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Modifications of ∆(1232) and nucleon spectral functions at finite temperature and baryon density
are evaluated in terms of resonant scattering off thermal pions, as well as a renormalization of the
vacuum ∆-width including vertex corrections. The interactions are based on effective Lagrangians
of pions and baryon resonances, with underlying parameters (coupling constants and form factors)
determined by the elastic πN scattering phase shift in the isobar channel, and by empirical decay
branchings of excited resonances. Pion modifications are included via interactions in a pion gas,
as well as standard ∆- and nucleon-hole excitations in nuclear matter. In hot hadronic matter,
under conditions resembling thermal freezeout at the Relativistic Heavy-Ion Collider (RHIC), the ∆
exhibits a significant broadening of ∼65 MeV together with a slight upward peak shift of 5-10 MeV,
in qualitative agreement with preliminary data from the STAR collaboration.

PACS numbers: 25.75.-q,21.65.+f,12.40.-y

I. INTRODUCTION

In strong interactions at low and intermediate momentum transfer the relevant degrees of freedom are associated
with colorless hadrons. Whereas their interactions are constrained by the approximate chiral symmetry (CS) in the
two-flavor sector of Quantum Chromodynamics (QCD), their mass spectrum is largely governed by the spontaneous
breaking of CS (SBCS) in the QCD vacuum. At temperatures T ≃ 150-200 MeV, CS is expected to be restored [1],
implying substantial modifications of the hadronic spectrum close to the critical temperature. Pertinent medium
modifications of hadrons are hoped to be identified by creating hot and dense nuclear matter in high-energetic
collisions of heavy nuclei.

In recent years, intense theoretical efforts have been devoted to understand in-medium properties of especially
vector mesons, which are rather directly accessible in heavy-ion experiments through decays into dileptons, emitted
throughout the hot and dense phases of the collision with negligible final-state interactions (for a review, see, e.g.,
Ref. [2]). Baryonic effects have been found to be of particular importance in accounting for the large excess production
of lepton pairs, observed in Pb-Au collisions [3, 4], at invariant masses below the vacuum ρ-mass. Consequently,
towards a more complete picture, in-medium effects of the baryon spectrum itself deserve further investigation.

In the present article we calculate modifications of the nucleon (N) and ∆(1232) particles in a hot and dense
medium within an effective quantum-field theoretical hadronic model coupled with standard many-body techniques.
Besides their (indirect) role in dilepton production, ∆ properties in heavy-ion collisions are accessible via resonance
spectroscopy, i.e., mass and width changes in the line shapes of πN invariant-mass spectra [5, 6, 7, 8]. In-medium ∆
spectral function to date were mostly evaluated for cold nuclear matter [9, 10, 11, 12, 13, 14], with few exceptions [15,
16]. Here we go beyond the latter works by performing a more detailed treatment of its pion-nucleon cloud at finite
temperature including vertex corrections, as well as resonance excitations induced by thermal pions. Also, thermal
self-energies of the nucleon beyond the ∆ contribution are, to our knowledge, assessed for the first time [17, 18, 19, 20].
In a more general context, the change of the baryon spectrum towards chiral restoration is an important component
in the understanding of QCD phase transitions in the µB-T plane (µB : baryon chemical potential).

Our article is organized as follows: In Sec. II we introduce the hadronic interaction Lagrangians that are subsequently
employed and discuss the determination of the free parameters, using vacuum scattering and decay data. In Sec. III
we compute in-medium self-energies of nucleon and ∆. The latter are used in Sec. IV to evaluate N and ∆ spectral
properties in matter. For the ∆, we first qualitatively confront the effects of cold nuclear matter with information from
nuclear photoabsorption, and then discuss both N and ∆ spectral functions in hot and dense matter under conditions
expected for heavy-ion experiments at various collision energies. In Sec. V we summarize and give an outlook.

