Thermalization of Heavy Quarks in the QGP

Hendrik van Hees

Texas A&M University

April 28, 2005

Collaborators: V. Greco, R. Rapp
Outline

Motivation

Chiral Heavy-Quark Model

The Fokker-Planck Equation

Friction and Diffusion Coefficients

Relativistic Langevin Process
Motivation

- p_T spectra and v_2 of D mesons
- Single-electron v_2 measurements from PHENIX, STAR ’04
- Coalescence model describes data under assumption of flowing thermalized c quarks
Motivation

▶ importance of dissociation and regeneration in

\[c + \bar{c} \leftrightarrow J/\psi + X \]

▶ in-medium spectral properties of charmonia in QGP (Grandchamp, Rapp ’02)

▶ importance of thermalization of heavy quarks
importance of dissociation and regeneration in
\[c + \bar{c} \leftrightarrow J/\psi + X \]

- in-medium spectral properties of charmonia in QGP (Grandchamp, Rapp ’02)
- importance of thermalization of heavy quarks
- Possible mechanism: Survival of “D-mesonic resonances” above \(T_c \)
- suggestive from lattice QCD (Umeda et al ’02, Datta et al ’03)
Free Lagrangian: Particle Content

Chiral symmetry $\text{SU}_V(2) \otimes \text{SU}_A(2)$ in light-quark sector of QCD

$$\mathcal{L}_D^{(0)} = \sum_{i=1}^{2} \left[(\partial_\mu \Phi_i^\dagger)(\partial^\mu \Phi_i) \right. - \left. m_D^2 \Phi_i^\dagger \Phi_i \right] + \text{massive (pseudo-)vectors } D^*$$

Φ_i: two doublets: pseudo-scalar $\sim \left(\begin{array}{c} D^0 \\ D^- \end{array} \right)$ and scalar

Φ_i^*: two doublets: vector $\sim \left(\begin{array}{c} D^{0*} \\ D^{-*} \end{array} \right)$ and pseudo-vector

$$\mathcal{L}_{qc}^{(0)} = \bar{q} i \gamma^\mu q + \bar{c} (i \gamma^\mu - m_c) c$$

q: light-quark doublet $\sim \left(\begin{array}{c} u \\ d \end{array} \right)$

c: singlet
Chiral Symmetry

Infinitesimal version:

\[q \rightarrow (1 + i\delta \vec{\phi}_V \vec{t} + i\delta \vec{\phi}_A \tau_5)q, \quad c \rightarrow c. \]

Light quarks massless in chiral limit!

\[\Phi_1 \rightarrow \Phi_1 + i\delta \vec{\phi}_V \vec{t}\Phi_1 + i\delta \vec{\phi}_A \tau_5 \Phi_2, \]
\[\Phi_2 \rightarrow \Phi_2 + i\delta \vec{\phi}_V \vec{t}\Phi_2 + i\delta \vec{\phi}_A \tau_5 \Phi_1. \]

Mesons must have chiral partners

In the vacuum: chiral symmetry spontaneously broken
In QGP: chiral symmetry restored
Interactions

Interactions determined by chiral symmetry
Strong interactions also preserve parity
For transversality of vector mesons: use heavy-quark effective theory vertices

\[L_{\text{int}} = - G_S \left(\frac{1 + \gamma}{2} \Phi_1 c_v + \frac{1 + \gamma}{2} i \gamma^5 \Phi_2 c_v + h.c. \right) \]
\[\quad \quad - G_V \left(\frac{1 + \gamma}{2} \gamma^\mu \Phi_{1\mu} c_v + \frac{1 + \gamma}{2} i \gamma^\mu \gamma^5 \Phi_{2\mu} c_v + h.c. \right) \]

\(v \): four momentum of heavy quark in HQET: spin symmetry
\[\Rightarrow G_S = G_V \]
Dressing the D Mesons

Dressing the D mesons with self-energies

\[\rho_k^D(k^2 = 0) = 0, \quad \Pi^D(k^2 = 0) = 0 \]

or dipole form-factor cutoff:

\[F_{\text{dip}} = \frac{2\Lambda^2}{k^2 + \frac{m^2}{c^2}} \]

Bare mass and coupling adjusted such that $m_D = 2$ GeV, $\Gamma_D = (0.3 \ldots 0.8)$ GeV (from in-medium Bethe-Salpeter calculations)
Dressing the D Mesons

Dressing the D mesons with self-energies

\[D, D', D_s \]
\[k \]
\[q \]
\[c \]
\[D, D', D_s \]
\[k \]

Divergencies: wave-function + mass renormalization:

\[\partial_{k^2} \Pi_D(k^2 = 0) = 0, \quad \Pi_D(k^2 = 0) = 0 \]
Dressing the D Mesons

Dressing the D mesons with self-energies

\[D, D', D_s \xrightarrow{\text{q}} D, D', D_s \]

\[k \xrightarrow{\text{c}} k \]

