Heavy-Quark Energy Loss in the QGP
and non-photonic Single-Electron Observables

Hendrik van Hees
Texas A&M University
October 25, 2006
Outline

Heavy quarks in the QGP
 Radiative energy loss
 Collisional energy loss

Dissipation and fluctuation: Fokker-Planck approach

Non-perturbative Effects
Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- Coalescence model describes data under assumption of c quarks flowing with the bulk medium [Greco, Ko, Rapp 04]
Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- Coalescence model describes data under assumption of c quarks flowing with the bulk medium [Greco, Ko, Rapp 04]
- What is the underlying microscopic mechanism for thermalization?
 - Radiative energy loss
 - +pQCD collisional energy loss
 - Elastic three-body pQCD processes
- Additional problem: consistency between R_{AA} and v_2
 - Importance of thermal fluctuations
 - Fokker-Planck approach to HQ rescattering \Leftrightarrow thermalization
 - Langevin simulation to include (anisotropic) flow of sQGP
- Non-perturbative processes \Leftrightarrow resonances in sQGP
Heavy quarks in the QGP

Hard production
Described by PDF’s + pQCD

\bullet c, b quark

HQ rescattering in QGP
radiative/collisional energy loss
non-perturbative effects (sQGP)

Hadronization to D, B mesons
Fragmentation
Coalescence

\bullet K

e^\pm Semileptonic decay
\Rightarrow “non-photonic” electron observables

ν_e
Radiative energy loss

- medium modelled by static scattering centers [GW 94] ⇒ radiative energy loss only!
- $\Delta E \simeq \hat{q} L^2$ [BDMPS 96]
- generalized to “thin plasmas” in [GLV 00] and heavy-quark jets

![Diagram of radiative energy loss](image)
Radiative energy loss

- Calculation: [Armesto et al 06]
 (static medium + geometry + BDMPS rad energy loss)
- need to tune up $\hat{q} \rightarrow 14 \text{ GeV}^2$/fm (pQCD prediction: $\sim 1 \ldots 3 \text{ GeV}^2$/fm)
- R_{AA} near to data but v_2 not described!
Collisional vs. radiative energy loss

- for heavy quarks: elastic pQCD scattering as important as radiative [Mustafa 05]

\[\mu_D^2 = g^2 T^2(1 + N_f/6), \alpha_s = 0.3, N_f = 2.5 \]
\[\frac{dN_g}{dy} = 1000 \]

- collisional energy loss important for light and heavy quarks!
Collisional vs. radiative energy loss

[Graph showing data points and curves for collisional and radiative energy loss]

[Wicks et al 05]
Three-body effects

- high densities (initially $\gtrsim 10/\text{fm}^3$)
- three-body elastic scattering possibly relevant [Liu, Ko 06]
Thermalization: Dissipation ↔ Fluctuation

- theoretical models discussed so far take into account only dissipation
- thermalization processes need also fluctuations
Thermalization: Dissipation \leftrightarrow Fluctuation

- theoretical models discussed so far take into account only dissipation
- thermalization processes need also fluctuations
- principle of detailed balance

\Rightarrow Use Fokker-Planck equation [Svetitsky 87; Mustafa, Thoma 98; HvH, Rapp 04; Moore, Teaney 04,...] \leftrightarrow Langevin simulations
theoretical models discussed so far take into account only dissipation
thermalization processes need also fluctuations
principle of detailed balance

⇒ Use Fokker-Planck equation [Svetitsky 87; Mustafa, Thoma 98; HvH, Rapp 04; Moore, Teaney 04,...] ⇔ Langevin simulations
can we understand heavy-quark flow properties better?
consistency of $e^\pm - R_{AA}$ with $e^\pm - v_2$?
The Fokker-Planck Equation

- heavy particle (c, b quarks) in a heat bath of light particles (QGP)

\[
\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t, p) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})
\]

- Assumption: Relevant scattering processes are soft
The Fokker-Planck Equation

- heavy particle (c,b quarks) in a heat bath of light particles (QGP)

\[
\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t, \vec{p}) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})
\]

- Assumption: Relevant scattering processes are soft

- \(A \) and \(B_{ij} \) ⇔ heavy-quark scattering processes

- \(A(t, \vec{p}) \) friction (drag) coefficient = \(1/\tau_{eq} \)

\[
\langle p_i - p_i' \rangle = p_i A(t, \vec{p})
\]
The Fokker-Planck Equation

- heavy particle (c,b quarks) in a heat bath of light particles (QGP)

\[
\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t, \vec{p}) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})
\]