II. HADRONIC INTERACTION LAGRANGIANS IN VACUUM

The central quantities of interest in our present analysis are the in-medium propagators of the two lowest-lying
non-strange baryon states, nucleon and ∆. Throughout this article we employ a quasi-relativistic description of the
baryon fields, i.e., use relativistic dispersion relations, E2

B(~p) = m2
B + ~p2 (B=N , ∆, N∗, ∆∗), but neglect anti-particle

contributions and additionally restrict Rarita-Schwinger spinors to their non-relativistic spin-3/2 components. Pions
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are treated fully relativistic, with ω2
π(~k) = m2

π + ~k2. Within this approximation, the free retarded propagators for
baryons and pions read

G
(0)
B (p) =

1

p0 − EB(~p) − Σ
(0)
B (p)

, G(0)
π (k) =

1

k2
0 − ω2

π(~k) + iη sign(k0)
, (1)

where Σ
(0)
B (p) denotes the vacuum self-energy encoding the partial decay branchings of each resonance. Except for

the ∆ (for which a renormalization of its bare mass is accounted for via the πN loop), we use constant physical pole

masses implying that only the imaginary part of Σ
(0)
B is nonzero (for the nucleon, Σ

(0)
B =0).

A key ingredient in our description are the interaction vertices involving a pion and two baryons. The following
notation is adopted below: two-component spin-1/2 fields are denoted by ψ and four-component spin-3/2 fields by Ψ;
the isospin of a resonance is indicated by an appropriate subscript (“1” and “3” for I = 1/2 and 3/2, respectively).
The dominant coupling type is usually given by the lowest angular momentum in the pion decay (except for πNN ,
where s-wave interactions are neglected), but higher waves are included whenever empirically significant. Pions are

represented by a real isospin triplet ~φ transforming according to the fundamental SO(3) representation of the isospin
group. This leads us to the following interactions [10, 21, 22, 23, 24] involving nucleons,

L
(11)
s,N = −fψ†

1~τ
~φψN + h.c. (2)

L
(11)
p,N = −

f

mπ

ψ†
1[(~σ

~∇)(~τ ~φ)]ψN + h.c. (3)

L
(31)
s,N = −fψ†

3
~T ~φψN + h.c., (4)

and ∆(1232) resonances,

L
(13)
s,∆ = igΨ†

1
~T †~φΨ∆ + h.c. (5)

L
(33)
s,∆ = igΨ†

32
~Θ~φΨ∆, (6)

L
(13)
p,∆ = −

f

mπ

ψ1[(~S
†~∇)(~T †~φ)]Ψ∆ + h.c. (7)

L
(33)
p,∆ = −

f

mπ

Ψ3[(2~Σ~∇)(2~Θ~φ)]Ψ∆ + h.c. (8)

L
(13)
d,∆ = −i

f

m2
π

ψ1[(~S~∇)(~S†~∇)(~T †~φ)]Ψ∆ + h.c. (9)

L
(33)
d,∆ = −i

f

m2
π

ψ†
3[(~σ

~∇)(~S†~∇)(2~Θ~φ)]Ψ∆ + h.c. (10)

In the above equations, the superscripts on the left-hand-side refer to the isospin content of the two baryon fields,
whereas the subscripts l, N (l,∆) indicate the angular momentum l=s, p and d in the πN (π∆) system. Furthermore,

~σ (~τ ) are Pauli matrices in (iso-) spin space, and ~S (~T ) the pertinent 1/2→3/2 transition matrices (consisting of

appropriate Clebsch-Gordan coefficients which project the 1-1/2 couplings onto pure 3/2 states). Finally, ~Σ (~Θ)
denote the (iso-) spin-3/2 (4×4-) matrices. The finite size of the vertices is accounted for by phenomenological

hadronic form factors, which are of monopole type for s- and p-wave couplings (2-8), Fmon(|~k|) = Λ2/(~k2 + Λ2), and

of dipole type for the d-wave couplings (9) and (10), Fdip(|~k|) = 4Λ4/(2Λ2 + ~k2)2.
Except for πNN and πN∆ vertices, all πB1B2 coupling constants are adjusted to the (average) empirical values of

the corresponding partial B2 → B1π decays (using pole masses and widths) according to the Particle Data Group [25],
together with a uniform form-factor cutoff Λπ∆B=500 MeV, cf. Tab. I. Since the main focus in the present article is
on spectral properties of the ∆ resonance, we calculate its vacuum self-energy including a finite real part. With the
interaction vertex, Eq. (8), and using free pion and nucleon propagators, its imaginary part takes the form