Divergencies: wave-function + mass renormalization:

\[\partial_{k^2} \Pi_D(k^2 = 0) = 0, \quad \Pi_D(k^2 = 0) = 0 \]

or dipole form-factor cutoff:

\[F_{\text{dip}} = \left(\frac{2\Lambda^2}{2\Lambda^2 + k_{\text{cm}}^2} \right)^2, \quad k_{\text{cm}} = \frac{s - m_c^2}{2\sqrt{s}} \]
Dressing the D Mesons

Dressing the D mesons with self-energies

\[\partial_{k^2} \Pi_D(k^2 = 0) = 0, \quad \Pi_D(k^2 = 0) = 0 \]

or dipole form-factor cutoff:

\[F_{\text{dip}} = \left(\frac{2 \Lambda^2}{2 \Lambda^2 + k^2_{\text{cm}}} \right)^2, \quad k_{\text{cm}} = \frac{s - m_c^2}{2 \sqrt{s}} \]

Bare mass and coupling adjusted such that

\[m_D = 2 \text{ GeV}, \quad \Gamma_D = (0.3 \ldots 0.8) \text{GeV} \]
Resonance Scattering

heavy-light-(anti-)quark scattering

\[
\begin{align*}
\bar{q} & \rightarrow c & D, D', D_s \\
D, D', D_s & \rightarrow \bar{q} & c \\
\end{align*}
\]
Contributions from pQCD

Lowest-order matrix elements (Combridge ’79)

In-medium Debye-screening mass for t-channel gluon exchange:

\[\mu_g = g T, \quad \alpha_s = 0.3, 0.4, 0.5 \]
Cross sections

- total pQCD and resonance cross sections: comparable in size
- BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion
The Fokker-Planck Equation

Heavy particle (c quarks) in a heat bath of light particles (QGP)

\[
\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[A_i(t, \vec{p}) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})
\]

Assumption: Relevant scattering processes are soft
The Fokker-Planck Equation

heavy particle (c quarks) in a heat bath of light particles (QGP)

\[
\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[A_i(t, \vec{p}) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})
\]

Assumption: Relevant scattering processes are soft
\(A_i\) and \(B_{ij}\) given by averages over initial momenta \(\vec{q}\) of light particles and summation over final states (Svetitsky '88):

\[
\langle X(\vec{p}') \rangle = \frac{1}{\gamma_c 2E_p} \int \frac{d^3\vec{q}}{(2\pi)^3 2E_q} \int \frac{d^3\vec{q}'}{(2\pi)^3 2E_q'} \int \frac{d^3\vec{p}'}{(2\pi)^3 2E_p'} \sum |\mathcal{M}|^2 (2\pi)^4 \delta^{(4)}(\vec{p} + \vec{q} - \vec{p}' - \vec{q}') \hat{f}(\vec{q}) X(\vec{p}')
\]
Friction and Diffusion Coefficients

For t, \vec{p}-independent coefficients:

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial}{\partial \vec{p}}(\vec{p} f) + D \frac{\partial^2}{\partial \vec{p}^2} f$$
Friction and Diffusion Coefficients

For t, \vec{p}-independent coefficients:

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial}{\partial \vec{p}} (\vec{p} f) + D \frac{\partial^2}{\partial \vec{p}^2} f$$

Solution for c quark with given momentum \vec{p}_0 at $t = 0$:

$$G(t, \vec{p} | \vec{p}_0) = \left\{ \frac{\gamma}{2\pi D [1 - \exp(-2\gamma t)]} \right\}^{3/2} \exp \left\{ -\frac{\gamma}{2D} \left[\vec{p} - \vec{p}_0 \exp(-\gamma t) \right]^2 \right\}$$

- $\langle \vec{p} \rangle = \vec{p}_0 \exp(-\gamma t) \Rightarrow \gamma = \text{friction coefficient (dissipation)}$
- $\Delta \vec{p}^2 = 3D/\gamma [1 - \exp(-2\gamma t)] \Rightarrow D = \text{diffusion (fluctuation)}$
Friction and Diffusion Coefficients

For t, \vec{p}-independent coefficients:

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial}{\partial \vec{p}} (\vec{p} f) + D \frac{\partial^2}{\partial \vec{p}^2} f$$

Solution for c quark with given momentum \vec{p}_0 at $t = 0$:

$$G(t, \vec{p}|\vec{p}_0) = \left\{ \frac{\gamma}{2\pi D [1 - \exp(-2\gamma t)]} \right\}^{3/2} \exp \left\{ -\frac{\gamma}{2D} \frac{[\vec{p} - \vec{p}_0 \exp(-\gamma t)]^2}{1 - \exp(-2\gamma t)} \right\}$$

- $\langle \vec{p} \rangle = \vec{p}_0 \exp(-\gamma t) \Rightarrow \gamma =$ friction coefficient (dissipation)
- $\Delta \vec{p}^2 = 3D / \gamma [1 - \exp(-2\gamma t)] \Rightarrow D =$ diffusion (fluctuation)
- $t \rightarrow \infty$: temperature $T^* = D / \gamma m_c$
- consistency condition $T^* \overset{!}{=} T$ (heat bath-temperature)
- fulfilled within $\sim 15\%$ for relevant temperature region
The Coefficients: pQCD vs. resonance scattering

