Are thermal conductivity or bulk viscosity important in neutron star mergers?

Prof. Mark Alford
Washington University in St. Louis

Alford, Bovard, Hanauske, Rezzolla, Schwenzer
arXiv:1707.09475

U.S. Department of Energy
Office of Science
Outline

- Neutron star mergers
- Thermal conductivity
- Bulk viscosity
- Conclusions
Neutron star mergers

Mergers probe the properties of nuclear/quark matter at high density (up to $\sim 4n_{\text{sat}}$) and temperature (up to ~ 60 MeV).

In developing signatures for quark matter, we must include all the relevant physics for nuclear matter.
Nuclear material in a neutron star merger

Significant spatial/temporal variation in:
- temperature
- fluid flow velocity
- density

so we need to allow for
- thermal conductivity
- shear viscosity
- bulk viscosity
Role of transport in mergers

We can estimate the equilibration times for various forms of dissipation, to decide which is the most important.

- **Thermal equilibration:** If neutrinos are trapped, and there are short-distance temperature gradients then thermal transport might be fast enough to play a role.

\[
\tau_{\kappa}^{(\nu)} \approx 700 \text{ ms} \left(\frac{z_{\text{typ}}}{1 \text{ km}} \right)^2 \left(\frac{T}{10 \text{ MeV}} \right)^2 \left(\frac{0.1}{x_p} \right)^{1/3} \left(\frac{m_n^*}{0.8 m_n} \right)^3 \left(\frac{\mu_e}{2 \mu_\nu} \right)^2
\]

- **Shear viscosity:** similar conclusion.

- **Bulk viscosity:** If Direct Urca processes remain suppressed at the relevant densities and temperatures, bulk viscosity will quickly damp density oscillations

\[
\tau_{\zeta}^{\text{min}} \approx 3 \text{ ms} \left(\frac{t_{\text{comp}}}{1 \text{ ms}} \right) \left(\frac{K}{250 \text{ MeV}} \right) \left(\frac{0.25 \text{ MeV}}{Y_\zeta} \right)
\]
Nuclear material constituents

Temperature: 5 to 20 MeV
Density: up to $4n_{\text{sat}}$

Fermi surfaces:
- neutrons
- protons
- electrons
- neutrinos, if $T \gtrsim 10$ MeV

neutrons: $\sim 90\%$ of baryons
protons: $\sim 10\%$ of baryons
electrons: same density as protons
neutrinos: only present if mfp $\lesssim 1$ km

\begin{align*}
\rho_{F_n} & \sim 350 \text{ MeV} \\
\rho_{F_p} & \sim 150 \text{ MeV} \\
\rho_{F_e} & = \rho_{F_p} \\
\rho_{F_\nu} & \sim \frac{1}{2} \rho_{F_e}
\end{align*}
Thermal equilibration

Temperature

Volume
$V \sim z_{typ}^3$

Surface area
$A \sim 6z_{typ}^2$

Extra heat in region:
$E_{therm} = c_V V \Delta T \approx c_V z_{typ}^3 \Delta T$

Rate of heat outflow:
$W_{therm} = \kappa \frac{dT}{dz} A \approx \kappa \frac{\Delta T}{z_{typ}} 6z_{typ}^2$

Time to equilibrate:
$\tau_\kappa = \frac{E_{therm}}{W_{therm}} \approx \frac{c_V z_{typ}^2}{6\kappa}$
Thermal equilibration time

Time to equilibrate: \[\tau_\kappa = \frac{E_{\text{therm}}}{W_{\text{therm}}} \approx \frac{c_V z_{\text{typ}}^2}{6\kappa} \]

In neutron star mergers, things happen on the 10 ms timescale.

