Heavy-Quark Diffusion in the QGP in Heavy-Ion Collisions

Hendrik van Hees

Justus-Liebig Universität Gießen

January 14, 2011
Outline

1 Heavy-ion phenomenology
 - Hydrodynamical collective flow
 - Thermal models for chemical freezeout
 - Jet quenching
 - Constituent-quark-number scaling of v_2

2 Heavy-quark transport in the sQGP
 - Open heavy-flavor observables in heavy-ion collisions
 - Transport equations
 - The Fokker-Planck equation
 - Realization as Langevin process
 - Langevin simulation for heavy-ion collisions

3 In-medium interactions of heavy quarks I
 - Elastic pQCD heavy-quark scattering
 - Non-perturbative interactions: effective resonance model

4 Non-photonic electrons at RHIC
 - Estimate on transport properties of the sQGP

5 Summary and Outlook

6 Backup: Static heavy-quark potentials from lattice QCD + Brückner T-matrix
collisions of relativistic (heavy) nuclei
many collisions of partons inside nucleons
creation of many particles \Rightarrow hot and dense fireball
formation of (thermalized) QGP?
how to learn about properties of QGP?
Hydrodynamical radial flow of the bulk

- ideal fluid in local thermal equilibrium ⇒ low viscosity/(entropy density), η/s
- needs strong interactions
- hydrodynamical model for ultra-relativistic heavy-ion collisions
 - after short formation time ($t_0 \lesssim 1 \text{ fm}/c$)
 - QGP in local thermal equilibrium → hadronization at $T_c \simeq 160 - 190 \text{ MeV}$
 - chemical freeze-out: (inelastic collisions cease) $T_{\text{ch}} \simeq 160 - 175 \text{ MeV}$
 - thermal freeze-out: (also elastic scatterings cease)
Hydrodynamical elliptic flow of the bulk

- particle spectra compatible with collective flow of a (nearly) ideal fluid ⇒ small η/s
- medium in local thermal equilibrium

\[v_2 = \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle \]
Thermal Models for Chemical Freezeout

- particle abundancies compatible with thermalized hadron-resonance gas
- grand-canonical ensemble
 - fix mean energy ⇒ temperature T_{ch} (expect $T_c \simeq T_{ch}$)
 - fix mean conserved “charges” ⇒ chemical potentials μ_b, μ_s, μ_q.

\[
n_i = \frac{g_i}{(2\pi)^3} 4\pi \int_0^{\infty} dp \frac{p^2}{\exp \left(\frac{\sqrt{p^2+m_i^2} - \mu_i}{T_{ch}} \right) \pm 1}
\]

\[
\mu_i = \mu_b B_i + \mu_s S_i + \mu_q Q_i
\]

[]

Hendrik van Hees (JLU Gießen)
Heavy Probes in HICs (Theory II)
January 14, 2011 6 / 38
Jet Quenching

- comparison to proton-proton collisions: nuclear-modification factor

\[R_{AA} = \frac{dN_{AA}/d\pt}{N_{\text{coll}}dN_{pp}/d\pt} \]

- \(R_{AA} < 1 \) for large \(\pt \): jets absorbed by medium
- density > \(\rho_{\text{crit}} \) (comparison to lattice QCD)
Constituent-quark-number scaling of v_2

- elliptic flow, v_2 scales with number of constituent quarks

$$v_2^{(\text{had})}(p_T^{(\text{had})}) = n_q v_2^{(q)}(p_T^{(\text{had})}/n_q)$$

- suggests coalescence of quarks at T_c

possible microscopic mechanism hadron-resonance formation at T_c ⇒ resonance-recombination model [Ravagli, HvH, Rapp, PRC 79, 064902 (2009)]

other hint to quark coalescence:

enhanced baryon/meson ratio compared to pp collisions
Heavy quarks in the sQGP

hard production of HQs
described by PDF’s + pQCD (PYTHIA)

c, b quark

HQ rescattering in QGP: Langevin simulation
drag and diffusion coefficients from
microscopic model for HQ interactions in the sQGP

Hadronization to D, B mesons via
quark coalescence + fragmentation

semileptonic decay \Rightarrow
“non-photonic” electron observables
The relativistic Boltzmann equation

- describe **heavy-quark scattering** in the QGP by (semi-)classical transport equation
- \(f_Q(t, \vec{x}, \vec{p}) \): phase-space distribution of **heavy quarks**
- equation of motion for HQ-fluid cell at time \(t \) at \((\vec{p}, \vec{x})\):

\[
df_Q = dt \left(\frac{\partial}{\partial t} + \vec{v} \frac{\partial}{\partial \vec{x}} + \vec{F} \cdot \frac{\partial}{\partial \vec{p}} \right) f_Q
\]