- Assumption: Relevant scattering processes are soft

- A and $B_{ij} \leftrightarrow$ heavy-quark scattering processes

- $A(t, \vec{p})$ friction (drag) coefficient $= 1/\tau_{eq}$

\[
\langle p_i - p'_i \rangle = p_i A(t, \vec{p})
\]

- B_{ij}: time scale for momentum fluctuations

\[
B_{ij}(t, \vec{p}) = \frac{1}{2} \langle (p_i - p'_i)(p_j - p'_j) \rangle
\]
The Fokker-Planck Equation

- heavy particle (c,b quarks) in a heat bath of light particles (QGP)

\[
\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t, p) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})
\]

- Assumption: Relevant scattering processes are soft

- \(A\) and \(B_{ij}\) \(\leftrightarrow\) heavy-quark scattering processes

- \(A(t, \vec{p})\) friction (drag) coefficient = \(1/\tau_{eq}\)

\[
\langle p_i - p_i' \rangle = p_i A(t, \vec{p})
\]

- \(B_{ij}\): time scale for momentum fluctuations

\[
B_{ij}(t, \vec{p}) = \frac{1}{2} \langle (p_i - p_i')(p_j - p_j') \rangle
\]

- to ensure correct equilibrium limit: \(B_{\|}(t, p) = T(t) E_p A(t, p)\) (Einstein dissipation-fluctuation relation)
Langevin Study with pQCD elastic scattering

- pQCD elastic cross sections for charm-quark scattering in QGP [Moore, Teaney 04]

- hydro dynamics for bulk medium
- Langevin simulation for charm quarks
- have to increase α_s in cross sections (but set $\mu_D = 1.5T = \text{const!}$)
Non-perturbative Effects

- pQCD interactions of heavy quarks within QGP \Rightarrow need to artificially scale up cross sections to understand e^\pm data
- possible non-perturbative effects?
Non-perturbative Effects

- pQCD interactions of heavy quarks within QGP ⇒ need to artificially scale up cross sections to understand e^\pm data
- possible non-perturbative effects?
- from Lattice QCD: survival of mesonic bound states/resonances above T_c [Karsch, Laermann 03], [Asakawa, Hatsuda 03]
- also from IQCD based potential models [Shuryak, Zahed 04], [Wong 05], [Mannarelli, Rapp 05]
Non-perturbative Effects

- pQCD interactions of heavy quarks within QGP ⇒ need to artificially scale up cross sections to understand e^\pm data
- possible non-perturbative effects?
- from Lattice QCD: survival of mesonic bound states/resonances above T_c [Karsch, Laermann 03], [Asakawa, Hatsuda 03]
- also from IQCD based potential models [Shuryak, Zahed 04], [Wong 05], [Mannarelli, Rapp 05]

⇒ assumption:
 survival of D- and B-like resonance states up to $T \lesssim 2T_c$
- here: use “quasi-particle” model based on chiral symmetry and heavy-quark effective theory
- states included: D, D^*+chiral partners, D_s (analogous for B) [HvH, Ralf Rapp, Phys. Rev. C 71, 034907 (2005)]
Resonance Scattering

- **elastic heavy-light-(anti-)quark scattering**

- **D- and B-meson like resonances in sQGP**

- **parameters**
 - $m_c = 1.5$ GeV, $m_D = 2$ GeV, $\Gamma_D = 0.4 \ldots 0.75$ GeV
 - $m_b = 4.5$ GeV, $m_B = 5$ GeV, $\Gamma_B = 0.4 \ldots 0.75$ GeV
 - Bethe-Salpeter calculations in NJL model [Blaschke et al 03]
Contributions from pQCD

- Lowest-order matrix elements [Combridge 79]

\[\mu_g = gT, \ \alpha_s = 0.4 \]

- In-medium Debye-screening mass for \(t \)-channel gluon exchange:
Cross sections

- total pQCD and resonance cross sections: comparable in size
- BUT pQCD forward peaked \leftrightarrow resonance isotropic
- resonance scattering more effective for friction and diffusion
The Coefficients: pQCD vs. resonance scattering

- Temperature dependence of thermalization rate
- charm-quark diffusion coefficient
- microscopic properties of sQGP $\leftrightarrow e^\pm$ observables

![Graph showing temperature dependence and charm-quark diffusion in QGP with pQCD and resonance contributions.]
Initial conditions

