Heavy Quarks in the QGP

Hendrik van Hees

Justus-Liebig Universität Gießen

March 03, 2008
1. Heavy-quark interactions in the sQGP
 - Heavy-quark observables in heavy-ion collisions
 - Heavy-quark diffusion: The Fokker-Planck Equation
 - Elastic pQCD heavy-quark scattering
 - Non-perturbative interactions: effective resonance model

2. Non-photonic electrons at RHIC

3. Microscopic model for non-perturbative HQ interactions
 - Static heavy-quark potentials from lattice QCD
 - T-matrix approach

4. Other Approaches
 - Radiative energy loss
 - Collisional dissociation/fragmentation in the QGP

5. Summary and Outlook
Heavy-Ion collisions in a Nutshell

- Theory of strong interactions: Quantum Chromo Dynamics, QCD
- At high enough densities/temperatures: hadrons dissolve into a Quark-Gluon Plasma (QGP)
- hope to create QGP in Heavy-Ion Collisions at RHIC (and LHC)
- RHIC: collide gold nuclei with energy of 200 GeV per nucleon:

![Diagram showing initial state, pre-equilibrium, QGP and hydrodynamic expansion, hadronization, and hadronic phase and freeze-out.]
Evidence for QGP from heavy-ion observables

- particle p_T spectra show hydrodynamical behavior
- collective flow of matter in local thermal equilibrium
- nuclear modification factor \Rightarrow degree of thermalization

$$R_{AA}(p_T) = \frac{dN_{AA}/dp_T}{N_{\text{coll}}dN_{pp}/dp_T}$$

- no QGP $\Rightarrow R_{AA} = 1$; observed: $R_{AA} < 1$ (suppression) at high p_T
- in non-central collisions: anisotropic collective flow

- initially reaction zone of elliptic shape
- pressure gradients: $\langle |p_x| \rangle > \langle |p_y| \rangle$
- measure of flow anisotropy:

$$v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle = \langle \cos(2\phi_p) \rangle$$
Hard production of HQs described by PDF's + pQCD (PYTHIA)

c, b quark

HQ rescattering in QGP: Langevin simulation
drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP

Hadronization to D, B mesons via quark coalescence + fragmentation
V. Greco, C. M. Ko, R. Rapp, PLB 595, 202 (2004)

Semileptonic decay \Rightarrow “non-photonic” electron observables
Relativistic Langevin process

- **Langevin process**: friction force + Gaussian random force
- in the (local) rest frame of the heat bath

\[
\begin{align*}
\text{d}\vec{x} &= \frac{\vec{p}}{E_p} \text{d}t, \\
\text{d}\vec{p} &= -A\vec{p} \text{d}t + \sqrt{2} \text{d}t [\sqrt{B_0 P_\perp} + \sqrt{B_1 P_\parallel}] \vec{w}
\end{align*}
\]

- \(\vec{w} \): normal-distributed random variable
- \(A \): friction (drag) coefficient
- \(B_{0,1} \): diffusion coefficients
- dependent on realization of stochastic process
- to guarantee correct equilibrium limit: Use Hänggi-Klimontovich calculus, i.e., use \(B_{0/1}(t, \vec{p} + \text{d}\vec{p}) \)
- Einstein dissipation-fluctuation relation \(B_0 = B_1 = E_p T A \).
- to implement flow of the medium
 - use Lorentz boost to change into local “heat-bath frame”
 - use update rule in heat-bath frame
 - boost back into “lab frame”
Elastic pQCD processes

- Lowest-order matrix elements [Combridge 79]

- Debye-screening mass for t-channel gluon exch. $\mu_g = gT, \alpha_s = 0.4$

- not sufficient to understand RHIC data on “non-photonic” electrons
Non-perturbative interactions: Resonance Scattering

- General idea: Survival of D- and B-meson like resonances above T_c
- elastic heavy-light-(anti-)quark scattering

\[
\begin{align*}
\bar{q} & \quad c \quad D, D', D_s \\
q & \quad c \quad u \quad D, D', D_s \\
D, D', D_s & \quad q \quad D, D', D_s \\
k & \quad c \quad k \quad D, D', D_s
\end{align*}
\]

- D- and B-meson like resonances in sQGP

- parameters
 - $m_D = 2$ GeV, $\Gamma_D = 0.4 \ldots 0.75$ GeV
 - $m_B = 5$ GeV, $\Gamma_B = 0.4 \ldots 0.75$ GeV
total pQCD and resonance cross sections: comparable in size

BUT pQCD forward peaked ↔ resonance isotropic

resonance scattering more effective for friction and diffusion
Transport coefficients: pQCD vs. resonance scattering

- three-momentum dependence

![Graphs showing the comparison between pQCD and resonance scattering with different resonance contributions and pQCD values.]