- only weakly p-dependent
- resonance contributions factor $\sim 2\ldots3$ higher than pQCD!
The Coefficients: pQCD vs. resonance scattering

- temperature dependence \Rightarrow need to treat Fokker-Planck equation with time-dependent coefficients
- Solvable with method of characteristics
Time evolution of the fire ball

- Simple fire-ball parameterization:

\[V(\tau) = \pi (z_0 + v_z \tau)(r_0 + \frac{1}{2} a_\perp \tau^2)^2 \]
Time evolution of the fire ball

- Simple fire-ball parameterization:
 \[V(\tau) = \pi (z_0 + v_z \tau)(r_0 + \frac{1}{2} a_{\perp} \tau^2)^2 \]

- Adiabatic expansion: \(S = \text{const} = 10^4 \text{@RHIC} \)

- Equation of state:
 \[s = \frac{4\pi^2}{90} T^3 (16 + 10.5 n_f^*), \quad n_f^* = 2.5 \]

- obtain \(\Rightarrow T(\tau) \)
Time evolution of the fireball

- Simple fire-ball parameterization:

\[V(\tau) = \pi(z_0 + v z \tau)(r_0 + \frac{1}{2}a_\perp \tau^2)^2 \]

- Adiabatic expansion: \(S = \text{const} = 10^4 \) @ RHIC

- Equation of state:

\[s = \frac{4\pi^2}{90} T^3 (16 + 10.5n_f^*), \quad n_f^* = 2.5 \]

- Obtain \(\Rightarrow T(\tau) \)

- Initial condition from PYTHIA

\[\frac{d^2N}{dp_T^2} := f(p_T, t = 0) \propto \frac{(p_T + A)^2}{(1 + p_T/B)^\alpha} \]
Evolved p_T spectra

- initially $\sqrt{\langle p_T^2 \rangle} = 1.66$ GeV
- with pQCD: not much change in spectrum
- with resonance contributions: $p_T^{(\text{max})} \sim 0.66$ GeV
- nearly thermal: $T \sim 290$ MeV
Evolution of p_T spectra
Relativistic Langevin Process

- aim: include (asymmetric) flow + p-dep. FP coefficients
- simulate FP equation as relativistic Langevin process
Relativistic Langevin Process

- aim: include (asymmetric) flow + p-dep. FP coefficients
- simulate FP equation as relativistic Langevin process
- friction $\hat{=} \text{deterministic drag force}$, diffusion $\hat{=} \text{stochastic force}$
- in (local) restframe of the heat bath

$$\delta \vec{x} = \frac{\vec{p}}{E} \delta t$$

$$\delta \vec{p} = -\gamma(t, \vec{p} + \delta \vec{p}) \vec{p} \delta t + \delta W(t, \vec{p} + \delta \vec{p})$$

$$P(\delta \vec{W}) \propto \exp \left[- \frac{\delta \vec{W}^2}{4D(t, \vec{p} + \delta \vec{p}) \delta t E^2 / m^2} \right]$$
Relativistic Langevin Process

- aim: include (asymmetric) flow + p-dep. FP coefficients
- simulate FP equation as relativistic Langevin process
- friction $\hat{=} \text{deterministic drag force}$, diffusion $\hat{=} \text{stochastic force}$
- in (local) restframe of the heat bath

\[
\delta \vec{x} = \frac{\vec{p}}{E} \delta t
\]

\[
\delta \vec{p} = -\gamma(t, \vec{p} + \delta \vec{p}) \vec{p} \delta t + \delta W(t, \vec{p} + \delta \vec{p})
\]

\[
P(\delta \vec{W}) \propto \exp \left[-\frac{\delta \vec{W}^2}{4D(t, \vec{p} + \delta \vec{p}) \delta t E^2/m^2} \right]
\]

- Hänggi-Klimontovich realization \Leftrightarrow rel. Maxwell distribution as equilibrium limit with unchanged FP coefficients
Observables: p_T-spectra, v_2, (R_{AA})

- use elliptic flow parametrization for fireball, based on hydro [Kolb et al]
- boost “labframe” \leftrightarrow local heat-bath-rest frame (see also [Moore, Teaney 2004])

![Graphs showing dN/dp_T and R_{AA} versus p_T]

- dN/d^2p_T [GeV2]
- R_{AA}
- PYTHIA initial
- pQCD (elastic)
- res. scattering
Observables: p_T-spectra, v_2, (R_{AA})
Observables: p_T-spectra, v_2, (R_{AA})

- D-meson v_2 via coalescence
- e^\pm from subsequent decay
Conclusions

- Assumption: survival of resonances in the QGP
- possible mechanism for strong interactions beyond T_c
- Equilibration of heavy quarks in QGP
- Observables via Langevin approach and coalescence