QCD from quark, gluon, and meson correlators

Mario Mitter

Brookhaven National Laboratory

Frankfurt, October 2017
fQCD collaboration - QCD (phase diagram) with FRG:

[Schaefer, Wagner, '08]
fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, A. K. Cyrol, W. J. Fu, M. Leonhardt, MM, J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink, ...

large part of this effort: vacuum QCD and YM-theory

[Schaefer, Wagner, '08]
fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, A. K. Cyrol, W. J. Fu, M. Leonhardt, MM, J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink, ...

large part of this effort: vacuum QCD and YM-theory

why?
QCD from the effective action (gauge fixing necessary)

\[\Gamma[\Phi] = \sum_n \int_{\{p_i\}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n} (p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]
QCD from the effective action (gauge fixing necessary)

\[\Gamma[\Phi] = \sum_n \int_{\{p_i\}} \Gamma_{\phi_1...\phi_n}^{(n)}(p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]

- full information about QFT encoded in \(\Gamma[\Phi]/\text{correlators} \):
 - bound state spectrum: pole structure of the \(\Gamma^{(n)} \)
 e.g. [Roberts, Williams, '94], [Alkofer, Smekal, '00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, '16]
 - form factors: photon-particle correlators
 e.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, '08], [Sanchis-Alepuz, Williams, Alkofer, '13]
 - decay constants
 e.g. [Maris, Roberts, Tandy, '97], [MM, Pawlowski, Strodthoff, in prep.]
 - thermodynamic quantities: \(\Gamma[\Phi] \propto \text{grand potential} \)
 \(\star \) equation of state
 e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, '13]
 \(\star \) fluctuations of conserved charges
 e.g. [Fu, Rennecke, Pawlowski, Schaefer, '16]
 - further quantities: \(\Gamma[\Phi] \propto \text{eff. potential, propagators, 't Hooft determinant} \)
 \(\star \) chiral condensate(s)/\(\langle \sigma \rangle \)
 e.g. [Schaefer, Wambach '04], [Fischer, Luecker, Mueller '11], [MM, Schaefer, '13]
 \(\star \) (dressed) Polyakov loop
 e.g. [Fischer, '09], [Braun, Haas, Marhauser, Pawlowski, '09], [MM, et al., '17]
 \(\star \) axial anomaly
 e.g. [Grahl, Rischke, '13], [MM, Schaefer, '13], [Fejos, '15], [Heller, MM, '15]
 \(\star \) spectral functions
 e.g. [Tripolt, Strodthoff, Smekal, Wambach, '14]
QCD from the effective action (gauge fixing necessary)

\[\Gamma[\Phi] = \sum_n \int_{\{p_i\}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n} (p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]

- full information about QFT encoded in \(\Gamma[\Phi] \)/correlators:
 - bound state spectrum: pole structure of the \(\Gamma^{(n)} \)
 e.g. [Roberts, Williams, '94], [Alkofer, Smekal, '00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, '16]
 - form factors: photon-particle correlators
 e.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, '08], [Sanchis-Alepuz, Williams, Alkofer, '13]
 \[\Rightarrow \text{decay constants} \]
 e.g. [Maris, Roberts, Tandy, '97], [MM, Pawlowski, Strodthoff, in prep.]
 - thermodynamic quantities: \(\Gamma[\Phi] \propto \) grand potential
 \[\star \text{equation of state} \]
 e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, '13]
 - \(\star \text{fluctuations of conserved charges} \)
 e.g. [Fu, Rennecke, Pawlowski, Schaefer, '16]
 - further quantities: \(\Gamma[\Phi] \propto \) eff. potential, propagators, 't Hooft determinant
 \[\star \text{chiral condensate(s)}/\langle \sigma \rangle \]
 e.g. [Schaefer, Wambach '04], [Fischer, Luecker, Mueller '11], [MM, Schaefer, '13]
 - \(\star \) (dressed) Polyakov loop
 e.g. [Fischer, '09], [Braun, Haas, Marhauser, Pawlowski, '09], [MM, et al., '17]
 - \(\star \) axial anomaly
 e.g. [Grahl, Rischke, '13], [MM, Schaefer, '13], [Fejos, '15], [Heller, MM, '15]
 - \(\star \) spectral functions
 e.g. [Tripolt, Strodthoff, Smekal, Wambach, '14]
QCD from the effective action (gauge fixing necessary)

\[\Gamma[\Phi] = \sum_n \int_{\{p_i\}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n} (p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]