 - change of phase-space distribution with time (non-equilibrium)
 - drift of HQ-fluid cell with velocity \(\vec{v} = \vec{p}/E_{\vec{p}}, \quad E_{\vec{p}} = \sqrt{m_Q^2 + \vec{p}^2} \)
 - change of momentum with mean-field force, \(\vec{F} \)

- change must be due to **collisions with surrounding medium**

\[
\frac{d}{dt} f_Q = C[f_Q] = \int d^3\vec{k} \left[w(\vec{p} + \vec{k}, \vec{k}) f_Q(t, \vec{x}, \vec{p} + \vec{k}) - w(\vec{p}, \vec{k}) f_Q(t, \vec{x}, \vec{p}) \right]
\]

 - \(w(\vec{p}, \vec{k}) \): transition rate for collision of a **heavy quark** with momentum, \(\vec{p} \) with a heat-bath particle with momentum transfer, \(\vec{k} \)
Transition rates

- relation to cross sections of microscopic scattering processes
- e.g., elastic scattering of heavy quark with light quarks

\[w(\vec{p}, \vec{k}) = \gamma_q \int \frac{d^3 \vec{q}}{(2\pi)^3} f_q(\vec{q}) v_{\text{rel}}(\vec{p}, \vec{q} \rightarrow \vec{p} - \vec{k}, \vec{q} + \vec{k}) \frac{d\sigma}{d\Omega} \]

- \[\gamma_q = 2 \times 3 = 6: \text{spin-color-degeneracy factor} \]
- \[v_{\text{rel}} := \sqrt{(p \cdot q)^2 - (m_Q m_q)^2 / (E_Q E_q)}; \text{covariant relative velocity} \]
- in terms of invariant matrix element

\[C[f_Q] = \frac{1}{2E_Q} \int \frac{d^3 \vec{q}}{(2\pi)^3 2E_q} \int \frac{d^3 \vec{p}'}{(2\pi)^3 2E'_p} \int \frac{d^3 \vec{q}'}{(2\pi)^3 2E'_q} \times \frac{1}{\gamma_Q} \sum_{c,s} |M(\vec{p}', \vec{q}') \rightarrow (\vec{p}, \vec{q})|^2 \times (2\pi)^4 \delta^{(4)}(p + q - p' - q') [f_Q(\vec{p}')f_q(\vec{q}') - f_Q(\vec{p})f_q(\vec{q})] \]

- \[\vec{p}, \vec{q}, (\vec{p}', \vec{q}') \text{ initial (final) momenta of heavy and light quark} \]
- momentum transfer: \[\vec{k} = \vec{q}' - \vec{q} = \vec{p} - \vec{p}' \]
- sum over all (“relevant”) scattering processes
The Fokker-Planck Equation

- heavy quarks ↔ light quarks/gluons: momentum transfers small
- \(w(\vec{p} + \vec{k}, \vec{k}) \): peaked around \(\vec{k} = 0 \)
- expansion of collision term around \(\vec{k} = 0 \)

\[
\begin{align*}
 w(\vec{p} + \vec{k}, \vec{k}) f_Q(\vec{p} + \vec{k}) & \simeq w(\vec{p}, \vec{k}) f_Q(\vec{p}) + \vec{k} \cdot \frac{\partial}{\partial \vec{p}} [w(\vec{p}, \vec{k}) f_Q(\vec{p})] \\
 & \quad + \frac{1}{2} k_i k_j \frac{\partial^2}{\partial p_i \partial p_k} [w(\vec{p}, \vec{k}) f_Q(\vec{p})]
\end{align*}
\]