Thermal diffusion is important if \(\tau_\kappa \lesssim 10 \text{ ms} \)
Specific heat capacity:

Dominated by neutrons

\[c_V \sim \text{number of states available to carry energy} \lesssim T \]
\[\sim \text{vol of mom space with states available to carry energy} \lesssim T \]
\[\sim p_{Fn}^2 \delta p \]

\[\delta p = \frac{T}{v_{Fn}} = T \times \frac{m^*_n}{p_{Fn}} \]
\[c_V \sim p_{Fn}^2 \delta p \sim p_{Fn}^2 \frac{m^*_n}{p_{Fn}} T \sim m^*_n p_{Fn} T \]

(Note: neutron density \(n_n \sim p_{Fn}^3 \))

\[c_V \approx 1.0 m^*_n n_n^{1/3} T \]
Thermal conductivity

Thermal conductivity \(\kappa \propto n v \lambda \)

Dominated by the species with the right combination of
- high density
- weak interactions \(\Rightarrow \) long mean free path (mfp) \(\lambda \)

neutrons: high density, but strongly interacting (short mfp) \(\times \)

protons: low density, strongly interacting (short mfp) \(\times \)

electrons: low density, only E&M interactions (long mfp) \(\checkmark \)

neutrinos:
\[
\begin{cases}
T \lesssim 10 \text{ MeV}: \lambda > \text{size of merged stars, so} \\
\text{they all escape, density } = 0 \quad \times \\
T \gtrsim 10 \text{ MeV}: \lambda < \text{size of merged stars,} \\
\text{but still very long mfp!} \quad \checkmark \checkmark
\end{cases}
\]
Electrons vs Neutrinos

$$\tau_\kappa \approx \frac{c_V Z_{\text{typ}}^2}{6\kappa}$$

- **electron-dominated** ($T \lesssim 10 \text{ MeV}$)
 $$\kappa^{(e)} \approx 1.5 \frac{n_e^{2/3}}{\alpha}$$

- **neutrino-dominated** ($T \gtrsim 10 \text{ MeV}$)
 $$\kappa^{(\nu)} \approx 0.33 \frac{n_\nu^{2/3}}{G_F^2 m_n^* n_e^{1/3} T}$$

Equilibration time:

$$\tau_\kappa^{(e)} = 5 \times 10^8 \text{s} \left(\frac{Z_{\text{typ}}}{1 \text{ km}} \right)^2 \left(\frac{T}{1 \text{ MeV}} \right) \times \left(\frac{m_n^*}{0.8 m_n} \right) \left(\frac{n_0}{n_n} \right)^{1/3} \left(\frac{0.1}{x_p} \right)^{2/3}$$

$$\tau_\kappa^{(\nu)} \approx 0.7 \text{s} \left(\frac{Z_{\text{typ}}}{1 \text{ km}} \right)^2 \left(\frac{T}{10 \text{ MeV}} \right)^2 \times \left(\frac{\mu_e}{2\mu_\nu} \right)^2 \left(\frac{0.1}{x_p} \right)^{1/3} \left(\frac{m_n^*}{0.8 m_n} \right)^3$$

Electron thermal transport is *slow*! Electron mfp is too short

Neutrino thermal transport... maybe if gradients on 0.1 km scale?
Bulk viscosity: compression dissipation

Bulk viscosity turns compression energy of density oscillations into heat.

Density vs time for tracers in merger

Tracers (co-moving fluid elements) show dramatic density oscillations especially in the first 5 ms.

- Amplitude: up to 50%
- Period: \(\sim 2 \) ms

What is the largest bulk viscosity \(\zeta_{\text{max}} \) we could expect?

What is the equilibration time \(\tau_{\zeta} \)?

