Heavy-Quark Transport in the QGP

Hendrik van Hees

Goethe University Frankfurt

March 09, 2012
1 Heavy-quark interactions in the sQGP
 - Heavy quarks in heavy-ion collisions
 - Heavy-quark diffusion: The Langevin Equation

2 Non-perturbative HQ interactions
 - Resonance model for HQ-q Scattering
 - Static heavy-quark potentials from lattice QCD
 - T-matrix approach

3 Non-photonic electrons

4 Summary and Outlook
Motivation

- Fast equilibration of hot and dense matter in heavy-ion collisions: collective flow (nearly ideal hydrodynamics) ⇒ sQGP
- Heavy quarks as calibrated probe of QGP properties
 - produced in early hard collisions: well-defined initial conditions
 - not fully equilibrated due to large masses
 - heavy-quark diffusion ⇒ probes for QGP-transport properties
- Langevin simulation
- drag and diffusion coefficients
 - T-matrix approach with static lattice-QCD heavy-quark potentials
 - resonance formation close to T_c
 - mechanism for non-perturbative strong interactions
Heavy Quarks in Heavy-Ion collisions

hard production of HQs described by PDF’s + pQCD (PYTHIA)

c, b quark

HQ rescattering in QGP: Langevin simulation
drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP

Hadronization to D, B mesons via quark coalescence + fragmentation

semileptonic decay \Rightarrow

"non-photonic" electron observables

$R_{AA}^{e^+ e^-}(p_T), v_2^{e^+ e^-}(p_T)$
Relativistic Langevin process

- **Langevin process**: friction force + Gaussian random force
- in the (local) rest frame of the heat bath

\[
\frac{d\vec{x}}{dt} = \frac{\vec{p}}{E_p} dt,
\]

\[
\frac{d\vec{p}}{dt} = -A \vec{p} dt + \sqrt{2} dt [\sqrt{B_0} P_\perp + \sqrt{B_1} P_\parallel] \vec{w}
\]

- \(\vec{w}\): normal-distributed random variable
- \(A\): friction (drag) coefficient
- \(B_{0,1}\): diffusion coefficients
- Einstein dissipation-fluctuation relation \(B_1 = E_p T A\).
- flow via Lorentz boosts between “heat-bath frame” and “lab frame”
- \(A\) and \(B_0\) from microscopic models for \(qQ, gQ\) scattering
Non-perturbative interactions: Resonance Scattering

- General idea: Survival of D- and B-meson like resonances above T_c
- model based on chiral symmetry (light quarks) HQ-effective theory
- elastic heavy-light-(anti-)quark scattering

D, D', D_s \hspace{1cm} D, D', D_s

D- and B-meson like resonances in sQGP

parameters

- $m_D = 2 \text{ GeV}, \Gamma_D = 0.4 \ldots 0.75 \text{ GeV}$
- $m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \ldots 0.75 \text{ GeV}$
total pQCD and resonance cross sections: comparable in size

BUT pQCD forward peaked ↔ resonance isotropic

resonance scattering more effective for friction and diffusion
Transport coefficients: pQCD vs. resonance scattering

- three-momentum dependence

\[T=200 \text{ MeV} \]

\[\gamma \text{[1/fm]} \]

\[p\text{[GeV]} \]

\[\Gamma = 0.3 \text{ GeV} \]

\[\Gamma = 0.4 \text{ GeV} \]

\[\Gamma = 0.5 \text{ GeV} \]

\[\alpha_s = 0.3 \]

\[\alpha_s = 0.4 \]

\[\alpha_s = 0.5 \]

- resonance contributions factor \(\sim 2 \ldots 3 \) higher than pQCD!
Transport coefficients: pQCD vs. resonance scattering

- Temperature dependence

\begin{itemize}
 \item resonances: $\Gamma = 0.4$ GeV
 \item pQCD: $\alpha_s = 0.4$
 \item total
\end{itemize}
Spectra and elliptic flow for heavy quarks

- $\mu_D = gT$, $\alpha_s = g^2/(4\pi) = 0.4$
- resonances \Rightarrow c-quark thermalization without upscaling of cross sections
- Fireball parametrization consistent with hydro
color-singlet free energy from lattice \rightarrow internal energy

$$U_1(r, T) = F_1(r, T) - T \frac{\partial F_1(r, T)}{\partial T},$$

$$V_1(r, T) = U_1(r, T) - U_1(r \rightarrow \infty, T)$$

Casimir scaling of Coulomb part for other color channels; confining part color blind [F. Riek, R. Rapp, Phys. Rev. C 82, 035201 (2010)].