ImΣ
(Nπ)
∆ (M) = −

fπN∆

12m2
ππ

mNk
3
cm

M
F 2(kcm)Θ(M −mN −mπ), k2

cm =
(M2 −m2

N −m2
π)2 − 4m2

Nm
2
π

4M2
. (11)

Here, we introduced an extra factor mN/EN (kcm) to ensure a Lorentz-invariant decay width. The real part of the
self-energy is then determined by its spectral representation. Assuming the πN interaction in the 33-channel to be
dominated by the ∆ resonance allows to relate the self-energy to the πN elastic scattering phase shifts via

tan[δ33(M)] =
ImG∆(M)

ReG∆(M)
. (12)
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Vertex Eq. f (g)

πNN (3) 1.0

πN∆ (7) 3.2

πNN(1440) (3) 0.779

πNN(1535) (2) 1.316

πN∆(1600) (7) 1.170

πN∆(1620) (5) 0.828

π∆N(1440) (7) 2.185

π∆∆(1600) (8) 0.211

π∆N(1520) (5) 0.760

(9) (-1.126)

π∆N(1700) (9) 0.351

π∆∆(1620) (10) 0.111

π∆∆(1700) (6) 0.655

TABLE I: πNB and π∆B vertices and coupling constants used in the present analysis.

As is well known, within this approximation a satisfactory fit to the δ33 phase shift [16, 26, 27] requires a low cutoff,

ΛπN∆=290 MeV, together with a large coupling constant, fπN∆=3.2, and a bare mass of m
(0)
∆ =1302 MeV [16, 26, 27].

The same cutoff will be employed for the πNN vertex with the standard value for the coupling constant, fπNN=1.
Baryon-baryon interactions via t-channel meson exchange are negelcted in the present analysis. In high-temperature

matter, which is our main interest here, we expect resonant meson-baryon scattering to be more important, as it was
the case for earlier calculations of the pion and ρ-meson spectral functions in hot and dense matter [2].

III. IN-MEDIUM SELF-ENERGIES

With the above interaction vertices we proceed to evaluate N and ∆ self-energies in hot and dense hadronic matter.
The in-medium ∆ self-energy has two components. The first, and more involved one is the πN decay extended

to finite temperatures and baryon densities. We employ the imaginary-time (Matsubara) formalism to calculate the
corresponding Nπ-loop diagram according to

Σ
(Nπ)
∆ (p) = −i

f2
πN∆

3m2
π

∫

d3~l

(2π)3
mN

EN (~l)
T

∑

zν

F 2(|~k|)~k2Gπ(iωκ − izν , ~p− ~k)GN (izν ,~l)

=
f2

πN∆

3m2
π

∫

d4l

(2π)4
mN

EN (~l)
~k2F 2

π (~k2){[Θ(k0) + σ(k0)f
π(|k0|)]Aπ(k)GN (l) − fN (l0)AN (l)Gπ(k)} ,

(13)

where k = p− l is the pion four-momentum, and AN = −2 ImGN and Aπ = −2 ImGπ denote the in-medium nucleon

and pion spectral function, respectively (the extra factor mN/EN (~l) ensures consistency with Eq. (11)). The thermal
distribution functions are given by fN (l0) = f fermi(l0−µN , T ) and fπ(|k0|) = fbose(|k0|, T ) exp(µπ/T ), with f fermi and
fbose being the standard Fermi and Bose functions, respectively. To avoid Bose poles in the presence of finite widths
for in-medium pion spectral functions, pion-chemical potentials, µπ>0, are treated in Boltzmann approximation.

