, g22 =

1

R2 sin2 θ
,

(7)

and thus the only non-vanishing Christoffel symbols are

Γ1
22 = − sin θ cos θ, Γ2

12 = Γ2
21 = cot θ. (8)

(b) Determine the geodesic equations for θ and φ, and show that these can be written as

sin2 θ
dφ

ds
= h = const.(

dθ

ds

)2

+
h2

sin2 θ
=

h2

sin2 θ0
= const.

where h and 0 . θ0 . π
2 are constants of integration.

Solution:

d2θ

ds2
+ Γ1

ik
dui

ds

duk

ds
=

d2θ

ds2
+ Γ1

22

(
dφ

ds

)2

=
d2θ

ds2
− sin θ cos θ

(
dφ

ds

)2

= 0, (9)

d2φ

ds2
+ Γ1

ik

dui

ds

duk

ds
=

d2φ

ds2
+ Γ2

12

dφ

ds

dθ

ds
+ Γ2

21

dθ

ds

dφ

ds
=

d2φ

ds2
+ 2

cos θ

sin θ

dθ

ds

dφ

ds
= 0. (10)

Mutiplying Eq. (10) with sin2 θ gives

sin2 θ
d2φ

ds2
+ 2 cos θ sin θ

dθ

ds

dφ

ds
=

d

ds

(
sin2 θ

dφ

ds

)
= 0 (11)

and thus the first equation

sin2 θ
dφ

ds
= h = const. ⇒ dφ

ds
=

h

sin2 θ
(12)

Plugging this into (9) we obtain
d2θ

ds2
− h2 cos θ

sin3 θ
= 0. (13)

This can also be written as a total derivative by multiplying with 2dθ
ds

2
dθ

ds

d2θ

ds2
− 2

dθ

ds

h2 cos θ

sin3 θ
=

d

ds

[(
dθ

ds

)2

+
h2

sin2 θ

]
= 0, (14)

i.e., (
dθ

ds

)2

+
h2

sin2 θ
=

h2

sin2 θ0
= const. with 0 ≤ θ0 ≤

π

2
, (15)

with the range for θ0 follows from the fact that sin2 θ0 is unique there.

(c) Use your results from (b) to determine dφ/dθ and the function φ(θ). Use

∫ θ

θ0

dθ′ =
1

sin θ′
√

sin2 θ′

sin2 θ0
− 1

=

− arctan
cos θ′√
sin2 θ′

sin2 θ0
− 1

θ
θ0

.



(d) Show, that
cot θ = cot θ0 cos(φ− φ0)

Hint: Use the relations tan(x± π/2) = − cotx and 1 + cot2 x = 1
sin2 x

.

Solution: Applying the chain rule we find

dθ

ds
=

dθ

dφ

dφ

ds
=

dθ

dφ

h

sin2 θ
, (16)

where we have used (12). Now we can use (16) in (15) to obtain

h2

sin4 θ

(
dθ

dφ

)2

+
h2

sin2 θ
=

h2

sin2 θ0
,

⇒ dφ

dθ
= ± 1

sin θ

(
sin2 θ

sin2 θ0
− 1

)−1/2
.

(17)

Due to (15) is θ ∈ {θ0, π− θ0} since (17) is only defined in this range. Separation of variables
and integrating, using the integral given in the problem, leads to

φ = φ0 ±
∫ θ

θ0

dθ′
1

sin θ′
√

sin2 θ′

sin2 θ0
− 1

= φ0 ±

− arctan
cos θ′√
sin2 θ′

sin2 θ0
− 1

θ
θ0

= φ0 ∓ arctan
cos θ√
sin2 θ
sin2 θ0

− 1
± π

2

(18)

After some algebra this simplifies to

tan
(
φ− φ0 ∓

π

2

)
= − cot(φ− φ0) = ∓ cos θ√

sin2 θ
sin2 θ0

− 1

= ∓ cos θ

sin θ
√

1
sin2 θ0

− 1
sin2 θ

= ∓ cot θ√
cot2 θ0 − cot2 θ

,

(19)

where we have used the given trigonometric relations. Finally we can resolve for cot θ:

cot2(φ− φ0)(cot2 θ0 − cot2 θ) = cot2 θ

⇒ cot2(φ− φ0) cot2 θ0 = cot2 θ(1 + cot2(θ − θ0))

⇒ cot θ =
cot(φ− φ0) cot θ0√

1 + cot2(φ− φ0)
=

cot(φ− φ0) cot θ0√
1

sin2(φ−φ0)

= cos(φ− φ0) cot θ0.
(20)