- full information about QFT encoded in \(\Gamma[\Phi]/\text{correlators:} \)
 - bound state spectrum: pole structure of the \(\Gamma^{(n)} \)
 - \text{e.g.} [Roberts, Williams, '94], [Alkofer, Smekal, '00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, '16]
 - form factors: photon-particle correlators
 - \text{e.g.} [Cloet, Eichmann, El-Bennich, Klahn, Roberts, '08], [Sanchis-Alepuz, Williams, Alkofer, '13]
 - \Rightarrow \text{decay constants}
 - \text{e.g.} [Maris, Roberts, Tandy, '97], [MM, Pawlowski, Strodthoff, in prep.]
 - thermodynamic quantities: \(\Gamma[\Phi] \propto \text{grand potential} \)
 - \text{\star equation of state}
 - \text{e.g.} [Herbst, MM, Pawlowski, Schaefer, Stiele, '13]
 - \text{\star fluctuations of conserved charges}
 - \text{e.g.} [Fu, Rennecke, Pawlowski, Schaefer, '16]
QCD from the effective action (gauge fixing necessary)

\[
\Gamma[\Phi] = \sum_n \int_{\{p_i\}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n}(p_1, \ldots, p_{n-1}) \Phi_1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1})
\]

- full information about QFT encoded in \(\Gamma[\Phi]\)/correlators:
 - bound state spectrum: pole structure of the \(\Gamma^{(n)}\)
 e.g. [Roberts, Williams, '94], [Alkofer, Smekal, '00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, '16]
 - form factors: photon-particle correlators
 e.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, '08], [Sanchis-Alepuz, Williams, Alkofer, '13]
 \(\Rightarrow\) decay constants
 e.g. [Maris, Roberts, Tandy, '97], [MM, Pawlowski, Strodthoff, in prep.]
 - thermodynamic quantities: \(\Gamma[\Phi] \propto\) grand potential
 \(\star\) equation of state
 e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, '13]
 \(\star\) fluctuations of conserved charges
 e.g. [Fu, Rennecke, Pawlowski, Schaefer, '16]
 - further quantities: \(\Gamma[\Phi] \propto\) eff. potential, propagators, 't Hooft determinant
 \(\star\) chiral condensate(s)/\(\langle\sigma\rangle\)
 e.g. [Schaefer, Wambach '04], [Fischer, Luecker, Mueller '11], [MM, Schaefer, '13]
 \(\star\) (dressed) Polyakov loop
 e.g. [Fischer, '09], [Braun, Haas, Marhauser, Pawlowski, '09], [MM, et al., '17]
 \(\star\) axial anomaly
 e.g. [Grahl, Rischke, '13], [MM, Schaefer, '13], [Fejos, '15], [Heller, MM, '15]
 \(\star\) spectral functions
 e.g. [Tripolt, Strodthoff, Smekal, Wambach, '14]
e.g. Debye mass in $SU(3)$ YM theory [Cyrol, MM, Pawlowski, Strodthoff, 2017]

- correlators from Functional Renormalisation Group (FRG)
- screening mass:
 fit to exponential decay of chromo-electric gluon propagator

\begin{itemize}
 \item excellent agreement with 2$^{\text{nd}}$-order HTL perturbation theory for $T \gtrsim 0.6$ GeV
 \item smooth transition to nonperturbative regime
\end{itemize}
e.g. Center symmetry order parameters

- quenched (scalar) Quantum Chromodynamics
- correlators from Dyson-Schwinger equation (DSE)
- lattice gluon input and vertex models

\[\int_0^{2\pi} d\varphi T \sum_n D^2_\varphi(\vec{\nu} = \vec{0}, \omega_n(\varphi)) \]

\[\frac{1}{4} tr_D S(\vec{0}, \omega_n(\varphi)) \]

- cf. e.g. [Fischer '09], [Braun, Haas, Marhauser, Pawlowski, '09],…
e.g. EOS and axial anomaly in “QCD-enhanced” models

- equation of state
- $N_f = 2 + 1$ PQM model with FRG
- unquenched Polyakov-loop potential from [Braun, Haas, Marhauser, Pawlowski, ’11]

η'-meson screening mass

- $N_f = 2$ PQM model, extended MF
- running 't Hooft determinant from [MM, Pawlowski, Strodthoff, ’14]

[Heller, MM, ’15].