The second equality in Eq. (13) follows by using the Lehmann representation for the propagators together with
an analytical continuation in the energies. Positive energies k0 > 0 then correspond to outgoing pions encoding the
in-medium ∆ → πN decay, whereas contributions with k0 < 0 correspond to scattering with pions from the heat
bath. The nucleon spectral function will be discussed in more detail below. The pion spectral function is based on
a pion self-energy Σπ(k;T, µπ, µN ) that includes contributions from both finite temperatures and baryon densities.
The temperature modifications are modeled by a four-point ππ interaction to second order in the coupling constant,
corresponding to so-called sunset diagrams [28]. The value of the coupling constant is adjusted to approximately
reproduce pion gas self-energies obtained from more realistic ππ interactions in s-, p- and d-wave [29]. The baryonic
effects are calculated in terms of standard Lindhard functions for p-wave nucleon- and ∆-hole excitations at finite
temperature including short-range correlations parametrized by Migdal parameters [30] (due to the soft form factors
we use rather small default values g′11=0.8 and g′12=g

′
22=0.33 [22]). As is well-known from similar evaluations of

ρ-meson self-energies [31, 32] (see also Ref. [15] for an early application for the ∆), the p-wave softening of the pion
dispersion relation can induce an artificial threshold enhancement due to a near vanishing of the pion group velocity.
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FIG. 1: Diagrammatic representation of the πN∆-vertex corrections (dashed lines: pion propagator, solid lines: nucleon
propagator, double solid lines: ∆(1232) propagator); a blob with label α corresponds to the Lindhard function Πα (α ∈ {1, 2})
attached to the baryon lines with the pertinent Migdal parameters, i.e., g′

12 for α=1 and g′

22 for α=2.

This is remedied through the inclusion of vertex corrections, which, for the vector-meson case, are, in fact, required to
maintain a conserved vector current. Here, we adopt a similar procedure involving four-point baryon vertices which
are resummed in complete analogy to (and with the same coupling constants as) the Migdal corrections in the pion
propagator. The vertex corrections amount to replacing the pion propagators in Eq. (13) by

G̃π(k) = Gπ(k){1 + g′12Π1(k) + g′22Π2 + [g′12Π1(k) + g′22Π2]
2} +

g′212Π1(k) + g′222Π2(k)

~k2
, (14)

where Π1 and Π2 denote resummed finite-temperature Lindhard functions corresponding to Feynman diagrams with
outgoing NN−1-, N∆−1-loops, respectively, cf. Fig.1. The vertex corrections are, in fact, closely related to the
“induced interaction” as implemented in the nuclear ∆ width in Ref. [10]. Here, we restrict ourselves to the longitudinal
(pion-) component; the transverse part including exchange of in-medium ρ mesons will be addressed in future work.

The second component of the in-medium ∆ self-energy arises from interactions with thermal pions, approximated
by s-channel resonance formation. Evaluating the finite temperature part of pertinent πB loop diagrams within the
Matsubara formalism leads to

Σ
(πB)
∆ (p) = −

∫

l0≥p0

d4l

(2π)4
v2

π∆B(~k)
[

fπ(|k0|)Aπ(k) GB(l) + fB(l0)AB(l) Gπ(k)
]

. (15)

As before, k=p− l is the pion-four momentum, and vπNB are the interaction vertices (including hadronic form factors)
following from the Lagrangians (5)-(10), summed (averaged) over spins and isospins of the baryon resonance B and
the pion (∆). In the baryon-resonance Green’s function in-medium effects on the decay width are accounted for
through thermal occupation factors, whereas modifications of the real part (due to medium effects on the various
decay products), as well as possible vertex corrections, are neglected (recall that these two effects tend to compensate
each other, cf. the discussion before Eq. (14) above). Also note that we suppressed the contributions of the πB
loop that survive in the vacuum (technically, this is achieved by introducing the factor Θ(k0) into the integrand).
This is to ensure consistency with our fit to the free πN scattering phase shifts where such diagrams have not been

included (those would not only affect the imaginary part of Σ
(0)
∆ above threshold, but also require additional mass

and wave-function renormalizations through its real part).
The medium effects on the nucleon are attributed to s-channel interactions with thermal pions. Starting from the

equivalent expression for the ∆, Eq.(15), we apply the same level of approximation as for the pions (encoded in the
Lindhard functions), i.e., neglecting off-shell energy-dependencies in the thermal distribution functions and resonance
widths. For the p-wave scattering πN→N and πN→∆, e.g., this leads to