- **Langevin simulation:**
 - need initial p_T-spectra of charm and bottom quarks
 - fit D-meson spectra from pp and dAu@RHIC
 - exp. non-photonic single-e^\pm spectra: Fix bottom/charm ratio

\[\frac{1}{2\pi p_T} \frac{d^2N}{dp_T^2} \text{[a.u.]} \]

\[d+Au \sqrt{s_{NN}} = 200 \text{ GeV} \]

\[\sigma_{bb}/\sigma_{cc} = 4.9 \times 10^{-3} \]
Spectra and elliptic flow for heavy quarks

- use Langevin simulation to solve Fokker-Planck equation
- expanding-fireball model to describe the sQGP medium

\[\mu_D = gT, \quad \alpha_s = \frac{g^2}{4\pi} = 0.4 \]

- resonances \(\Rightarrow \) HQ thermalization without upscaling of cross sections
- Fireball parametrization consistent with hydro
Observables: p_T-spectra (R_{AA}), v_2

- **Hadronization:** Coalescence with light quarks + fragmentation
 $\leftrightarrow c\bar{c}, b\bar{b}$ conserved

- single electrons from decay of D- and B-mesons

Without further adjustments: data quite well described
[HvH, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)]
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: Fragmentation only
- single electrons from decay of D- and B-mesons

![Graph showing R_{AA} and v_2 as functions of p_T]
Observables: p_T-spectra (R_{AA}), v_2

- Central Collisions
- single electrons from decay of D- and B-mesons

Coalescence+Fragmentation

Fragmentation only
How to check resonance assumption?

- scattering mechanism via *resonances* at $T > T_c$?
- dominant channel: quark-anti-c-quark s channel

![Diagram showing scattering of quark, anti-c-quark, and mesons D, D', D_s.]

- energy scan@RHIC: quark dominated \Rightarrow \bar{c} quarks most affected
- thermalization effects more pronounced for \bar{D} (D^-) than for D (D^+) mesons!
Implementation of radiative energy loss

- including **gluon radiation**
- work in progress [Vitev, HvH, Rapp 06]
Conclusions and Outlook

- non-photonic e^\pm observables \Leftrightarrow HQ interactions in sQGP
- HQ energy loss from pQCD
 - radiative energy loss \Leftrightarrow upscaling of energy loss $\hat{q} \rightarrow 14$ or gluon density to explain strong effects in e^\pm-R_{AA}
 - collisional (elastic) energy loss
 - high density of plasma \Leftrightarrow elastic 3-body collisions
- proper implementation of thermalization (Fokker-Planck Eq.)
 - need thermal fluctuations to describe thermalization
 - explains consistency between small R_{AA} and large v_2
- non-perturbative interactions
 - survival of D- and B-meson like resonances above T_c
 - isotropic elastic-scattering cross sections \Rightarrow efficient for thermalization

Further investigations (work in progress)

- microscopic models for HQ scattering [Mannarelli, HvH, Rapp 06]
- implementation of gluon-radiation processes [Vitev, HvH, Rapp 06]
- consequences for heavy quarkonia
Conclusions and Outlook

- non-photonic e^\pm observables \Leftrightarrow HQ interactions in sQGP
- HQ energy loss from pQCD
 - radiative energy loss \Leftrightarrow upscaling of energy loss $\hat{q} \rightarrow 14$ or gluon density to explain strong effects in e^\pm-R_{AA}
 - collisional (elastic) energy loss
 - high density of plasma \Leftrightarrow elastic 3-body collisions
- proper implementation of thermalization (Fokker-Planck Eq.)
 - need thermal fluctuations to describe thermalization
 - explains consistency between small R_{AA} and large v_2
- non-perturbative interactions
 - survival of D- and B-meson like resonances above T_c
 - isotropic elastic-scattering cross sections \Rightarrow efficient for thermalization
- Further investigations (work in progress)
 - microscopic models for HQ scattering [Mannarelli, HvH, Rapp 06]
 - implementation of gluon-radiation processes [Vitev, HvH, Rapp 06]
 - consequences for heavy quarkonia
Thermalization rate (p dependence)

\[T = 200 \text{ MeV} \]

- \(\text{resonances } \Gamma = 0.3 \text{ GeV} \)
- \(\text{resonances } \Gamma = 0.4 \text{ GeV} \)
- \(\text{resonances } \Gamma = 0.5 \text{ GeV} \)
- \(\text{pQCD: } \alpha_s = 0.3 \)
- \(\text{pQCD: } \alpha_s = 0.4 \)
- \(\text{pQCD: } \alpha_s = 0.5 \)
Spectra and elliptic flow for heavy quarks

With form-factor vertices instead of point vertices ($\Lambda = 1$ GeV)