[Heller, MM, ‘15]
e.g. EOS and axial anomaly in “QCD-enhanced” models
- equation of state
- $N_f = 2 + 1$ PQM model with FRG
- unquenched Polyakov-loop potential
 from [Braun, Haas, Marhauser, Pawlowski, ’11]

- η'-meson screening mass
- $N_f = 2$ PQM model, extended MF
- running ’t Hooft determinant
 from [MM, Pawlowski, Strodthoff, ’14]

- phase diagrams
- spectral functions
- fluctuations of conserved charges

[Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

[Haas, Stiele, Braun, Pawlowski, Schaffner-Bielich, ’13]

[Herbst, MM, ’15]

[Heller, MM, ’15]

[e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]
Nonperturbative QCD

- two crucial phenomena: $S^{\chi}\text{SB}$ and confinement
- very sensitive to small quantitative errors
- similar scales - hard to disentangle
Nonperturbative QCD

- two crucial phenomena: $S\chi_{SB}$ and confinement
- very sensitive to small quantitative errors
- similar scales - hard to disentangle

crawling towards QCD at finite density:

- quenched matter part
- pure $SU(N)$ YM-theory
- $N_f = 2$ QCD
- YM-theory at finite temperature $T > 0$
Nonperturbative QCD

- two crucial phenomena: $S_{\chi}SB$ and confinement
- very sensitive to small quantitative errors
- similar scales - hard to disentangle

Crawling towards QCD at finite density:

- quenched matter part
- pure $SU(N)$ YM-theory
- $N_f = 2$ QCD
- YM-theory at finite temperature $T > 0$

Use results from lattice gauge theory to check truncation:

what do we need from the lattice?
(Euclidean) Correlation functions with the FRG

- $S[\Phi] = \Gamma_\Lambda[\Phi]$: use only perturbative QCD input
 - $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
(Euclidean) Correlation functions with the FRG

- $S[\Phi] = \Gamma[\Phi]$: use only perturbative QCD input
 - $\alpha_s(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

- integration of momentum shells:
 \[
 \partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2} \quad \square - \square - \square
 \]
(Euclidean) Correlation functions with the FRG

- \(S[\Phi] = \Gamma_\Lambda[\Phi] \): use only perturbative QCD input
 - \(\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV}) \)
 - \(m_q(\Lambda = \mathcal{O}(10) \text{ GeV}) \)

- Integration of momentum shells:

\[
\partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2} \Rightarrow \text{full non-perturbative quantum effective action}
\]
(Euclidean) Correlation functions with the FRG

- $S[\Phi] = \Gamma_\Lambda[\Phi]$: use only perturbative QCD input
 - $\alpha_s(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

- integration of momentum shells:

\[
\partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2} \quad - \quad - \quad -
\]

\Rightarrow full \underline{non-perturbative} quantum effective action

- gauge-fixed approach (Landau gauge): ghosts appear
(Euclidean) Correlation functions with the FRG

- $S[\Phi] = \Gamma_\Lambda[\Phi]$: use only perturbative QCD input
 - $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

- integration of momentum shells:

$$\partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2}$$

\Rightarrow full non-perturbative quantum effective action

- gauge-fixed approach (Landau gauge): ghosts appear

- functional derivatives \Rightarrow equations for correlators

- aim for “apparent convergence” of $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$
Mesons via dynamical hadronization [Gies, Wetterich, 2002]

- change of variables: particular 4-Fermi channels \rightarrow meson exchange
- efficient inclusion of pole structure \Rightarrow no spurious singularities
- low-energy effective model parameters from QCD - range of validity

$$\partial_k \Gamma_k = \frac{1}{2} - - - + \frac{1}{2}$$

Braun, Fister, Haas, Pawlowski, Rennecke, 2014

M. Mitter (BNL) Correlators of QCD Frankfurt, October 2017 9 / 22
Mesons via dynamical hadronization

- change of variables: particular 4-Fermi channels \(\rightarrow \) meson exchange
- efficient inclusion of pole structure \(\Rightarrow \) no spurious singularities
- low-energy effective model parameters from QCD - range of validity

\[
\partial_k \Gamma_k = \frac{1}{2} - \lambda \pi + \frac{1}{2}
\]