I.e. how long does it take for bulk viscosity to dissipate a good fraction of the energy of a density oscillation?
Bulk viscosity: phase lag in system response

Some component in the material is equilibrating slowly. Baryon density n and hence fluid element volume V gets out of phase with applied pressure p:

$$\text{Dissipation} = - \int p \, dV = - \int p \, \frac{dV}{dt} \, dt$$

No phase lag. Dissipation $= 0$

Some phase lag. Dissipation > 0

Diagrams

- **No phase lag.** Dissipation $= 0$
 - Pressure $p(t)$ vs. Volume $V(t)$
 - Derivative of Volume dV/dt

- **Some phase lag.** Dissipation > 0
 - Pressure $p(t)$ vs. Volume $V(t)$
 - Derivative of Volume dV/dt
Bulk viscosity: a resonant phenomenon

Bulk viscosity is maximum when

\[
\gamma \sim \omega
\]

\[
\zeta = C \frac{\gamma}{\gamma^2 + \omega^2}
\]

What quantity would equilibrate on the timescale of the density oscillations in neutron star mergers (milliseconds)?
Bulk viscosity: a resonant phenomenon

Bulk viscosity is maximum when

\[
\gamma \sim \frac{\omega}{\zeta} = C \frac{\gamma^2}{\gamma^2 + \omega^2}
\]

What quantity would equilibrate on the timescale of the density oscillations in neutron star mergers (milliseconds)?

Flavor, via weak interactions
When you compress nuclear matter, the proton fraction wants to change.

Weak interactions convert $n \leftrightarrow p$

But exactly what is the timescale?
Is it similar to the millisecond timescale of density oscillations in neutron star mergers?
Flavor equilibration processes

Direct Urca

\[n \rightarrow p \rightarrow e^- \rightarrow \nu_e \]

Only occurs if proton density is high enough: \(p_{Fn} < p_{Fe} + p_{Fp} \)

Rate \(\gamma_D \sim T^4 \)

Modified Urca

\[n \rightarrow p \rightarrow \pi^- \rightarrow e^- \rightarrow \nu_e \]

\[p \rightarrow n \rightarrow e^- \rightarrow \nu_e \]

\[p \rightarrow n \rightarrow \pi^- \rightarrow e^- \rightarrow \nu_e \]

\[\gamma_M \sim T^6 \]
When can Direct Urca happen?

\[n \rightarrow p \, e^- \, \bar{\nu}_e, \quad p \, e^- \rightarrow n \, \nu_e \]

For \(T = 0 \) and the case of no neutrino trapping (\(\mu_\nu = 0 \))

High proton fraction:
Direct Urca open

\[\vec{p}_n = \vec{p}_p + \vec{p}_e \] is possible
because \(p_{Fn} < p_{Fp} + p_{Fe} \)

Low proton fraction:
Direct Urca closed

\[\vec{p}_n = \vec{p}_p + \vec{p}_e \] is impossible
because \(p_{Fn} > p_{Fp} + p_{Fe} \)
Bulk viscosity: resonant peak

For oscillations of freq $\omega = 2\pi \times 1$ kHz

Bulk visc reaches maximum when flavor equilibration rate $\gamma(T) = \omega$.

Direct Urca is faster, so $\gamma_D(T) = \omega$ at $T \sim 1$ MeV

ζ suppressed at $T \gtrsim 5$ MeV

Modified Urca is slower, so $\gamma_M(T) = \omega$ at $T \sim 7$ MeV

ζ_{max} is determined by EoS, indp of equilibration rate

Typical temperature in first 5ms of post-merger (where density oscillations are large) is 5-20 MeV, so we expect strong bulk viscosity if the Direct Urca channel is suppressed (proton density low).
Does Direct Urca occur?

Direct Urca happens when \(p_{Fn} < p_{Fe} + p_{Fp} \)

i.e. when \(p_{Fn} - p_{Fe} - p_{Fp} < 0 \)

At \(T = 0 \), there is no consensus among candidate nuclear matter equations of state about the threshold density for Direct Urca.