$$V_3 = \frac{1}{2} V_1, \quad V_6 = -\frac{1}{4} V_1, \quad V_8 = -\frac{1}{8} V_1$$
T-matrix

- Brueckner many-body approach for elastic $Qq, Q\bar{q}$ scattering

\[T = \sum_c V_T, \bar{q} + \sum_{glu} + T \Sigma \]

- Reduction scheme: 4D Bethe-Salpeter \rightarrow 3D Lipmann-Schwinger
- S- and P waves
- Relation to invariant matrix elements

\[\sum_q \left| M(s) \right|^2 \propto \sum_q d_a \left(|T_{a,l=0}(s)|^2 + 3 |T_{a,l=1}(s)|^2 \cos \theta_{cm} \right) \]
T-matrix results

- **resonance formation** at lower temperatures $T \simeq T_c$
- melting of resonances at higher T
- model-independent assessment of elastic Qq, $Q\bar{q}$ scattering!
from non-pert. interactions reach $A_{\text{non-pert}} \simeq 1/(7 \text{ fm}/c) \simeq 4A_{\text{pQCD}}$

results for free-energy potential, F considerably smaller
Bulk evolution and initial conditions

- bulk evolution as elliptic thermal fireball
- isentropic expansion with QGP Equation of State
- initial p_T-spectra of charm and bottom quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming δ-function fragmentation
 - exp. non-photonic single-e^\pm spectra: Fix bottom/charm ratio

\[\frac{1}{2\pi p_T} dN/dp_T \text{ [a.u.]} \]

STAR D

STAR prelim. D * $(\times 2.5)$

- c-quark (mod. PYTHIA)
- c-quark (CompHEP)

d+Au $\sqrt{s_{NN}}=200$ GeV

\[\sigma_{bb}/\sigma_{cc} = 4.9 \times 10^{-3} \]

Hendrik van Hees (GU Frankfurt)

Heavy-Quark Transport

March 09, 2012 15 / 22
Spectra and elliptic flow for c-quarks

R_{AA} and v_2 as a function of p_T for Au-Au collisions at $\sqrt{s}=200$ GeV, with different transport models.

- $F_{Kac} + pQCD$ gluons
- $U_{Kac} + pQCD$ gluons
- $F_{Pet} + pQCD$ gluons
- $U_{Pet} + pQCD$ gluons

Hendrik van Hees (GU Frankfurt)
Spectra and elliptic flow for b-quarks

Au-Au $\sqrt{s}=200$ GeV (b=7 fm), b-quarks

Left panel:
- R_{AA} vs. p_T (GeV)
- $F_{Kac} + pQCD$ gluons
- $U_{Kac} + pQCD$ gluons
- $F_{Pet} + pQCD$ gluons
- $U_{Pet} + pQCD$ gluons

Right panel:
- v_2 (%) vs. p_T (GeV)
- $F_{Kac} + pQCD$ gluons
- $U_{Kac} + pQCD$ gluons
- $F_{Pet} + pQCD$ gluons
- $U_{Pet} + pQCD$ gluons
Implementation in hybrid UrQMD

- Langevin simulation easily implemented into any “bulk background”
- UrQMD $\Rightarrow 1+3$ dim Hydro (Shasta) \Rightarrow UrQMD
 - more realistic fireball evolution
 - possibility to study effects of fluctuations

[T. Lang, J. Steinheimer, HvH, work in progress]
Non-photonic electrons at RHIC (fireball)

- quark coalescence + fragmentation $\rightarrow D/B \rightarrow e + X$

- coalescence improves description of data
- increases both, R_{AA} and v_2 \Leftrightarrow “momentum kick” from light quarks!
- “resonance formation” towards $T_c \Rightarrow$ coalescence natural

Non-photonic electrons at RHIC (UrQMD)

- so far only quark fragmentation $\rightarrow D/B \rightarrow e + X$
so far only quark fragmentation $\rightarrow D/B \rightarrow e + X$
Summary and Outlook

- Heavy quarks in the sQGP
- non-perturbative interactions
 - mechanism for strong coupling: resonance formation at $T \gtrsim T_c$
 - lattice-QCD potentials parameter free
 - resonances melt at higher temperatures
 \Leftrightarrow consistency betw. R_{AA} and v_2!
- also provides “natural” mechanism for quark coalescence
- potential approach at finite T: F, V or combination?
- Outlook
 - implementation of hadronic cross sections for D/B-meson diffusion
 - include inelastic heavy-quark processes (gluo-radiative processes)
 - implement resonance-recombination model for hadronization
 - other heavy-quark observables like charmonium suppression/regeneration