To see that this indeed describes a great circle on the sphere we identify the point on the
geodesic with coordinate (θ0, φ0) as its highest point. We get the great circle through this
point,

~r0 = R(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0), (21)

by rotating ~r0 around an axis ~n through the origin of the coordinate system that is perpen-
dicular to ~r0. With respect to the axis ~n is this great circle through ~r0 the equator, and thus
~n is parallel to the unit vector ~eθ(~r0) along a latitude. In the figure we show such a great
circle with ~r0 as the point with the minimal angle θ = θ0



The unit vector at this place is given by

~n = ~eθ(~r0) =
d

dθ

sin θ cosφ
sin θ sinφ

cos θ


θ0,φ0

=

cos θ0 cosφ0
cos θ0 sinφ0
− sin θ0

 . (22)

Only for a great circle the position vector along the cirlce ~r(θ, φ) is always perpendicular to
this special unit vector in direction of growing θ. For smaller circles the scalar product won’t
vanish. Thus we find as a condition

~eθ(θ0, φ0) · ~r(θ, φ) = R(cos θ0 cosφ0 sin θ cosφ+ cos θ0 sinφ0 sin θ sinφ− sin θ0 cos θ)

= R(cos θ0 sin θ(cosφ0 cosφ+ sinφ0 sinφ)− sin θ0 cos θ)

= R(cos θ0 sin θ cos(φ− φ0)− sin θ0 cos θ)
!

= 0

⇒ cos θ0 sin θ cos(φ− φ0) = sin θ0 cos θ

⇒ cot θ0 cos(φ− φ0) = cot θ,

(23)

where in the 3rd line we have used cosα cosβ + sinα sinβ = cos(α − β). Now according to
(20) this condition is precisely the solution for the geodesic on the sphere.

4. Additional problem (just for fun): Geodesics on the sphere simplified

That the great circles are the geodesics on the sphere can be much simpler derived by using that
the geodesics equation can be derived by the variational principle with the Lagrangian

L =
1

2
gij ẋ

iẋj ,

where gij = gij(~x) are the metric components and ~x = ~x(λ) is a parametrization with a parameter
λ that is automatically affine.

For the geodesics on the sphere use the Euclidean metric in R3 with components gij = δij and
implement the constraint ~x2 = R2 = const with a Lagrange parameter Λ leading to the Lagrangian

L =
1

2
~̇x2 − Λ

2
(~x2 −R2).



(a) Derive the equations of motion from the variational principle (Euler-Lagrange equations).

Solution: First we calculate to canonical momenta:

~p =
∂L

∂ẋ
= ~̇x. (24)

From this according to the Euler-Lagrange equations the geodesics are described by the dif-
ferential equations

~̇p = ~̈x =
∂L

∂~x
= −Λ~x. (25)

(b)

(c) To determine the Lagrange multiplier Λ, take the 2nd derivative of the constraint ~x2 = R2 =
const with respect to λ, and then use the equations of motion from (a).

Hint: One can use the fact that λ is automatically an affine parameter, which can be nor-
malized such that ~̇x2 = 1.

Solution: Taking twice the derivative of the contraint leads to

~x · ~̇x = 0, ~̇x2 + ~x · ~̈x = 1 + ~x · ~̈x = 0. (26)

With the equations of motion (25) this leads to

1− Λ~x2 = 1− ΛR2 = 0 ⇒ Λ =
1

R2
. (27)

(d) Solve the equations of motion to show that it is a great circle on the sphere.

Solution: The equations of motion now read

~̈x = − 1

R2
~x, (28)

and the general solution is

~x = ~x1 cos(λ/R) + ~x2 sin(λ/R). (29)

Now we have to work in the constraints. From the first equation (26) we get

~̇x · ~x =
1

R
[−~x1 sin(λ/R) + ~x2 cos(λ/R)] · [~x1 cos(λ/R) + ~x2 sin(λ/R)] = 0. (30)

Now for λ/R = 0 this implies ~x1 · ~x2 = 0, i.e., ~x1 and ~x2 are prependicular vectors. This
implies that

~x2 = ~x21 cos2(λ/R) + ~x22 sin2(λ/R)
!

= R2, (31)

and now setting first λ/R = 0 gives ~x21 = R2, and setting then λ/R = π/2 leads to ~x22 = R2.
Then (31) is indeed fulfilled for all λ. Since thus ~x1 and ~x2 are two perpendicular vector of
length R, (29) indeed describes a circle with radius R around the origin, and this is of course
a great circle on the sphere. This proves again that the geodesics on a sphere are great circles
(or pieces of great circles).


