Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Electrical Conductivity of QGP in Strong Magnetic Field

Daisuke Satow

Collaborator: Koichi Hattori (Fudan Uni, Shanghai) Shiyong Li, Ho-Ung Yee (Uni. Illinois at Chicago)

K. Hattori and <u>D. S.</u>, arXiv: 1610.06818 [hep-ph].
K. Hattori, S. Li, <u>D. S.</u>, H. U. Yee, arXiv: 1610.06839 [hep-ph].

Outline

- (Long) Introduction
 quarks and gluons in strong B
- Calculation of Conductivity and Results
- Possible Phenomenological Implications (Very Brief, more like future works)
- Summary and future perspective

Introduction

Strong magnetic field (*B*) may be generated in heavy ion collision due to Ampere's law.

Introduction

At thermalization time (~0.5 fm), there still may be strong B.

Heavy ion collision may give a chance to investigate QCD matter at **finite temperature** in **strong magnetic field**.

How the system behaves when the energy scale of *B* is much larger than the typical energy scale of the system?

 $(\forall eB \gg T, m, \Lambda_{QCD}...)$

Quark in Strong B

One-particle state of quark in magnetic field

Classical: Cyclotron motion due to Lorentz force

Quark in Strong B

Quantum: Landau Quantization

Longitudinal: Plane wave Transverse: Gaussian

$$E_n = \sqrt{(p_z)^2 + m^2 + 2eB\left(n + \frac{1}{2}\right)}$$

The gap ($\sim \sqrt{eB}$) is generated by zero-point oscillation.

Quark in Strong B

For spin-1/2 particle, we have Zeeman effect:

When n=0 (LLL), gap is small ($m \sim 1$ MeV). When n>0, gap is large ($\sim \sqrt{eB} \sim 100$ MeV)

Lowest Landau Level (LLL) Approximation

When the typical energy of particle (*T*) is much smaller than gap (\sqrt{eB}), the higher LL does not contribute ($\sim \exp(-\sqrt{eB/T})$), so we can focus on the LLL.

Confined in one direction fermion, no spin degrees of freedom.

$$E_n = \sqrt{(p_z)^2 + m^2}$$

In heavy-ion collision, this condition may be marginally realized ($T \sim \sqrt{eB} \sim 100 \text{MeV}$). But in Weyl semi-metal, it is already realized ($T \sim 1 \text{meV}$, $\sqrt{eB} \sim 10 \text{eV}$).

Gluon in Strong B

Gluon does not have charge, so it does not feel *B* in the zeroth approximation.

Massless boson in (3+1)D

Coupling with (1+1)D quarks generates gluon mass. (Schwinger mass generation)

(surface density) \sim (average distance)⁻² $\sim eB$

В

 \sqrt{eB}

Color factor

Motivation to Discuss Electrical Conductivity

Electrical conductivity is phenomenologically important because

 Input parameter of magnetohydrodynamics (transport coefficient)

• May increase lifetime of **B** (Lenz's law)

$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\partial_t \mathbf{E} = \nabla \times \mathbf{B} - \mathbf{j}$$

When σ is large

 $\partial_t B < 0$

Possible Scattering Process for Conductivity

<u>B=0</u>

1 to 2 scattering is kinematically forbidden; one massless particle can not decay to two massless particles

<u>strong *B*</u>

Gluon is effectively massive in (1+1)D $E = \sqrt{p_z^2 + p_\perp^2 + M^2}$

Decay of a gluon into two quarks becomes kinematically possible.

Chirality in (1+1)D

Spin is always up.

When m=0, the direction of p_z determines chirality.

Chirality in (1+1)D

Chirality is conserved at m=0:

Motivation to Discuss Electrical Conductivity

Electrical conductivity is also theoretically interesting: the scattering process is very different from that in B=0.

Because the kinematics is non-standard (1+1 D for quark, 3+1D for gluon), the 1 to 2 scattering is the leading process, instead of 2 to 2.

• At *m*=0, the 1 to 2 process is forbidden due to chirality conservation. Thus, we need to include finite *m* effect to have non-divergent conductivity.

Outline

(Long) Introduction
 –quarks and gluons in strong B

Calculation of Conductivity and Results

- Possible Phenomenological Implications (Very Brief, more like future works)
- Summary and future perspective

Hierarchy of Energy Scale at LLL

Hierarchy of Energy Scale at LLL

For ordering of *m* and *M*, we consider the both cases. (m << M and m >> M) $(M \sim g \sqrt{eB})$

Electrical Conductivity

Conductivity at weak *B* ($\sqrt{eB} << T$)

 σ_0 is independent from *B*. ($\sigma_0 \sim e^2 T/g^4$) σ_1 is linear in *B*. ($\sigma_1 \sim e^3 B \mu/g^8 T^2$)

Electrical Conductivity

Strong B (LLL)

Quarks are confined in the direction of B, so there is no current in other directions.