- resonance contributions factor $\sim 2 \ldots 3$ higher than pQCD!
Transport coefficients: pQCD vs. resonance scattering

- Temperature dependence

![Graphs showing temperature dependence of transport coefficients](image-url)
Time evolution of the fire ball

- **Elliptic fire-ball** parameterization fitted to hydrodynamical flow pattern [Kolb ’00]

\[
V(t) = \pi(z_0 + v_z t)a(t)b(t), \quad a, b: \text{semi-axes of ellipse},
\]

\[
v_{a,b} = v_{\infty}[1 - \exp(-\alpha t)] \mp \Delta v[1 - \exp(-\beta t)]
\]

- **Isentropic expansion:** \(S = \text{const} \) (fixed from \(N_{ch} \))
- **QGP Equation of state:**

\[
s = \frac{S}{V(t)} = \frac{4\pi^2}{90}T^3(16 + 10.5n_f^*), \quad n_f^* = 2.5
\]

- obtain \(T(t) \Rightarrow A(t, p), B_0(t, p) \) and \(B_1 = TEA \)
- for semicentral collisions (\(b = 7 \text{ fm} \)): \(T_0 = 340 \text{ MeV} \), QGP lifetime \(\simeq 5 \text{ fm}/c. \)
- simulate FP equation as relativistic Langevin process
Initial conditions

- need initial p_T-spectra of charm and bottom quarks
- (modified) PYTHIA to describe exp. D meson spectra, assuming δ-function fragmentation
- exp. non-photonic single-e^\pm spectra: Fix bottom/charm ratio

\[
\frac{1}{2\pi p_T} dN/dp_T \text{ [a.u.]}
\]

\[
\sigma_{bb}/\sigma_{cc} = 4.9 \times 10^{-3}
\]
Spectra and elliptic flow for heavy quarks

\[\mu_D = gT, \quad \alpha_s = g^2/(4\pi) = 0.4 \]

- resonances ⇒ c-quark thermalization without upscaling of cross sections
- Fireball parametrization consistent with hydro

- \[\mu_D = 1.5T \text{ fixed} \]
- spatial diff. coefficient:
 \[D = D_s = \frac{T}{mA} \]
- \[2\pi TD \sim \frac{3}{2\alpha_s^2} \]

\[\text{Au-Au } \sqrt{s}=200 \text{ GeV (b=7 fm)} \]

\[R_{AA} \]

\[p_T \text{ [GeV]} \]

\[0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3.5 \quad 4 \quad 4.5 \quad 5 \]

\[c, \text{ reso (} \Gamma=0.4-0.75 \text{ GeV)} \]

\[c, \text{ pQCD, } \alpha_s=0.4 \]

\[b, \text{ reso (} \Gamma=0.4-0.75 \text{ GeV)} \]
Spectra and elliptic flow for heavy quarks

- c, reso ($\Gamma = 0.4-0.75$ GeV)
- c, pQCD, $\alpha_s = 0.4$
- b, reso ($\Gamma = 0.4-0.75$ GeV)

Au-Au $\sqrt{s} = 200$ GeV (b=7 fm)

LO QCD

[Moore, Teaney ’04]
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: **Coalescence** with light quarks + fragmentation $\leftrightarrow c\bar{c}, b\bar{b}$ conserved
- single electrons from decay of D- and B-mesons

Without further adjustments: data quite well described
[HvH, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)]
Observables: p_T-spectra (R_{AA}), v_2

- Hadronization: Fragmentation only
- single electrons from decay of D- and B-mesons

![Graphs showing R_{AA} and v_2 as functions of p_T for Au-Au collisions at $\sqrt{s}=200$ GeV with $b=7$ fm.](image)
Observables: p_T-spectra (R_{AA}), v_2

- Central Collisions
- single electrons from decay of D- and B-mesons

Coalescence+Fragmentation

Fragmentation only

![Graph showing R_{AA} vs. p_T for central Au-Au collisions at $\sqrt{s}=200$ GeV. The graph compares data from PHENIX prel (0-10%) and STAR (0-5%) with theoretical models such as c+b reso and c+b pQCD.](image)
Comparison to newer data

(a) 0–10% central
- Armesto et al. (I)
- van Hees et al. (II)

(b) minimum bias
- \(p_T > 4 \text{ GeV/c} \)
- \(p_T > 2 \text{ GeV/c} \)
- \(e^\pm, p_T > H F \)

PHENIX Collaboration
PRL 98 172301 (2007)
Microscopic model: Static potentials from lattice QCD

- color-singlet free energy from lattice
- use internal energy

\[U_1(r, T) = F_1(r, T) - T \frac{\partial F_1(r, T)}{\partial T}, \]

\[V_1(r, T) = U_1(r, T) - U_1(r \to \infty, T) \]