Need to consider:

- Thermal effects
- Interaction effects
- Gradual opening of Direct Urca phase space
- Effects of \(\nu_e \) trapping

The amount of bulk visc dissipation is a probe of the nuclear EoS
Bulk viscosity equilibration time

Density oscillation of amplitude Δn on timescale t_{comp}:

$$n(t) = \bar{n} + \Delta n \cos\left(\frac{2\pi t}{t_{\text{comp}}}\right)$$

Energy of density oscillation:

$$\mathcal{E}_{\text{comp}} = \frac{K}{18} \frac{\bar{n}}{\bar{n}} \left(\frac{\Delta n}{\bar{n}}\right)^2$$

Compression dissipation rate:

$$\mathcal{W}_{\text{comp}} = \frac{2\pi^2 \zeta}{t_{\text{comp}}^2} \left(\frac{\Delta n}{\bar{n}}\right)^2$$

Damping Time:

$$\tau_{\zeta} = \frac{\mathcal{E}_{\text{comp}}}{\mathcal{W}_{\text{comp}}} = \frac{K \bar{n} t_{\text{comp}}^2}{36\pi^2 \zeta}$$

Bulk visc is important if $\tau_{\zeta} \lesssim 10 \text{ ms}$
Is bulk visc big enough to matter?

There are high-amplitude density oscillations with \(f \sim 1 \text{ kHz} \) in regions at \(T \sim 5 \) to 10 MeV

Suppose Direct Urca processes are suppressed at those temperatures and densities. Then flavor equilibration via modified Urca will achieve its maximum value

Max bulk visc from flavor equilibration is

\[
\zeta_{\text{max}} = Y_{\zeta} \bar{n} t_{\text{comp}}
\]

\[
\tau_{\zeta}^{\text{min}} = \left(\frac{K}{36\pi^2 Y_{\zeta}} \right) t_{\text{comp}}
\]

\[
\approx 3 \text{ ms} \left(\frac{t_{\text{comp}}}{1 \text{ ms}} \right) \left(\frac{K}{250 \text{ MeV}} \right) \left(\frac{0.25 \text{ MeV}}{Y_{\zeta}} \right)
\]
Max bulk visc “Y” factor

Typical value is in the 0.1 to 1 MeV range
State of post-merger matter

Temperature is in the range that maximizes bulk viscosity. (assuming Modified Urca only)

Large amplitude $\sim 1 \text{ kHz}$ density oscillations during the first 5-10 ms

Density oscillation freq in kHz range
Summary

It is useful to have estimates of the equilibration times for various forms of dissipation, to decide which is the most important.

- **Thermal equilibration:** If neutrinos are trapped, and there are short-distance temp gradients then thermal transport might be fast enough to play a role.

 \[
 \tau_{\kappa}^{(\nu)} \approx 700 \text{ms} \left(\frac{Z_{\text{typ}}}{1 \text{ km}} \right)^2 \left(\frac{T}{10 \text{ MeV}} \right)^2 \left(\frac{0.1}{x_p} \right)^{1/3} \left(\frac{m^*_n}{0.8 m_n} \right)^3 \left(\frac{\mu_e}{2 \mu_\nu} \right)^2
 \]

- **Shear viscosity:** similar conclusion.

- **Bulk viscosity:** If Direct Urca processes remain suppressed at the relevant densities and temperatures, bulk viscosity will quickly damp density oscillations

 \[
 \tau_{\zeta}^{\text{min}} \approx 3 \text{ ms} \left(\frac{t_{\text{comp}}}{1 \text{ ms}} \right) \left(\frac{K}{250 \text{ MeV}} \right) \left(\frac{0.25 \text{ MeV}}{Y_\zeta} \right)
 \]
The Future

- Incorporate bulk viscosity in numerical simulations
- What density and temperature range allows Direct Urca?
- Understand neutrino trapping. At what temp/density is there neutrino domination of thermal and shear viscous transport? Does neutrino trapping affect bulk viscosity?
- Are there short-range gradients ($z_{\text{typ}} \sim 0.1 \text{ km}$) that would lead to rapid shear viscous or thermal equilibration?
- Explore the role of dissipation in the collapse of a single star to a denser “third family” or “twin star” configuration