 σ^{33} is finite, other components are zero. (Very different from weak *B* case)

$$j^{i} = \sigma^{ij} E^{j} \qquad \sigma^{ij} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma_{33} \end{bmatrix}$$

Evaluation of δn_F is necessary.

Evaluate n_F with (1+1)D Boltzmann equation

1 to 2 collision:

$$C[n] = \frac{1}{2\epsilon_k^L} \int |M|^2 [n_B^{k+l}(1-n_F^k)(1-n_F^l) - (1+n_B^{k+l})n_F^k n_F^l]$$

$$|M|^2 = 4g^2 C_f m^2$$

Vanishes at *m*=0!

(chirality conservation)

רס

$$[\partial_T + v^3 \partial_Z + eq_f E^3(T, Z) \partial_{k^3}] n^f(k^3, T, Z) = C[n]$$

linearize $n^f(k^3, T, Z) = n_F(\epsilon_k^L) + \delta n^f(k^3, T, Z)$

Constant *E*: ∂_T , $\partial_Z = 0$

$$eq_f E^3 \beta v^3 n_F(\epsilon_k^L) [1 - n_F(\epsilon_k^L)] = C[\delta n^f(k^3, T, Z)]$$

$$C[n] = \frac{1}{2\epsilon_k^L} \int |M|^2 [n_B^{k+l}(1-n_F^k)(1-n_F^l) - (1+n_B^{k+l})n_F^k n_F^l]$$

linearize

$$C[\delta n] = -\frac{1}{2\epsilon_k^L} \int_l |M|^2 \left[\delta n_F^k \left(n_B^{k+l} + n_F^l \right) - \delta n_F^l \left(n_B^{k+l} + n_F^k \right) \right]$$

damping rate of quark (=-2\xi_k \delta n^k_F)

Solution for δn^F with damping rate ξ_k

$$\delta n_F^k = -\frac{1}{2\xi_k} eq_f E^3 \beta v^3 n_F(\epsilon_k^L) [1 - n_F(\epsilon_k^L)]$$

$$j^{3}(T,Z) = 2e \sum_{f} q_{f} N_{c} \frac{|B_{f}|}{2\pi} \int \frac{dk^{3}}{2\pi} v^{3} \delta n^{f}(k^{3},T,Z)$$

$$j^{3} = e^{2} \sum_{f} q_{f}^{2} N_{c} \frac{|eq_{f}B|}{2\pi} 4\beta \int \frac{dk^{3}}{2\pi} (v^{3})^{2} \frac{1}{2\xi_{k}} n_{F}(\epsilon_{k}^{L}) [1 - n_{F}(\epsilon_{k}^{L})] E^{3}$$

$$\int \frac{33}{2\pi} \delta dt^{3}$$

$\begin{array}{c} \text{matrix element} \\ \text{cf: 2 to 2} \\ \searrow g^4 \\ & n_F(1+n_B)+(1-n_F)n_B=n_F+n_B \end{array} \begin{array}{c} \text{log divergence} \\ \text{in phase space} \\ \text{integral} \\ \text{UV cutoff: } T \end{array}$

IR cutoff: *m* 26

Results

When $M \ge m$, $\ln(T/m) \rightarrow \ln(T/M)$.

Other Term Does Not Contribute

$$C[\delta n] = -\frac{2g^2 C_F m^2}{\epsilon_k^L} \int_l [\delta n_F^k (n_B^{k+l} + n_F^l) - \delta n_F^l (n_B^{k+l} + n_F^k)]$$

$$Other Term$$

$$\delta n_F^l = -\frac{eq_f}{2\xi_l} E^3 \partial_{l^3} n_F(\epsilon_l^L) : \text{odd in } l^3$$
function of $(\varepsilon^L_k + \varepsilon^L_l)$
(Other term) $\sim \int_l (\underline{n_B^{k+l} + n_F^k}) \delta n_F^l$
even in l^3

$$0$$

Same for m << M case.

Our result (only retaining quark damping rate) is correct.

Equivalent Diagrams

Our calculation is based on (unestablished) (1+1)D kinetic theory, but actually **we can reproduce the same result by field theory calculation**.