- collision term

\[
C[f_Q] = \int d^3 \vec{k} \left[k_i \frac{\partial}{\partial p_i} + \frac{1}{2} k_i k_j \frac{\partial^2}{\partial p_i \partial p_j} \right] [w(\vec{p}, \vec{k}) f_Q(\vec{p})].
\]
Boltzmann equation \Rightarrow simplifies to Fokker-Planck equation

$$\partial_t f_Q(t, \vec{x}, \vec{p}) + \frac{\vec{p}}{E_{\vec{p}}} \cdot \frac{\partial}{\partial \vec{x}} f_Q(t, \vec{x}, \vec{p}) = \frac{\partial}{\partial p_i} \left\{ A_i(\vec{p}) f_Q(t, \vec{x}, \vec{p}) \right. \\
+ \frac{\partial}{\partial p_j} \left[B_{ij}(\vec{p}) f_Q(t, \vec{p}) \right] \right\}$$

with drag and diffusion coefficients

$$A_i(\vec{p}) = \int d^3 \vec{k} \, k_i w(\vec{p}, \vec{k}), \quad B_{ij}(\vec{p}) = \frac{1}{2} \int d^3 \vec{k} \, k_i k_j w(\vec{p}, \vec{k})$$

equilibrated light quarks and gluons: coefficients in heat-bath frame

matter homogeneous and isotropic

$$A_i(\vec{p}) = A(p) p_i, \quad B_{ij}(\vec{p}) = B_0(p) P_{ij}^\perp + B_1(p) P_{ij}^\parallel$$

with $P_{ij}^\parallel(\vec{p}) = \frac{p_i p_j}{\vec{p}^2}$, $P_{ij}^\perp(\vec{p}) = \delta_{ij} - \frac{p_i p_j}{\vec{p}^2}$
Meaning of the Coefficients

- Simplified equation for momentum distribution, \(F_Q(t, \vec{p}) \)
- Integrate Fokker-Planck equation over whole spatial volume:

\[
F_Q(t, \vec{p}) = \int_V d^3\vec{x} f_Q(t, \vec{x}, \vec{p}),
\]

\[
\int_V d^3\vec{x} \text{ div } \vec{x} \left[\frac{\vec{p}}{E_{\vec{p}}} f(t, \vec{x}, \vec{p}) \right] = \int_{\partial V} d\vec{S} \cdot \left[\frac{\vec{p}}{E_{\vec{p}}} f(t, \vec{x}, \vec{p}) \right] = 0 \Rightarrow
\]

\[
\frac{\partial}{\partial t} F_Q(t, \vec{p}) = \frac{\partial}{\partial p_i} \left\{ A_i(\vec{p}) F_Q(t, \vec{p}) + \frac{\partial}{\partial p_j} [B_{ij}(\vec{p}) F_Q(t, \vec{p})] \right\}
\]

- most simple case in non-relativistic limit \(A(\vec{p}) = A = \text{const}, \)
 \(B_0(\vec{p}) = B_1(\vec{p}) = B = \text{const} \)

\[
F_Q(t, \vec{p}) = \left\{ \frac{A}{2\pi D} \left[1 - \exp(-2\gamma t)\right] \right\}^{-3/2}
\times \exp \left[-\frac{A}{2B} \frac{[\vec{p} - \vec{p}_0 \exp(-At)]^2}{1 - \exp(-2\gamma t)} \right]
\]
Meaning of the Coefficients

- **solution**: Gaussian with
\[
\langle \vec{p}(t) \rangle = \vec{p}_0 \exp(-At), \quad \Delta \vec{p}^2(t) = \langle \vec{p}^2 \rangle - \langle \vec{p} \rangle^2 = \frac{3B}{A} [1 - \exp(-2At)].
\]

- **A**: friction/drag coefficient \(\Rightarrow\) dissipation
- **$1/A$**: relaxation time to reach equilibrium
- **B**: momentum-diffusion coefficient
- measures size of momentum fluctuations
 (result of random uncorrelated collisions of heavy quarks with medim)
- \(\Rightarrow\) effective description of collisions: white-noise-random force

- **equilibrium limit** \((t \rightarrow \infty)\)
\[
F_Q(t, \vec{p}) \overset{\text{t \rightarrow \infty}}{\approx} \left(\frac{2\pi B}{A}\right)^{3/2} \exp\left(-\frac{A\vec{p}^2}{2B}\right)
\]

- has to be **Maxwell-Boltzmann distribution** \(\Rightarrow\)
\[
B = m_Q AT
\]

- **T**: given temperature of the QGP
- Einstein’s **dissipation-fluctuation** relation (1905)
Realization as Langevin process

- **Langevin process**: friction force + Gaussian random force
- in the (local) rest frame of the heat bath

\[d\vec{x} = \frac{\vec{p}}{E_p} dt, \]
\[d\vec{p} = -A \vec{p} dt + \hat{C} \vec{w} \sqrt{dt} \]

- \(\vec{w}(t) \): Gaussian-distributed random variable

\[\langle \vec{w}(t) \rangle = 0, \quad \langle w_j(t) w_k(t') \rangle = \delta(t - t') \]

