Problem

Motivation

Statistical Bootstrap Model

Detailed Balance

Conclusions

Implementation of Hagedorn States into UrQMD

Max Beitel

Institute for Theoretical Physics Goethe University Frankfurt am Main

Transport Group Meeting

12.07.2012

Max Beitel

Implementation of Hagedorn States into UrQMD

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions

2 Motivation

Statistical Bootstrap Model
Partition Function
Phase-Space Approach

4 Detailed Balance

- cubic box with cyclic boundary conditions
- inital particles: 80 n + 80 p in $V = 1000 \text{ fm}^3$
- uniform distribution in configuraton and momentum space
- fixed $\rho_B=0.16~{\rm fm}^{-3}$ and $\rho_S=0~{\rm fm}^{-3}$
- $\bullet\,$ runs done for $\epsilon=0.2~{\rm GeV}/{\rm fm}^3$ and $\epsilon=0.7~{\rm GeV}/{\rm fm}^3$
- multiplicities of kaons, pions and nucleons are averaged over 50 events

M. Belkacem et al., PRC 58 (1998), 1727

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions

Successfull Application: C. Greiner, J. Noronha-Hostler et al.

• at SPS energies strong increase of anitprotons and antihyperons is explained by 'clustering' of mesons

$$n_1 \pi + n_2 K \leftrightarrow \bar{Y} + p \tag{1}$$

- $\bullet\,$ giving an chemical equilibration time of $t_{eq}\approx 1-3~{\rm fm/c}$
- $\bullet\,$ for RHIC energies $t_{eq}\sim 10\,\,{\rm fm/c}$ for antibaryons
- quick chemical equilibration mechanism is provided by HS:

$$(n_1\pi + n_2K + n_3\bar{K}\leftrightarrow) HS \leftrightarrow \bar{B} + B + X$$
 (2)

- dynamical description of (2) described by set of coupled rate equations
- assuming HS and pions start in equilibrium $B\bar{B}$ -pairs chem. equilibrate in $t_{eq} \approx 5$ fm/c

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions
Intention				

Full integration of Hagedorn States (HS) into UrQMD

- particle multiplicities
- chemical equilibration times
- $\frac{\eta}{s}$
- . . .

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions
UrQMD				

- microscopic Hadron-String Transport model simulating p+p, p+N and A+A collisions in the energy range from Bevalac and SIS up to AGS, SPS and RHIC
- detailed balance is enforced for following processes: meson-baryon, meson-meson, resonance-nucleon and resonance-resonance interaction
- for high \sqrt{s} beside string production also HS production should be possible

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions
History				

- in 1965 Rolf Hagedorn posutlated the so called "Statistical Bootstrap Model" ¹
- highly excited lumps of matter are not essentially different from observed hadronic resonances at lower excitation
- fireballs contain all known and unknown particles, among them the 'resonances', which are regarded as small fireballs too
- fireballs and their constituents are the same and they all should be counted by the same mass spectrum
- nesting fireballs into each other leads to a mathematical self-consistency condition on the hadron mass spectrum

¹Nuovo Cim.Suppl. 3 (1965) 147-186

- the original approach is based on derivation of the partition function
- in high energy collisions a created system decays in about 3 fm/c
- assumption of establishment of equilibrium in a shorter time than typical time scales must be made since a temperature will be introduced
- strong forward-backward motions can be kinematically separated from the isotropic thermal motion
- number of different kinds of hadrons is infinite

• usual partition function of a non-interacting gas reads

$$Z(T,V) = \sum_{i} \exp\left(\frac{E_{i}}{T}\right) \equiv \int_{0}^{\infty} dE \,\sigma\left(E,V\right) \exp\left(-\frac{E}{T}\right)$$
(3)

- $\bullet \ \sigma$ is a continous density of states in the system
- partition function of a relativistic gas of massive particles with quantum statistics reads

$$Z(T,V) = \exp\left(\frac{VT}{2\pi^2} \sum_{n=1}^{\infty} \frac{(\mp 1)^{n+1}}{n^2} \sum_i m_i^2 K_2\left(\frac{nm_i}{T}\right)\right)$$
(4)

 $\bullet\,$ introduction of continuous particle spectrum ρ

$$Z(T,V) = \exp\left(\frac{VT}{2\pi^2} \sum_{n=1}^{\infty} \frac{(\mp 1)^{n+1}}{n^2} \int_{0}^{\infty} \mathrm{d}m\,\rho(m,n)\,m^2 K_2\left(\frac{nm}{T}\right)\right)$$
(5)

bootrap condition requires

$$\lim_{m \to \infty} \frac{\log\left(\rho\left(m\right)\right)}{\log\left(\sigma\left(m\right)\right)} = 1$$
(6)