J. -S. Gagnon and S. Jeon, Phys. Rev. D 75, 025014 (2007); 76, 105019 (2007).

Kubo formula:
$$\sigma^{ij} \equiv \lim_{\omega \to 0} \frac{\Pi^{Rij}(\omega)}{i\omega}$$

 $j^{\mu} \equiv e \sum_{f} q_{f} \overline{\psi}_{f} \gamma^{\mu} \psi_{f}$ f: flavor index, q_{f} : electric charge $\Pi^{R\mu\nu}(x) \equiv i\theta(x^{0}) \langle [j^{\mu}(x), j^{\nu}(0)] \rangle$

Outline

- (Long) Introduction
 –quarks and gluons in strong B
- Calculation of Conductivity and Results
- Possible Phenomenological Implications (Very Brief, more like future works)
- Summary and future perspective

1. Order Estimate

$$\sigma^{33} = e^2 \sum_{f} q_f^2 N_c \frac{|eq_f B|}{2\pi} \frac{4T}{g^2 C_F m^2 \ln(T/M)}$$

Because of m^{-2} dependence, s contribution is very small.

BAMPS: M. Greif, I. Bouras, C. Greiner and Z. Xu, Phys. Rev. D **90**, 094014 (2014). Lattice: B. B. Brandt, A. Francis, B. Jaeger and H. B. Meyer, Phys. Rev. D **93**, 054510 (2016).

Beyond LLL approximation, there are also spin down particles, so the scattering is not suppressed by m^2 .

σ^{33} is expected to be smaller at large *T*, so that it smoothly connects with *B*=0 result.

2. Soft Dilepton Production

G. D. Moore and J. -M. Robert, hep-ph/0607172.

 $\frac{\alpha}{d^4p} = \frac{\alpha}{12\pi^4\omega^2} T\sigma^{33}$::(virtual photon emission rate)~ $n_B(\omega)$ Im Π^{μ}_{μ} ~ $T\sigma^{33}$

(photon interaction (quark mean free path)⁻¹ energy w leptons) $e\sqrt{eB} \ll \omega \ll \frac{g^2 m^2}{T} \ln\left(\frac{T}{M}\right)$

 $p_{p} \neq p^{2}$

 σ^{33} is large

Soft dilepton production is enhanced by *B***?**

3. Back Reaction to EM Fields

Bad news:

In LLL approximation, we have **no current in transverse plane**, so **Lenz's law does NOT work!** The lifetime of *B* does not increase...

Summary

 We <u>calculated electrical conductivity in strong B</u> <u>using the LLL approximation</u>, for *m* << *M* and *m* >> *M* cases.
 Quark density in 1D

$$\sigma^{33} = e^2 \sum_{f} q_f^2 N_c \frac{|eq_f B|}{2\pi} \frac{4T}{g^2 C_F m^2 \ln(T/m)}$$
Landau degeneracy Quark damping rate When $M >> m$, $\ln(T/m) \rightarrow \ln(T/M)$.

• We found that the conductivity is enhanced by large *B*, and small *m*. The sensitivity to *m* was explained in terms of chirality conservation.

Future Perspective

• Go beyond LLL approximation (more realistic *B*)

 Calculate other transport coefficients (viscosity, heat conductivity...)

Back Up

Electrical Conductivity

Axial anomaly: $\partial_t n_A = \frac{e^2 N_c N_F}{2\pi^2} \mathbf{E} \cdot \mathbf{B} - \frac{1}{\tau_R} n_A$ Stationary solution: $n_A = \frac{e^2 N_c N_F}{2\pi^2} \mathbf{E} \cdot \mathbf{B} \tau_R$ Chiral magnetic effect: $\mathbf{J} = \frac{e^2 N_c N_F}{2\pi^2} \mu_A \mathbf{B} = \frac{e^2 N_c N_F}{2\pi^2 \chi} n_A \mathbf{B}$

$$\sigma_{zz} = \frac{e^4 (N_c N_F)^2 B^2}{4\pi^4 \chi} \tau_R \qquad \chi = N_c \frac{1}{2\pi} \left(\frac{eB}{2\pi}\right)$$

1. Sphaleron

2. Current quark mass

Collision-dominant case — Boltzmann equation

cancels when $\mu=0$.

Compute electrical conductivity in strong *B* limit!

Hierarchy of Energy Scale at LLL

We also assume that the gluon screening mass ($M \sim g \sqrt{eB}$) is much smaller than *T*, so that the gluon is thermally excited.