- \(\hat{C} = \hat{C}^t \): covariance matrix of random force
- stochastic process depends on choice of momentum argument of \(\hat{C} \)

\[\hat{C} \rightarrow \hat{C}(t, \vec{x}, \vec{p} + \xi d\vec{p}), \quad \xi \in [0, 1] \]

- usual values of \(\xi \)
 - \(\xi = 0 \): pre-point Ito realization
 - \(\xi = 1/2 \): Stratonovich realization
 - \(\xi = 1 \): post-point Ito (Hänggi-Klimontovich) realization
Langevin ↔ Fokker-Planck

- **heavy-quark phase-space distribution**

\[
f_Q(t, \vec{x}, \vec{p}) = \left\langle \delta^{(3)}[\vec{x} - \vec{x}'(t)]\delta^{(3)}[\vec{p} - \vec{p}'(t)] \right\rangle
\] \hspace{1cm} (1)

- \([\vec{x}'(t), \vec{p}'(t)]:\) trajectories according to stochastic Langevin process

\[
d\vec{x} = \frac{\vec{p}}{E_p} \, dt, \quad d\vec{p} = -A \vec{p} \, dt + \hat{C} \hat{w} \sqrt{dt}
\] \hspace{1cm} (2)

- perform timestep of Eq. (1) using (2)

\[
\frac{\partial f_Q}{\partial t} + \frac{p_j}{E} \frac{\partial f_Q}{\partial x_j} = \frac{\partial}{\partial p_j} \left[\left(Ap_j - \xi C_{lk} \frac{\partial C_{jk}}{\partial p_l} \right) f_Q \right] + \frac{1}{2} \frac{\partial^2}{\partial p_j \partial p_k} \left(C_{jl} C_{kl} f_Q \right)
\]

\[
\Rightarrow \quad C_{jk} = \sqrt{2B_0} P_{jk}^\perp + \sqrt{2B_1} P_{jk}^\parallel
\]

- Form of Fokker-Planck equation ok, **but how to chose \(\xi\)?**
Langevin ↔ Fokker-Planck

- Choice of ξ: $f_Q \rightarrow$ Maxwell-Boltzmann distribution for $t \rightarrow \infty$:
 \[
 f_Q^{eq}(p) \propto \exp(-\sqrt{p^2 + m^2_Q/T})
 \]

- Langevin process with $B_0 = B_1 = D(E) \Rightarrow C_{jk} = \sqrt{2D(E)}\delta_{jk}$
- MB distribution solution of stationary FP equation \Rightarrow
 \[
 A(E)ET - D(E) + (1 - \xi)TD'(E) = 0
 \]
- simples choice: $\xi = 1$ (post-point Ito realization)
- then simple Einstein dissipation-fluctuation relation
 \[
 D = TEA
 \]
- for models for FP coefficients: relation not well satisfied for B_1
- \Rightarrow use $\xi = 1$ and $B_1 = TEA$
- numerical check: Langevin simulation has right equilibrium limit
Langevin simulation for heavy-ion collisions

- need to simulate heavy-quark diffusion in sQGP
- “bulk” (light quarks + gluons) described by thermal fireball model
- flowing medium in local thermal equilibrium
- FP coefficients and Langevin process in restframe of the heat bath
- way out: boost to local heat-bath frame with flow velocity $v(t, \vec{x})$
- do time step to “update” momenta
- boost back to “lab frame”
- defines HQ distribution as “freezeout at constant lab time”
- NB: leads to covariant equilibrium distribution

$$dN_Q = \frac{\gamma_Q}{(2\pi)^3} d^3 \vec{x}^{(h_b)} \frac{d^3 \vec{p}}{p_0} p \cdot u(x) \exp \left(-\frac{p \cdot u(x)}{T(x)} \right)$$

- $u(t, \vec{x}) = [1, \vec{v}(t, \vec{x})]/\sqrt{1 - \vec{v}^2(t, \vec{x})}$: velocity-flow field (4-vector)
- $T(x)$: temperature field (4-scalar)
Fire-ball model

- Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb ’00]
 \[V(t) = \pi(z_0 + v_z t)a(t)b(t), \quad a, b: \text{semi-axes of ellipse,} \]
 \[v_{a,b} = v_\infty[1 - \exp(-\alpha t)] \mp \Delta v[1 - \exp(-\beta t)] \]
 \(a, b\): semi-axes of ellipse

- Isentropic expansion: \(S = \text{const} \) (fixed from \(N_{\text{ch}}\))

