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1. Ricci Theorem
The affine connections (Christoffel symbols) are given as

Γλ
νµ = Γλ

νµ =
1

2
gλκ

(
gνκ|µ + gκµ|ν − gµν|κ

)
.

(a) Show through direct calculation that

gµν∥κ = 0, gµν∥κ = 0, gµν∥κ = 0.

Solution: By definition of the covariant derivative we have

gµν∥κ = ∂κgµν − Γλ
µκgλν − Γλ

νκgµλ

= ∂κgµν −
1

2
(∂µgνκ + ∂κgµν − ∂νgµκ)−

1

2
(∂νgµκ + ∂κgµν − ∂µgνκ)

= 0,

(1)

because the equally colored terms cancel each other. In the 2nd step we have used

Γλ
µκgλν = gνκ|µ + gµν|κ − gµκ|ν . (2)

For the contravariant components we have

gµν∥κ = ∇κg
µν

= ∂κg
µν + Γµ

κλg
λν + Γν

κλg
µλ

= ∂κg
µν +

1

2
gµαgνλ (∂κgαλ + ∂λgακ − ∂αgκλ) +

1

2
gναgµλ (∂κgαλ + ∂λgακ − ∂αgκλ)

= ∂κg
µν +

1

2
(gµαgνλ + gναgµλ) (∂κgαλ + ∂λgακ − ∂αgλκ)

= ∂κg
µν +

1

2
(gµαgνλ + gναgµλ)∂κgαλ.

(3)

In the last step we have used that the red part is antisymmetric under exchange of the index
pair (λ, α) and that it is contracted with the left bracket, which is symmetric in this index
pair. To further simplify the remaining expression, we note that

gµαgαλ = δµλ = const. ⇒ gµα∂κgαλ + gαλ∂κg
µα = 0 ⇒ gµα∂κgαλ = −gαλ∂κg

µα. (4)

Using this identity in (3) yields

gµν∥κ = ∂κg
µν − 1

2

(
gµαgαλ∂κg

νλ + gναgαλ∂κg
µλ
)

= ∂κg
µν − 1

2
(δµλ∂κg

νλ + δνλ∂κg
µλ) = 0.

(5)

To prove also the last formula, we use the fact that gµν = δµν = const and thus

gµν∥κ = ∇κδ
µ
ν = Γµ

κλδ
λ
ν − Γλ

κνδ
µ
λ = Γµ

κν − Γµ
κν = 0. (6)



(b) Show the validity of product rule for the covariant derivative on the example Tµ
ν = AµBν ,

i.e.,
Tµ

ν∥ρ = Aµ
∥ρBν +AµBν∥ρ .

Solution: Using the definition of the covariant derivative gives

Tµ
ν∥ρ = ∂ρT

µ
ν + Γµ

ρσT
σ
ν − Γσ

ρνT
µ
σ

= ∂ρ(A
µBν) + Γµ

ρσA
σBν − Γσ

ρνA
µBσ

= Bν∂ρA
µ +Aµ∂ρBν + Γµ

ρσA
σBν − Γσ

ρνA
µBσ

=
(
∂ρA

µ + Γµ
ρσA

σ
)
Bν +Aµ

(
∂ρBν − Γσ

ρνA
µBσ

)
= Aµ

∥ρBν +AµBν∥ρ,

(7)

and this what we wanted to show.

(c) Why can one “naively” lower and raise indices in covariant derivatives, i.e., why is for, e.g., a
tensor Tµν

Tµ
ν∥ρ = gµσTσν∥ρ.

Solution: Using the result of part (a) and the validity of the product rule for covariant
derivatives, proven in part (b), we immediately get

Tµ
ν∥ρ = (gµσTσν)∥ρ

(b)
= gµσ∥ρTσν + gµσTσν∥ρ

(a)
= +gµσTσν∥ρ. (8)

(d) Show that for the “covariant curl” for any vector field Aµ one can use the partial derivatives
instead of the covariant ones:

Fµν = Aν∥µ −Aµ∥ν = Aν|µ −Aµ|ν = ∂µAν − ∂νAµ.

Solution: Using the covariant derivative,

Aν∥µ = ∇µAν = ∂µAν − Γρ
µνAρ (9)

shows that
Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ, (10)

because of Γρ
µν = Γρ

νµ, i.e., because the pseudo-Riemannian spacetime manifold of general
relativity is torsion free.

2. Ideal fluid

The non-relativistic hydrodynamical equations describing mass-, and- momentum energy conser-
vation, for an ideal fluid are given by

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0, (11)

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ +

∇⃗P

ρ
= 0, (12)

∂ϵ

∂t
+ ∇⃗ · (ϵv⃗) + P ∇⃗ · v⃗ = 0. (13)

(a) Express the energy density ϵ and the Pressure P of the ideal fluid as a function of the mass
density density ρ and temperature T .

Solution: We use the equations of state of an ideal gas,

PV = kBNT, U =
f

2
NkBT, (14)



where f = 3 for a gas of monatomic, f = 5 of diatomic molecules, and f = 6 for a gas with
molecules consisting of at least three atoms. We assume that we are at temperatures such
that vibrational degrees of freedom are not active. Dividing the equations by V and using
ρ = mN/V , where m is the mass of one gas molecule we get

P =
kBρT

m
, ϵ =

U

V
=

f

2

kBρT

m
. (15)

(b) Show via Eq. (13) that an isothermal ideal fluid, i.e., a fluid for which T (t, x⃗) = T0, is also
incompressible, meaning ∇⃗ · v⃗ = 0.

Solution: Since T = const, plugging in (15) in (13)

fkBT

2m
[∂tρ+ ∇⃗(ρv⃗)] + P ∇⃗ · v⃗ = 0. (16)

Due to (11) the square bracket vanishes, and since P > 0 this shows that indeed ∇⃗ · v⃗ = 0.

Note: The condition div v⃗ = ∇⃗ · v⃗ = 0 means the incompressibility of the fluid. An incom-
pressible fluid is defined by the condition that the density ρ = const, i.e., independent of time
and position. This implies ∂tρ = 0 and ∇⃗ρ = 0. From the continuity eqution (11) this implies

0 = ∂tρ+ ∇⃗(ρv⃗) = ∇⃗(ρv⃗) = ∂j(ρvj) = vj∂jρ+ ρ∂jvj = ρ∂jvj = ρ∇⃗ · v⃗ ⇒ ∇⃗ · v⃗ = 0. (17)