[MM, Strodthoff, Pawlowski, 2014]
[Braun, Fister, Haas, Pawlowski, Rennecke, 2014]
[MM, Strodthoff, Pawlowski, 2014]
$N_f = 2$ Landau-gauge QCD

Truncation:

systematics of improving the truncation?
$N_f = 2$ Landau-gauge QCD

Truncation:

$\Gamma^{(2)}_{AA}(p)$ $\Gamma^{(2)}_{\bar{c}c}(p)$ $\Gamma^{(3)}_{A\bar{c}c}(p)$ $\Gamma^{(3)}_{A^3}(\bar{p})$ $\Gamma^{(4)}_{A^4}(\bar{p})$

classical tensor classical tensor

$\Gamma^{(2)}_{\bar{q}q}(p)$ $\Gamma^{(3)}_{A\bar{q}q}(p, q)$ $\Gamma^{(4)}_{A^2\bar{q}q}(\bar{p})$ $\Gamma^{(5)}_{A^3\bar{q}q}(\bar{p})$ $\Gamma^{(4)}_{\bar{q}qq\bar{q}}(p, p, -p)$

$\bar{q}D^n q$ complete, $n \leq 3$ mom.-ind. tensors

$\Gamma^{(2)}_{\phi\phi}(p)$ $\Gamma^{(3)}_{\bar{q}q\phi}(p, -p)$ $\Gamma^{(4)}_{\bar{q}q\phi\phi}(\bar{p})$ $\Gamma^{(5)}_{\bar{q}q\phi\phi\phi}(\bar{p})$ $\Gamma^{(n)}_{\phi^n}(0)$

$\phi \in \{\sigma, \bar{\pi}\}$ “classical” tensor “classical” tensor “classical” tensor

systematics of improving the truncation?

\Rightarrow BRST-invariant operators, e.g. $\bar{\psi}D^n\psi$
Some representative equations (numerics-heavy)

[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]

cf. FormTracer [Cyrol, MM, Strodthoff, 2016]
Some representative equations (numerics-heavy)

[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]

cf. FormTracer [Cyrol, MM, Strodthoff, 2016]
Some representative equations (numerics-heavy)

[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]

cf. FormTracer [Cyrol, MM, Strodthoff, 2016]
Chiral symmetry breaking

- $\chi_{SB} \Leftrightarrow$ resonance in 4-Fermi interaction λ (pion pole):

\begin{align*}
\partial_t \lambda &= 2\lambda + a\lambda^2 + b\lambda^4 + c\lambda^4, \quad b > 0, \quad a, c \leq 0,
\end{align*}

$\partial_t = -2 + \ldots$

$g > g_{cr}$

$g = g_{cr}$

$g = 0, \quad T > 0$
Chiral symmetry breaking

- $\chi_{SB} \Leftrightarrow$ resonance in 4-Fermi interaction λ (pion pole):

- β-function of momentum independent 4-Fermi interaction:

$$\partial_t \lambda = 2\lambda + a\lambda^2 + b\lambda\alpha + c\alpha^2, \quad b > 0, \quad a, c \leq 0$$

[Braun, 2011]
agreement in perturbative regime required by Slavnov-Taylor identities
- non-degenerate in nonperturbative regime: reflects gluon mass gap
- $\alpha_{\bar{q}Aq} > \alpha_{cr}$: necessary for chiral symmetry breaking
- area above α_{cr} very sensitive to errors
 \Rightarrow use STI in perturbative regime
Quark propagator

\[\Gamma_{\bar{q}q}(p) = Z_q(p) \left(\frac{1}{p} + M(p) \right) \]

- \(S_{\chi\text{SB}}: M_q(0) \gg M_q(p \gg \Lambda_{\text{QCD}}) \)
- FRG vs. lattice: bare mass, scale setting, lattice \(Z_q \)?
- very sensitive to \(\bar{q}qA \)-interaction, relative scales

Quark-gluon interactions

- quark-gluon interaction most crucial for chiral symmetry breaking
- transverse tensor basis (8 tensors), e.g. γ^μ, $i(p + q)\gamma^\mu$, $\frac{1}{2}[p, q]\gamma^\mu$
- $\lambda^{(i)}(p, q) \to \lambda^{(i)}(p^2, q^2, p \cdot q)$
Quark-gluon interactions