- QGP Equation of state:
 \[s = \frac{S}{V(t)} = \frac{4\pi^2}{90} T^3(16 + 10.5n_f^*), \quad n_f^* = 2.5 \]

- obtain \(T(t) \Rightarrow A(t, p), B_0(t, p)\) and \(B_1 = \text{TEA}\)

- for semicentral collisions \((b = 7 \text{ fm})\): \(T_0 = 340 \text{ MeV},\) QGP lifetime \(\simeq 5 \text{ fm/c}.\)

- simulate FP equation as relativistic Langevin process
Initial conditions

- need initial p_T-spectra of charm and bottom quarks
- (modified) PYTHIA to describe exp. D meson spectra, assuming δ-function fragmentation
- exp. non-photonic single-e^\pm spectra: Fix bottom/charm ratio
Elastic pQCD processes

- Lowest-order matrix elements [Cambridge 79]

- Debye-screening mass for t-channel gluon exch. $\mu_g = gT$, $\alpha_s = 0.4$

- not sufficient to understand RHIC data on “non-photonic” electrons

[Moore, Teaney PRC 71, volume 71, 064904 (2005)]
Non-perturbative interactions: Resonance Scattering

- General idea: Survival of D- and B-meson like resonances above T_c
- Model based on chiral symmetry (light quarks) HQ-effective theory
- Elastic heavy-light-(anti-)quark scattering

D, D', D_s- and B-meson like resonances in sQGP

- Parameters
 - $m_D = 2$ GeV, $\Gamma_D = 0.4 \ldots 0.75$ GeV
 - $m_B = 5$ GeV, $\Gamma_B = 0.4 \ldots 0.75$ GeV
• total pQCD and resonance cross sections: comparable in size
• BUT pQCD forward peaked ↔ resonance isotropic
• resonance scattering more effective for friction and diffusion
Transport coefficients: pQCD vs. resonance scattering

- three-momentum dependence

![Graphs showing three-momentum dependence with γ and D as functions of p for different values of Γ and α_s for T=200 MeV.]

- resonance contributions factor \(\sim 2 \ldots 3\) higher than pQCD!
Transport coefficients: pQCD vs. resonance scattering

- Temperature dependence

![Graph showing temperature dependence of transport coefficients with pQCD and resonance scattering](image-url)
Spectra and elliptic flow for heavy quarks

\[\mu_D = gT, \quad \alpha_s = g^2/(4\pi) = 0.4 \]

- **resonances** \(\Rightarrow c\)-quark thermalization without upscaling of cross sections
- **Fireball parametrization** consistent with hydro

\[2\pi T D \approx \frac{3}{2\alpha_s^2} \]
Spectra and elliptic flow for heavy quarks

Au-Au $\sqrt{s}=200$ GeV ($b=7$ fm)

Diagram:*

- Red line: c, reso ($\Gamma=0.4-0.75$ GeV)
- Blue line: c, pQCD, $\alpha_s=0.4$
- Green line: b, reso ($\Gamma=0.4-0.75$ GeV)

Legend:

- **LO QCD** [Moore, Teaney '04]
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: **Coalescence** with light quarks + fragmentation
 $\Leftrightarrow \bar{c}c, \bar{b}b$ conserved

- single electrons from decay of D- and B-mesons

Without further adjustments: data quite well described

[HvH, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)]
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: Fragmentation only
- single electrons from decay of D- and B-mesons

coalescence brings up both, R_{AA} and v_2
- due to additional momentum kick from light quarks
Observables: p_T-spectra (R_{AA}), v_2

- Central Collisions
- single electrons from decay of D- and B-mesons

Coalescence+Fragmentation

Fragmentation only

Hendrik van Hees (JLU Gießen)
Heavy Probes in HICs (Theory II)
January 14, 2011 29 / 38
Comparison to newer data

(a) 0−10% central

- Armesto et al. (I)
- van Hees et al. (II)
- 3/(2πT) Moore &
- 12/(2πT) Teaney (III)

Au+Au @ \(s_{NN} = 200 \) GeV

(b) minimum bias

- \(\pi^0 R_{AA}, p_T > 4 \) GeV/c
- \(\pi^0 v_2, p_T > 2 \) GeV/c
- \(e^\pm R_{AA}, e^\pm v^{HF}_2 \)

