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1. Shapiro Delay

Consider a light beam that moves from Earth to Venus and back, coming close to the Sun (see the
figure). Non-relativistically the total “radar time” needed to come back to Earth obviously is

tnrel = 2

(√
r21 − r20 +

√
r22 − r20

)
, (1)

where r0 is the distance of closest approach of the light beam to the Sun. The task of this problem
is to evaluate the radar time taking into account the gravity of the Sun according to General
Relativity.

Start from the Schwarzschild invariant-length element,

ds2 =

(
1− 2m

r

)
c2dt2 − dr2(

1− 2m
r

) − r2(dφ2 + sin2 θdφ2), 2m = rS =
2GM

c2
, (2)

and use the result for the null geodesic from the lecture, describing the light beam (by an ap-
propriate choice of the coordinate system according to the initial conditions running in the plane
ϑ = π/2 = const), (

1− 2m

r

)
c2ṫ2 − ṙ2(

1− 2m
r

) − h2

r2
= 0. (3)

The dot indicates the derivative with respect to an arbitrary affine parameter1. Here

h = r2φ̇ = const (4)

follows from the rotational symmetry formalized by the fact that φ is a cyclic variable of the
Lagrangian, L = gµν ẋ

µẋν/2 leading to the equation of the geodesic. The same holds true for t
since the Schwarzschild metric is static, i.e.,(

1− 2m

r

)
ṫ = A = const. (5)

1Note that for a light beam, which formally follows the geodesic of a massless particle, there does not exist a physical
definition of such a parameter, like proper time for a massive particle!



(a) Express h in terms of r0 and A, evaluate dr/dt = ṙ/ṫ from (3) and (4).

Solution: Since r0 is the radius of closest approach of the geodesic to the center at this point
ṙ = 0. Using this in (3) one finds, using (5)

A2c2

1− 2m/r0
− h2

r20
= 0 ⇒ h2

A2
=

r20c
2

1− 2m/r0
. (6)

(b) With that result show, that the radar time for the signal running forth and back from Venus
is given by2

ctradar = 2[F (r1) + F (r2)], (7)

where

F (r1) =

∫ r1

r0

dr

1− 2m
r

[
1− 1− 2m/r

1− 2m/r0

(r0
r

)2]−1/2

, r1 > r0. (8)

Solution: Dividing (3) by ṫ2 and a little algebra leads to(
dr

dt

)2

=

(
ṙ

ṫ

)2

=

(
1− 2m

r

)2

−
(

1− 2m

r

)
r2φ̇2

c2ṫ2
. (9)

For the last term we have with (4) and (5)

r2φ̇2

ṫ2
=
h2

r2

(
1− 2m

r

)2 1

A2c2
=

(
1− 2m

r

)2 r20
r2(1− 2m/r0)

, (10)

and inserting this into (9) leads to(
dr

dt

)2

=

(
ṙ

ṫ

)2

= c2
(

1− 2m

r

)2 [
1−

(r0
r

)2 1− 2m/r

1− 2m/r0

]
. (11)

Taking the inverse of this equation then leads to (8). Concerning the sign of the square root
we have to choose it such that dt > 0 along the entire geodesic, i.e., the integral must be
positive, as is the case for (8).

(c) Evaluate the integral (8) approximately by expanding up to linear order in m, assuming that
2m/r = rS/r � 1 along the entire worldline of the light beam.

Hint: The result is

F (r1) =
√
r21 − r20 + 2m ln

(
r1 +

√
r21 − r20
r0

)
+m

√
r1 − r0
r1 + r0

+O(m2). (12)

Solution: Taylor expansion of the integrand in (8) with respect to m gives

1

1− 2m
r

[
1− 1− 2m/r

1− 2m/r0

(r0
r

)2]−1/2

=
r√

r2 − r20

[
1 +

m(2r + 3r0)

r(r + r0)

]
+O(m2). (13)

Evaluating the integral gives (12). Finally (7) leads to the formula for the Shapiro delay, i.e.,
the additional time needed by the radar signal to reach the Earth again being reflected from
Venus is given by

c∆tShapiro = c(tradar − tnrel)

= 4m ln

[
(r1 +

√
r21 − r20)(r2 +

√
r22 − r20)

r20

]
+ 2m

(√
r1 − r0
r1 + r0

+

√
r1 − r0
r1 + r0

)
.

(14)

2We neglect the motion of the planets during the very short travel time of the light beam.



Note: For completeness we give a complete derivation of the above used results for the null geodesics
in Schwarzschild spacetime. The Lagrangian for the geodesics in affine parametrization reads

L =
1

2
gµν ẋ

µẋν =
1

2

[(
1− 2m

r

)
c2ṫ2 − ṙ2

1− 2m/r
− r2φ̇2

]
. (15)

Here we have already used that due to rotational invariance the motion is always in a plane, and we
choose the equator plane of the spherical coordinates, ϑ = π/2, as this plane. It’s obvious that the
coordinates t and φ are “cyclic”, i.e., their canonical momenta are conserved, leading to

pt =
∂L

∂ṫ
=

(
1− 2m

r

)
c2ṫ = Ac2 = const., (16)

pφ =
∂L

∂φ̇
= −r2φ̇ = −h = const. (17)

Finally, since L does not explicitly depend on the world-line parameter λ and since L is quadratic in
the ẋµ it is a conserved quantity, and thus λ an affine parameter of the trajectory (which is a geodesic
in Schwarzschild spacetime).

Since we want to investigate the “null geodesics”, i.e., the trajectory of a freely falling massless particle,
we have L = 0: (

1− 2m

r

)
c2ṫ2 − ṙ2

1− 2m/r
− r2φ̇2 = 0. (18)

First we use (17) to eliminate φ̇, which leads to (3), which was the starting point for our calculation
above: (

1− 2m

r

)
c2ṫ2 − ṙ2(

1− 2m
r

) − h2

r2
= 0. (19)