- Quark-gluon interaction most crucial for chiral symmetry breaking
- Transverse tensor basis (8 tensors), e.g. \(\gamma^\mu, i (\not{p} + \not{q}) \gamma^\mu, \frac{1}{2} [\not{p}, \not{q}] \gamma^\mu \)
- \(\lambda^{(i)}(p, q) \rightarrow \lambda^{(i)}(p^2, q^2, p \cdot q) \)

- 3 leading tensors:
 - Classical tensor: constrained by STI at large momenta
 - Chirally symmetric
 - Break chiral symmetry

- Systematic lattice error?
Quark-gluon interactions

- quark-gluon interaction most crucial for chiral symmetry breaking
- transverse tensor basis (8 tensors), e.g. \(\gamma^\mu, i(\not p + \not q) \gamma^\mu, \frac{1}{2} [\not p, \not q] \gamma^\mu \)
- \(\lambda^{(i)}(p, q) \rightarrow \lambda^{(i)}(p^2, q^2, p \cdot q) \)

3 leading tensors:
 - classical tensor: constrained by STI at large momenta
 - chirally symmetric
 - break chiral symmetry

- systematic lattice error?

chirally symmetric tensors from operator \(\bar{q} \not D^3 q \) worsen result
- counteracted by tensor structures in \(\Gamma^{(4)}_{A\bar{A}q} \) and \(\Gamma^{(5)}_{A\bar{A}^2q} \) from \(\bar{q} \not D^3 q \)
Quark-gluon interactions

- quark-gluon interaction most crucial for chiral symmetry breaking
- transverse tensor basis (8 tensors), e.g. γ^μ, $i \left(p + \bar{q} \right) \gamma^\mu$, $\frac{1}{2} \left[p, \bar{q} \right] \gamma^\mu$
- $\lambda^{(i)}(p, q) \rightarrow \lambda^{(i)}(p^2, q^2, p \cdot q)$

3 leading tensors:
- classical tensor: constrained by STI at large momenta
- chirally symmetric
- break chiral symmetry

- systematic lattice error?

- chirally symmetric tensors from operator $\bar{q} \slashed{D}^3 q$ worsen result
- counteracted by tensor structures in $\Gamma_A^{AA\bar{q}q}$ and $\Gamma_A^{A\bar{3}\bar{q}q}$ from $\bar{q} \slashed{D}^3 q$

\Rightarrow expansion in BRST-invariant operators improves convergence?

M. Mitter (BNL) Correlators of QCD Frankfurt, October 2017 15 / 22
Gluon propagator

\[\Gamma_{AA}(p) = Z_A(p) \ p^2 \left(\delta^{\mu\nu} - p^\mu p^\nu / p^2 \right) \]

- infrared suppression ⇔ “confinement”
- insensitive to pion mass
- smooth transition to pert. theory
- scaling solution: lattice comparison?

More correlators

[Yukawa interaction dressings]

- $p \lambda_{qq\pi}$
- $p^2 \lambda_{qq\pi}$
- $p^2 \lambda_{qq\pi}^{(V-A)}$
- $p^2 \lambda_{qq\pi}^{(V+A)}$
- $p_{qq\pi}$

[Four-fermi vertex dressings]

- $p^2 \lambda_{qq\pi}$
- $p^2 \lambda_{qq\pi}^{(S+P)}$
- $p^2 \lambda_{qq\pi}^{(S-P)}$
- $p^2 \lambda_{qq\pi}^{(V-A)}$
- $p^2 \lambda_{qq\pi}^{(V+A)}$

[2-quark-2-gluon vertex dressings]

- $p^2 \lambda_{qq\pi}$
- $p^2 \lambda_{qq\pi}^{(S+P)}$
- $p^2 \lambda_{qq\pi}^{(S-P)}$
- $p^2 \lambda_{qq\pi}^{(V-A)}$
- $p^2 \lambda_{qq\pi}^{(V+A)}$

$m_\pi = 140$ MeV
Pure $SU(N)$ YM-theory

[Cyrol, Fister, MM, Pawlowski, Strodthoff, '16]

[Cyrol, MM, Pawlowski, Strodthoff, '17]

Truncation (blue: magnetic (transverse) leg, red: electric (longitudinal) leg):

\[
\frac{1}{Z_c(\bar{p})} \quad \lambda_{\bar{c}cA}^M(\bar{p}) \quad \lambda_{A^3}^M(\bar{p}) \quad \lambda_{A^4}^M(\bar{p})
\]

\[
\frac{1}{Z_A^M(\bar{p})} \quad \frac{1}{Z_A^E(\bar{p})} \quad \lambda_{A^3}^E(\bar{p}) \quad \lambda_{A^4}^E(\bar{p})
\]
Vacuum

