Charm and beauty production in AA collisions in a Fokker-Planck approach

Hendrik van Hees

Goethe University Frankfurt and FIAS

December 04, 2013
1. Heavy-quark interactions in the sQGP
 - Heavy quarks in heavy-ion collisions
 - Heavy-quark diffusion: The Langevin Equation

2. Non-perturbative HQ interactions
 - Resonance model for HQ-q Scattering
 - T-matrix approach with lQCD potentials

3. Comparison with data
 - Nonphotonic electrons at RHIC
 - D mesons at LHC
 - Predictions for D mesons at FAIR
 - Dileptons from correlated D \bar{D} decays

4. Summary and Outlook
Motivation

- Fast equilibration of hot and dense matter in heavy-ion collisions: collective flow (nearly ideal hydrodynamics) ⇒ sQGP
- Heavy quarks as calibrated probe of QGP properties
 - produced in early hard collisions: well-defined initial conditions
 - not fully equilibrated due to large masses
 - heavy-quark diffusion ⇒ probes for QGP-transport properties
- Langevin simulation within UrQMD-hydro hybrid model
- sensitivity to medium evolution
- drag and diffusion coefficients
 - T-matrix approach with static lattice-QCD heavy-quark potentials
 - resonance formation close to T_c
 - mechanism for non-perturbative strong interactions
Heavy Quarks in Heavy-Ion collisions

Hard production of HQs described by PDF’s + pQCD (PYTHIA)

Hadronization to D, B mesons via quark coalescence + fragmentation

HQ rescattering in QGP: Langevin simulation drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP

Semileptonic decay \Rightarrow “non-photonic” electron observables $R_{AA}^{e^+e^-}(p_T), \nu_{e}^{e^+e^-}(p_T)$
Relativistic Langevin process

- **Langevin process**: friction force + Gaussian random force
- in the (local) rest frame of the heat bath

\[
d\vec{x} = \frac{\vec{p}}{E_p} \, dt,
\]

\[
d\vec{p} = -A \vec{p} \, dt + \sqrt{2dt}[\sqrt{B_0 P_\perp} + \sqrt{B_1 P_\parallel}] \vec{w}
\]

- \(\vec{w}\): normal-distributed random variable
- \(A\): friction (drag) coefficient
- \(B_{0,1}\): diffusion coefficients
- Einstein dissipation-fluctuation relation \(B_1 = E_p TA\).
- flow via Lorentz boosts between “heat-bath frame” and “lab frame”
- \(A\) and \(B_0\) from microscopic models for \(qQ, gQ\) scattering
- background medium: UrQMD → hydro → UrQMD

Non-perturbative interactions: Resonance Scattering

- General idea: Survival of D- and B-meson like resonances above T_c
- model based on chiral symmetry (light quarks) HQ-effective theory
- elastic heavy-light-(anti-)quark scattering

- D- and B-meson like resonances in sQGP

- parameters
 - $m_D = 2 \text{ GeV}, \Gamma_D = 0.4 \ldots 0.75 \text{ GeV}$
 - $m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \ldots 0.75 \text{ GeV}$

T-matrix

- Brueckner many-body approach for elastic $Qq, Q\bar{q}$ scattering

\[
T = V + T
\]

\[
\Sigma = \Sigma_{\text{glu}} + T
\]

- V: static $q\bar{q}$ potential from lattice QCD (F and U)
- reduction scheme: 4D Bethe-Salpeter \rightarrow 3D Lipmann-Schwinger
- S- and P waves
- Relation to invariant matrix elements

\[
\sum |M(s)|^2 \propto \sum q d_a \left(|T_{a,l=0}(s)|^2 + 3 |T_{a,l=1}(s)|^2 \cos \theta_{\text{cm}} \right)
\]

[HvH, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)]
T-matrix results

- Resonance formation at lower temperatures $T \approx T_c$
- Melting of resonances at higher T
- Model-independent assessment of elastic $Qq, Q\bar{q}$ scattering!
Nonphotonic electrons at RHIC

- form D and B mesons via quark-antiquark coalescence
- use PYTHIA for semi-leptonic decays
- comparison to single-electron data from PHENIX (200 AGeV Au-Au collisions)

D mesons at LHC

- form D via quark-antiquark coalescence
- comparison to D-meson data from ALICE (2.76 ATeV Pb-Pb collisions)

[Graph showing data from ALICE and UrQMD simulations]

D mesons at FAIR

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions
 (use estimates from HSD and PYTHIA)

D mesons at FAIR

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)

D mesons at FAIR

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)
- large μ_B in resonance model: \bar{c} more dragged than c

Dileptons from correlated $D \bar{D}$ decays

- for $m_\phi \lesssim M_{\ell^+\ell^-} \lesssim m_J/\psi$:
 - dilepton emission from thermal QGP and from correlated $D \bar{D}$ decays
- medium modifications of D and \bar{D} destroy correlations

Summary and Outlook

- Heavy quarks in the sQGP
- Non-perturbative interactions
 - Mechanism for strong coupling: resonance formation at $T \gtrsim T_c$
 - Lattice-QCD potentials parameter free
 - Also provides "natural" mechanism for quark coalescence

- Comparison to data and predictions for FAIR
 - R_{AA} and v_2 of non-photonic electrons at RHIC
 - R_{AA} and v_2 for D mesons at LHC
 - R_{AA} and v_2 for D mesons at FAIR (pp baseline mandatory!)
 - Impact of medium modifications on correlated $D\bar{D}$ decays to dileptons

- Outlook
 - Implementation of hadronic cross sections for D/B-meson diffusion
 - Include inelastic heavy-quark processes (gluo-radiative processes)
 - Implement resonance-recombination model for hadronization
 - Charmonium/bottomonium suppression/regeneration