• σ is inverse Laplace transformation of Z and hence a function of ρ

$$\sigma(m) = F[\rho(m)] \tag{7}$$

 $\bullet\,$ solution of bootstrap condition obtained by iteration $\rho^{i+1}=\sigma^i$

$$\rho(m) \sim \sigma(m) \sim \exp\left(\frac{m}{T}\right)$$
(8)

 make solution more unique employ "weak bootstrap condition"

$$\lim_{m \to \infty} \frac{cm^a \rho(m)}{\sigma(m)} = 1$$
(9)

• the weak non-logarithmic bootstrap condition leads to

$$\rho(m) \sim \sigma(m) \sim cm^a \exp\left(\frac{m}{T}\right)$$
(10)

• (9) only fullfilled if a = -2.5

Phase-Space Approach: S. Frautschi, 1971

- partition function ansatz starts with n = 1 where n = 2 required for compound systems
- use of temperature requires a thermally equilibrated system
- to circumvent this drawbacks work with phase space directly

$$\rho_{out}^{nc}(m) = \sum_{n=2}^{\infty} \left(\frac{V}{(2\pi)^3}\right)^{n-1} \frac{1}{n!} \prod_{i=1}^n \int \mathrm{d}m_i \,\rho_{in}(m_i)$$
$$\times \int \mathrm{d}^3 p_i \,\delta\left(\sum_{i=1}^n E_i - m\right) \delta^{(3)}\left(\sum_{i=1}^n \vec{p_i}\right) \quad (11)$$

- nc denotes non-covariant measure d^3p
- covariant counterpart $\frac{d^3p}{2E}$ would be more justified

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions
Low Ma	ss Input			

- (11) known from microcanonical ensemble by conserving energy and momentum
- each state of motion can be occupied by particles with different masses considered by ρ_{in}
- ρ_{out} and ρ_{in} should asymptotically converge as required by "strong bootstrap condition"

$$\rho_{out}(m) \sim \rho_{in}(m) \quad \text{for} \quad m \to \infty$$
(12)

- this condition requires a < -2.5 in ρ_{in}
- to bound a from below a strenghtened assumption is made: $\rho_{out}=\rho_{in}$ for all masses above some threshold
- to describe low mass region more accurate a low-mass-input must be taken into account

$$\rho_{in}(m) = \rho_{out}(m) + \rho \left(\text{low-mass-input}\right)$$
(13)

• charged spectra with B,S and Q are described by

$$\rho_{B,S,Q}^{out}(m) = \sum_{n=2}^{\infty} \left(\frac{V}{(2\pi)^3}\right)^{n-1} \frac{1}{n!} \prod_{i=1}^n \int \mathrm{d}m_i \sum_{B_i, S_i, Q_i} \rho_{B_i, S_i, Q_i}^{in}(m_i)$$
$$\times \int \mathrm{d}^3 p_i \,\delta\left(\sum_{i=1}^n E_i - m\right) \,\delta^{(3)}\left(\sum_{i=1}^n \vec{p_i}\right)$$
$$\times \delta\left(\sum_i B_i - B\right) \,\delta\left(\sum_i S_i - S\right) \,\delta\left(\sum_i Q_i - Q\right) \tag{14}$$

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions
Tov Mod	lel			

• the iteration character is mathematically represented by

$$f^{j+1}(x) = \int^{x} \mathrm{d}x' f^{j}(x') \tag{15}$$

- $\bullet\,$ first toy model is to build up the particle density spectrum solely of π^0
- only n=2 term is regarded and $\rho_{low}=\delta\left(m_{i}-m_{0}\right)$

$$\rho_{out}^{j+1}(m) = \frac{1}{2} \frac{V}{(2\pi)^3} \int^m \mathrm{d} m_1 \int^{m-m_1} \mathrm{d} m_2$$

$$\times \left[\rho_{out}^j(m_1) + \delta(m_1 - m_0) \right] \left[\rho_{out}^j(m_2) + \delta(m_2 - m_0) \right]$$

$$\times \frac{4\pi}{4m^3} \left(m_1^2 - m_2^2 + m^2 \right) \left(m_2^2 - m_1^2 + m^2 \right) p_{cm}(m, m_1, m_2)$$
(16)

• for j=0 we start with two $\delta\text{-functions}$ containing m_0

$$\rho_{out}^{1}(m) = \frac{1}{2} \frac{V}{(2\pi)^{3}} \frac{4\pi}{8} m \sqrt{m^{2} - (2m_{0})^{2}}$$
(17)

• look for upper mass limit k for which ρ_{out}^1 contains at least one particle

$$\int_{2m_{0}}^{km_{0}} \mathrm{d}m\rho_{out}^{1}(m) \ge 1$$
(18)

- if k is found add low-mass-input and put it back into (16)
- procedure is repeated where the mass intervall before each iteration is increased by m_0

 $\bullet\,$ cross section for formation of a resonance q out of two particles q_1 and q_2

$$\sigma (q_1 + q_2 \to q) = \frac{2\pi m_1 m_2}{m p_{cm} (m, m_1, m_2)} \rho (m) |\mathcal{M}_{q_1 + q_2 \to q}|^2$$
(19)