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

- truncation: momentum dependent dressing functions for all classical tensors
- hardest part of solution: fulfilling the modified STI (⇒ scaling solution)
• truncation: momentum dependent dressing functions for all classical tensors
• hardest part of solution: fulfilling the modified STI (⇒ scaling solution)

\[\Gamma_{AA}^{(2)}(p) \propto Z_A(p) \, p^2 \left(\delta^{\mu\nu} - \frac{p^\mu \, p^\nu}{p^2} \right) \]

• IR-suppression ⇔ “confinement”
• smooth transition to perturbation theory

running couplings

degeneracy at large \(p \) due to STI

test of truncation

Propagators at $T \neq 0$

Zeroth mode correlation functions

SU(2)

SU(3)

[Cyrol, MM, Pawlowski, Strodthoff, '17]

M. Mitter (BNL)
Propagators at $T \neq 0$

[Cyrol, MM, Pawlowski, Strodthoff, '17]

Zeroth mode correlation functions

$SU(2)$

$SU(3)$

Backgrounds, ghost and zero crossing \cite{Cyrol, MM, Pawlowski, Strodthoff, '17}

\(\langle \tilde{A}_0 \rangle\) important near \(T_c\), cf. \cite{Herbst et al., '15}
Backgrounds, ghost and zero crossing

$\langle \tilde{A}_0 \rangle$ important near T_c, cf. [Herbst et al., '15]

![Graph showing $\langle \tilde{A}_0 \rangle$ vs. T]

Magnetic zero crossing in 3g-vertex

![Graph showing magnetic zero crossing]

Ghost propagator dressing

![Graph showing ghost propagator dressing vs. p]

Magnetic three-gluon vertex dressing

![Graph showing magnetic three-gluon vertex dressing vs. p]
Status and Outlook

- vacuum QCD
 - QCD from \(\alpha_s(\Lambda = \mathcal{O}(10) \text{ GeV}) \) and \(m_q(\Lambda = \mathcal{O}(10) \text{ GeV}) \)
 - good agreement with lattice correlators
 - more checks on convergence of vertex expansion

finite temperature YM-theory:
 - good agreement with magnetic lattice correlators
 - electric correlators: argued for importance of backgrounds near \(T_c \)
 - Debye mass consistent with HTL perturbation theory at \(T \gtrsim 0.6 \text{ GeV} \).

next stop: QCD @ \(T, \mu > 0 \)
 - equation of state
 - fluctuations of conserved charges
 - order parameters

further applications:
 - input for "QCD-enhanced" models
 - other strongly-interacting theories
Status and Outlook

- vacuum QCD
 - QCD from $\alpha_S(\Lambda = O(10) \text{ GeV})$ and $m_q(\Lambda = O(10) \text{ GeV})$
 - good agreement with lattice correlators
 - more checks on convergence of vertex expansion

- finite temperature YM-theory:
 - good agreement with magnetic lattice correlators
 - electric correlators: argued for importance of backgrounds near T_c
 - Debye mass consistent with HTL perturbation theory at $T \gtrsim 0.6 \text{ GeV}$
Status and Outlook

- vacuum QCD
 - QCD from $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - good agreement with lattice correlators
 - more checks on convergence of vertex expansion

- finite temperature YM-theory:
 - good agreement with magnetic lattice correlators
 - electric correlators: argued for importance of backgrounds near T_c
 - Debye mass consistent with HTL perturbation theory at $T \gtrsim 0.6 \text{ GeV}$

- next stop: QCD @ $T, \mu > 0$
 - equation of state
 - fluctuations of conserved charges
 - order parameters
Status and Outlook

- **vacuum QCD**
 - QCD from $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - good agreement with lattice correlators
 - more checks on convergence of vertex expansion

- **finite temperature YM-theory:**
 - good agreement with magnetic lattice correlators
 - electric correlators: argued for importance of backgrounds near T_c
 - Debye mass consistent with HTL perturbation theory at $T \gtrsim 0.6 \text{ GeV}$

- **next stop: QCD @ $T, \mu > 0$**
 - equation of state
 - fluctuations of conserved charges
 - order parameters

- **further applications:**
 - input for “QCD-enhanced” models
 - other strongly-interacting theories