PHENIX Collaboration
PRL 98 172301 (2007)
Transport properties of the sQGP

- spatial diffusion coefficient: Fokker-Planck \(\Rightarrow D_s = \frac{T}{m_A} = \frac{T^2}{D} \)
- coupling strength in plasma: viscosity/entropy density, \(\eta/s \)

\[
\frac{\eta}{s} \simeq \frac{1}{2} TD_s \quad \text{(AdS/CFT)}, \quad \frac{\eta}{s} \simeq \frac{1}{5} TD_s \quad \text{(wQGP)}
\]
Boltzmann Transport Equations

can be derived from classical mechanics or quantum-many-body theory
(semi-)classical statistical description of interacting many-body systems
equations for single-particle phase-space distribution
collision term: transition probabilities from microscopic cross sections
many-body systems ⇔ microscopic properties of constituents

Fokker-Planck Equations

heavy particles immersed in medium of light particles
momentum transfer in single collision small ⇒
integro-differential Boltzmann equation ⇒ partial differential equation
HQ-medium interactions ⇒ friction/drag coefficient + diffusion coefficients
related by Einstein dissipation-fluctuation relation
Langevin Equations

- stochastic differential equation equivalent to Fokker-Planck equation
- drag/friction force + random forces = uncorrelated Gaussian noise
- depends on realization of stochastic process
- right process \Rightarrow equilibrium limit = relativistic MB distribution
- application to flowing sQGP

Heavy-quark interactions in the sQGP

- elastic scattering with light quarks and gluons: pQCD + screening
- resonance scattering with light (anti-)quarks

Non-photonic single electron observables

- $R_{AA}(p_T)$ and $v_2(p_T)$ of electrons from D- and B-meson decays
- Langevin simulation \rightarrow coalescence+fragmentation hadronization \rightarrow semi-leptonic decay
- pQCD (with realistic α_s) too weak
- with resonance-scattering interactions good description of data
Microscopic model: Static potentials from lattice QCD

- color-singlet free energy from lattice
- use internal energy

\[U_1(r, T) = F_1(r, T) - T \frac{\partial F_1(r, T)}{\partial T}, \]
\[V_1(r, T) = U_1(r, T) - U_1(r \to \infty, T) \]

- Casimir scaling for other color channels [Nakamura et al 05; Döring et al 07]

\[V_3 = \frac{1}{2} V_1, \quad V_6 = -\frac{1}{4} V_1, \quad V_8 = -\frac{1}{8} V_1 \]

[NvH, M. Mannarelli, V. Greco, R. Rapp, PRL 100, 192301 (2008); HvH, M. Mannarelli, R. Rapp, EJC 61, 799 (2009)]
Brueckner many-body approach for elastic Qq, $Q\bar{q}$ scattering

\[T = V + V T \]

\[\Sigma = \Sigma_{\text{glu}} + T \]

- reduction scheme: 4D Bethe-Salpeter \rightarrow 3D Lippmann-Schwinger
- S- and P waves
- same scheme for light quarks (self consistent!)
- Relation to invariant matrix elements

\[\sum \mid \mathcal{M}(s) \mid^2 \propto \sum_q d_a \left(\mid T_{a,l=0}(s) \mid^2 + 3 \mid T_{a,l=1}(s) \mid^2 \cos \theta_{\text{cm}} \right) \]

[HvH, M. Mannarelli, V. Greco, R. Rapp, PRL 100, 192301 (2008); HvH, M. Mannarelli, R. Rapp, EJC 61, 799 (2009)]
- resonance formation at lower temperatures $T \simeq T_c$
- melting of resonances at higher T! \Rightarrow sQGP
- P wave smaller
- resonances near T_c: natural connection to quark coalescence

[Ravagli, Rapp 07; Ravagli, HvH, Rapp 08]

- model-independent assessment of elastic Qq, $Q\bar{q}$ scattering
- problems: uncertainties in extracting potential from lQCD
- in-medium potential U vs. F?
Transport coefficients

- From non-pert. interactions reach $A_{\text{non-pert}} \approx 1/(7 \text{ fm/c}) \approx 4A_{\text{pQCD}}$
- A decreases with higher temperature
- Higher density (over)compensated by melting of resonances!
- Spatial diffusion coefficient

$$D_s = \frac{T}{mA}$$

Increases with temperature
Non-photonic electrons at RHIC

- same model for bottom
- quark coalescence + fragmentation $\rightarrow D/B \rightarrow e + X$

- coalescence crucial for description of data
- increases both, R_{AA} and v_2 \leftrightarrow “momentum kick” from light quarks!
- “resonance formation” towards T_c \Rightarrow coalescence natural [Ravagli, Rapp 07]