- Casimir scaling for other color channels [Nakamura et al 05; Döring et al 07]

\[V_3 = \frac{1}{2} V_1, \quad V_6 = -\frac{1}{4} V_1, \quad V_8 = -\frac{1}{8} V_1 \]
T-matrix

- Brueckner many-body approach for elastic $Qq, Q\bar{q}$ scattering

\[
T = V + V \Sigma + \Sigma_{\text{glu}} + T
\]

- reduction scheme: 4D Bethe-Salpeter \rightarrow 3D Lipmann-Schwinger
- S- and P waves
- same scheme for light quarks (self consistent!)
- Relation to invariant matrix elements

\[
\sum |\mathcal{M}(s)|^2 \propto \sum_q d_a \left(|T_{a,l=0}(s)|^2 + 3 |T_{a,l=1}(s)|^2 \cos \theta_{\text{cm}} \right)
\]
- Resonance formation at lower temperatures $T \approx T_c$
- Melting of resonances at higher T! \Rightarrow sQGP
- P wave smaller
- Resonances near T_c: natural connection to quark coalescence

[Ravagli, Rapp 07; Ravagli, HvH, Rapp 08]

- Model-independent assessment of elastic Qq, $Q\bar{q}$ scattering
- Problems: uncertainties in extracting potential from lQCD in-medium potential V vs. F?
from non-pert. interactions reach \(A_{\text{non-pert}} \simeq 1/(7 \text{ fm}/c) \simeq 4A_{\text{pQCD}} \)

- A decreases with higher temperature
- higher density (over)compensated by melting of resonances!
- spatial diffusion coefficient

\[
D_s = \frac{T}{mA}
\]

increases with temperature
Non-photonic electrons at RHIC

- same model for bottom
- quark coalescence + fragmentation $\rightarrow D/B \rightarrow e + X$

- coalescence crucial for description of data
- increases both, R_{AA} and v_2 ⇔ “momentum kick” from light quarks!
- “resonance formation” towards $T_c \Rightarrow$ coalescence natural [Ravagli, Rapp 07]
Radiative energy loss

- **Gluo-bremsstrahlung energy-loss calculations**
 - medium modelled by static scattering centers
 - energy loss through *gluo bremsstrahlung*: \(\Delta E = \frac{\alpha_s}{2} \hat{q}L^2 \)
 - perturbative estimate for RHIC conditions: \(\hat{q} \approx 1 \text{ GeV}^2/\text{fm} \)

![Graph showing mass and scale uncertainties](image)

- Need \(\hat{q} = 14 \text{ GeV}^2/\text{fm} \); \(v_2 \): only through almond-shape geometry
- without drag \(\Rightarrow \) no heavy-quark collective flow:
 - no consistent description of \(R_{AA} \) and \(v_2 \)!

[Armesto, Cacciari et al. (2006)]
Collisional dissociation/fragmentation in the QGP

- in-medium dissociation of D/B mesons \leftrightarrow in-medium fragmentation of c/b quarks
- medium modification of quark-wave functions in QGP
- dissociation by collision with QGP particles
- in-medium fragmentation $c/b \rightarrow D/B$

B mesons stronger bound than D mesons
smaller B formation times \Leftrightarrow stronger suppression for B than for D!
could be distinguished from HQ elastic-scattering processes by separate measurement of D and B only!

[Adil, Vitev (2007)]
Transport properties of the sQGP

- spatial diffusion coefficient: Fokker-Planck \[\Rightarrow D_s = \frac{T}{mA} = \frac{T^2}{D} \]
- measure for coupling strength in plasma: \(\eta/s \)

\[
\frac{\eta}{s} \simeq \frac{1}{2} TD_s \quad \text{(AdS/CFT)}, \quad \frac{\eta}{s} \simeq \frac{1}{5} TD_s \quad \text{(wQGP)}
\]

[Lacey, Taranenko (2006)]

[Hendrik van Hees (JLU Gießen) | Heavy Quarks in the QGP | March 03, 2008]
Summary and Outlook

Summary

- **Heavy quarks in the sQGP**
- non-perturbative interactions
 - mechanism for strong coupling: resonance formation at $T \gtrsim T_c$
 - IQCD potentials parameter free
 - res. melt at higher temperatures \Leftrightarrow consistency betw. R_{AA} and v_2!
- also provides “natural” mechanism for quark coalescence
- resonance-recombination model
- problems
 - extraction of V from lattice data
 - potential approach at finite T: F, V or combination?

Outlook

- include inelastic heavy-quark processes (gluo-radiative processes)
- other heavy-quark observables like charmonium suppression/regeneration