Σ
(T )
N (p) = −

∫

d3~l
~k2F 2

π

ωπ(~k)

{

3f2
πNN

16π3m2
π

fπ[ωπ(~k)] + fN [EN (~l)]

EN (~l) − ωπ(~k) − p0 − iǫ
+

f2
πN∆

12π3m2
π

fπ[ωπ(~k)] + f∆[E∆(~l)]

E∆(~l) − ωπ(~k) − p0 − iΓ∆/2

}

. (16)

and likewise for the other resonances listed in Table I.
Let us finally comment on the chemical potentials entering the thermal distribution functions. In high-energy

heavy-ion collisions, hadron yields can be rather accurately described by a “chemical freezeout” [33], characterized by
a common temperature and baryon chemical potential (depending on collision energy), with meson-chemical potentials
equal to zero. In subsequent hadronic cooling, finite chemical potentials for stable mesons are required to maintain
the observed hadron ratios [34]. Relative equilibrium for strong processes, e.g., ππ ↔ ρ or πN ↔ ∆, then implies
relations of the type 2µπ=µρ, µN + µπ=µ∆, which will be incorporated below.
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FIG. 3: Nucleon spectral function in hot hadronic
matter under RHIC conditions; solid line: “chemical
freezeout” with T=180MeV, ̺N=0.68̺0 (µN=333MeV),
µπ=0; dashed line: “thermal freezeout” with T=100MeV,
̺N=0.12̺0 (µN=531MeV) and µπ=96MeV; the dotted
line indicates the location of the free nucleon mass.

IV. NUCLEON AND ∆ SPECTRAL FUNCTIONS IN MEDIUM

A. Cold Nuclear Matter

A valuable model test of the nuclear medium effects on the ∆ can be performed by comparing its spectral properties
to photoabsorption data on nuclei (see, e.g., Ref. [35] for a recent example). This, in particular, allows to better
constrain the in-medium modifications of the pion (depending on the πNN form factor and Migdal parameters)
and the impact of the πN∆ vertex corrections. The photoabsorption cross section can be written in terms of the
photon-polarization tensor, Πγ , as

σabs
γA

A
=

4πα

k

1

̺N

1

2
ImΠγ(k0 = k) , Πγ =

1

2
gµνΠµν , (17)

where k0 = k denotes the photon energy (momentum). Πγ is evaluated via the γ-induced ∆-hole excitation which we
obtain from the standard magnetic coupling [11]

LγN∆ = −
fγN∆

4πmπ

ψ†
N (~S† ×∇) ~AT †

3 Ψ∆ + h.c. (18)

The cross section on the nucleon follows from the low-density limit of Eq. (17) using the vacuum ∆ propagator
(we also supplemented a non-resonant constant “background” of 80 µb [22]); with a coupling constant fγN∆=0.653
and a (monopole-) form factor cutoff, ΛγN∆=400 MeV, the nucleon data in the ∆-resonance region are resonably
well reproduced [42]. The cross section on nuclei follows with no further adjustments by using the in-medium ∆
propagator, assuming an average density of ρN=0.8ρ0 (the results are almost identical for ρN=ρ0). Given our rather
simple treatment, the agreement with the nuclear data is fair, cf. left panel of Fig. 2. The sensitivity to changes in
the Migdal parameters is very moderate. The discrepancies at low energies may be due to neglecting (i) interference
between resonant and non-resonant terms, (ii) direct nucleon-hole excitations, or (iii) transverse contributions in
the vertex corrections of the ∆ decay with medium-modified ρ mesons. Obviously, at higher energies, additional
resonances need to be included.

B. Hot Hadronic Matter

We now turn to our main results, applying the model to hot and dense hadronic matter expected to be formed in
heavy-ion collisions at RHIC (meson-dominated matter) and the future GSI facility (baryon-dominated matter).
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FIG. 4: Left: The in-medium spectral function of the ∆(1232) for typical conditions at RHIC, compared to the vacuum
(dash-dotted line). Dashed line: T=100 MeV, ̺N=0.12̺0 (µN=531 MeV), µπ=96 MeV; solid line: T=180 MeV, ̺N=0.68̺0

(µN = 333 MeV), µπ=0. Right: The same for typical conditions, expected at the future GSI facility. Dashed line: T=70 MeV,
̺N=0.19̺0 (µN=727 MeV), µπ=105 MeV; solid line: T=160 MeV, ̺N=1.80̺0 (µN=593 MeV), µπ=0.