• partial decay width of a resonance q into two particles q_1 and q_2

$$\Gamma(q \to q_1 + q_2) = \frac{p_{cm}}{\pi m} \int dm_1 \frac{m_1 \rho(m_1, q_1)}{2E_1} \int dm_2 \frac{m_2 \rho(m_2, q_2)}{2E_1} \times |\mathcal{M}_{q \to q_1 + q_2}|^2$$
(20)

• detailed balance requires $|\mathcal{M}_{q_1+q_2 \rightarrow q}|^2 = |\mathcal{M}_{q \rightarrow q_1+q_2}|^2$

$$\sigma(q_1 + q_2 \to q) = \frac{2\pi^2 \rho(m, q)}{p_{cm}^2(m, m_1, m_2)} \Gamma(q \to q_1 + q_2) \quad (21)$$

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions

- $\sigma\left(q_1+q_2
 ightarrow q
 ight)$ and $\Gamma\left(q
 ightarrow q_1+q_2
 ight)$ are both not known
- for finial state in continuum geometrical cross section is used

$$\sigma\left(q_1 + q_2 \to q\right) = \left\langle I^1 I_z^1 I^2 I_z^2 \| I I_z \right\rangle \pi R^2 \quad \text{with } R \approx r_0 \left(\frac{m}{m_d}\right)^{\frac{1}{3}}$$
(22)

now the partial decay width reads

$$\Gamma(q \to q_1 + q_2) = \frac{\langle I^1 I_z^1 I^2 I_z^2 \| I I_z \rangle R^2 p_{cm}^2}{2\pi\rho(m,q)} \\ \times \int dm_1 \frac{m_1 \rho(m_1,q_1)}{2E_1} \int dm_2 \frac{m_2 \rho(m_2,q_2)}{2E_1}$$
(23)

• three different decay modes possible (i) q_1 and q_2 both hadrons, (ii) q_1 hadron q_2 HS, (iii) q_1 and q_2 both HS

Problem Motivation Statistical Bootstrap Model Detailed Balance Conclusions

• decay mode (i) (both hadrons represented by δ -functions)

$$\Gamma^{(i)}(m,q) = \frac{\left\langle I^{1}I_{z}^{1}I^{2}I_{z}^{2}\|II_{z}\right\rangle R^{2}(m) p_{cm}^{2}(m)}{2\pi\rho(m,q)}$$
(24)

• decay mode (ii) (hadron+HS)

$$\Gamma^{(ii)}(m,q) = \frac{\langle I^{1}I_{z}^{1}I^{2}I_{z}^{2} \| II_{z} \rangle mR^{2}(m)}{2\pi\rho(m,q)} \\ \times \int_{0}^{p_{cm}} dpp^{3} \frac{\rho\left(\sqrt{m^{2}+m_{1}^{2}-2mE_{1}},q_{1}\right)}{E_{1}\sqrt{m^{2}+m_{1}^{2}-2mE_{1}}}$$
(25)

• decay mode (*iii*) (both HS)

$$\Gamma^{(iii)}\left(m,q\right) = \frac{\left\langle I^{1}I_{z}^{1}I^{2}I_{z}^{2}\|II_{z}\right\rangle R^{2}\left(m\right)}{2\pi\rho\left(m,q\right)}$$

$$\times \int^{m} \mathrm{d}m_{1} \int^{m-m_{1}} \mathrm{d}m_{2} p_{cm}(m, m_{1}, m_{2}) \rho(m_{1}, q_{1}) \rho(m_{2}, q_{2})$$
(26)

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions

• in total decay width expression sums run over all quantum numbers allowed $\left(q=q_1+q_2\right)$

$$\Gamma(m,q) = \sum_{q_1,q_2} \Gamma^{(i)} + \sum_{q_1,q_2} \Gamma^{(ii)} + \sum_{q_1,q_2} \Gamma^{(iii)}$$
(27)

• a moving resonance will live an avereage time $\langle \tau \rangle$ where γ is the resonance Lorentz factor

$$\langle \tau \rangle = \frac{\gamma}{\Gamma(m,q)} \tag{28}$$

Problem	Motivation	Statistical Bootstrap Model	Detailed Balance	Conclusions
Conclusi	ons and	Outlook		

- \bullet chemical equilibration times in UrQMD $t_{eq.}\gg 3~{\rm fm/c}$
- violation of detailed balance by strings and some hadronic decays $(\omega\to 3\pi)$
- creation and propagation of HS in UrQMD in binary collisions with $\sqrt{s} \leq 6$ GeV using geometrical cross section $(\sigma \sim R^2)$
- \bullet deployment of Statistical Bootstrap Model according to phase-space formulation to get ρ
- no decay of HS in UrQMD realized because $\rho_{B,S,Q}$ for each binary collison of particles q_1 and q_2 is not known yet
- \bullet calculation of particle densities $\rho_{B,S,Q}$ out of the phase-space approach
- examination of chem. equilibration times in UrQMD with HS