Thermalization and Flow of Heavy Quarks in the Quark-Gluon Plasma

Hendrik van Hees

Texas A&M University

October 24, 2005

Collaborators: V. Greco, R. Rapp
Outline

Motivation

Nonperturbative elastic heavy-quark resonance scattering

Heavy-quark rescattering in the QGP: Langevin process

Observables: p_T-spectra (R_{AA}), v_2

Conclusions and Outlook
Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- Coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- Coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
 - pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]
 - Gluon-radiative energy loss: need to enhance transport coefficient \hat{q} by large factor [Armesto et al '05]
Possible non-perturbative mechanism: Survival of “D- and B-mesonic resonances” above T_c

suggestive from lattice QCD (Umeda et al ’02, Datta et al ’03)

provides elastic resonant rescattering of heavy quarks in the QGP

effective field-theory model based on

 - chiral symmetry
 - spin symmetry of heavy-quark effective theory
Elastic Resonance Scattering

- **D-meson propagators** dressed with one-loop self energies
 - Only two model parameters:
 - mass of resonances: $m_D = 2 \text{ GeV}$
 - coupling constant $\Gamma_B = 0.4 \ldots 0.75 \text{ GeV}$
 - Same model for B mesons
 - $m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \ldots 0.75 \text{ GeV}$
Contributions from pQCD

Lowest-order matrix elements (Combridge ’79)

In-medium Debye-screening mass for t-channel gluon exchange:

\[\mu_g = gT, \quad \alpha_s = 0.4 \]
Cross sections

- pQCD and resonance cross sections: comparable in size
- BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion
Drag and Diffusion coefficients

- use Fokker-Planck ansatz to calculate drag and diffusion coefficients

![Graph showing drag and diffusion coefficients](image)

- resonance contributions factor \(\sim 2 \ldots 3\) higher than pQCD
- shortens equilibration times \(\tau_{eq} = 1/\gamma\)
Drag and Diffusion coefficients

- **heavy quarks in the QGP**
 - thermal elliptic fireball parametrization for QGP
 - Fokker-Planck coefficients time dependent
 - Relativistic Langevin simulation for motion of heavy quarks
Initial conditions

- need initial p_T-spectra of **charm** and **bottom** quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming δ-function fragmentation
 - exp. non-photonic single-e^\pm spectra: Fix bottom/charm ratio
Spectra and elliptic flow for heavy quarks
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: Coalescence + fragmentation
- single electrons from decay of D- and B-mesons

Data before Quark Matter ’05

Hendrik van Hees
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: Coalescence + fragmentation
- single electrons from decay of D- and B-mesons

Data presented at Quark Matter '05
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: Fragmentation only
- single electrons from decay of D- and B-mesons
Conclusions and Outlook

- Assumption: survival of resonances in the (s)QGP
- possible mechanism for nonperturbative interactions
- Equilibration of heavy quarks in QGP
- Observables via Langevin approach and coalescence
Conclusions and Outlook

- Assumption: survival of resonances in the (s)QGP
- possible mechanism for nonperturbative interactions
- **Equilibration** of heavy quarks in QGP
- **Observables** via Langevin approach and coalescence

- Further investigations have to be done:
 - Langevin for D (B)-mesons in hadronic phase?
 - more realistic (softer) fragmentation
 - better control of coalescence/fragmentation ratio
 - implementation of gluon-radiation processes