The nucleon-spectral function is displayed in Fig. 3 for RHIC conditions. Resonant πN→B scattering is found to
induce an appreciable broadening (exceeding 200 MeV at the expected chemical freezeout), which, around the free
nucleon mass, is to ∼80% due to the ∆ excitation (at T=180 MeV, the shoulder at somewhat higher nucleon energies
is mainly caused by the N(1520) and ∆(1600) resonances). One also observes a slight attractive mass shift, induced
by the higher resonance states which are located (well) above typical Nπ energies.

For the ∆(1232) spectral function at RHIC (left panel in Fig. 4), about half of its width is due to baryon resonance
excitations (which are additionally enhanced somewhat due to the inclusion of the in-medium pion propagator in the
loop diagram). The other half of the in-medium broadening is mostly generated by the Bose enhancement factor on
the pion in the πN decay. In the real part of the ∆ self-energy, there is a large cancellation between the attraction
generated by the baryon resonances and the repulsion induced by the medium effects on the πN loop, mostly driven
by finite baryon densities (with significant contributions from the vertex corrections).

For conditions resembling thermal freezeout (dashed line in the left panel of Fig. 4), the peak position is located
at about M≃1.226 GeV, and the line width has increased to Γ≃177 MeV, to be compared to the vacuum values of
M≃1.219 GeV and Γ≃110 MeV, respectively. The in-medium changes in these quantities are in qualitative agreement
with preliminary data from the STAR collaboration [7, 8]. For a more conclusive comparison between our model and
experimental data a reliable description of the freezeout dynamics is necessary.

Towards the phase boundary, the width of the ∆(1232) further increases substantially; additional contributions
from coupling to in-medium ρ-mesons (as well as pertinent vertex corrections), not included at present, are likely to
accelerate the broadening (without medium effects on the ρ, the Nρ channel is kinematically strongly suppressed).

Finally, in the right panel of Fig. 4, we display ∆-spectral functions in a net-baryon rich environment, approximately
corresponding to heavy-ion collisions at the future GSI facility. Whereas around thermal freezeout the line shape is
affected rather little, close to the phase boundary the resonance structure has essentially melted.

V. CONCLUSIONS AND OUTLOOK

Based on an effective hadronic model we have studied the properties of the nucleon and the ∆(1232) in hot and dense
matter. Medium modifications in the pion cloud of the ∆ were accounted for through in-medium pion and nucleon
propagators (including vertex corrections), and pertinent thermal occupation factors. Direct interactions of N and
∆ with thermal pions have been approximated by baryon resonances, constrained via empirical decay branchings.
Within a simplified treatment we have checked that the nuclear effects on the pion lead to a ∆ spectral function in
cold matter which provides fair agreement with nuclear photoabsorption.

Our main result is that, under RHIC conditions, the ∆ (N) spectral function exhibits significant broadening and a
slight upward (downward) peak shift. In the vicinity of thermal freezeout our findings are qualitatively in line with
preliminary STAR data for πN invariant-mass spectra, whereas at higher temperatures and densities the broadening
becomes more extreme, reminiscent to what has been found for light vector mesons in the same framework [2].

Our work should also be considered as a step towards a comprehensive description of hadronic matter under extreme
conditions, such as its equation of state [43]. Future developments will have to incorporate the coupling to vector
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mesons in a chiral framework, a more complete treatment of the pion and nucleon degrees of freedom (including
nonresonant interactions), as well as medium effects on excited resonances. On the phenomenological side, to address
πN invariant-mass spectra in heavy-ion collisions, in-medium ∆ spectral functions need to be implemented into a
dynamical description of the thermal freezeout. Furthermore, the large radiative decay branching of the ∆ implies
that its medium modifications could play a role in electromagnetic emission spectra [44], in particular the soft-photon
enhancement recently observed in central Pb-Pb collisions at the SPS [45].
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