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Setup of UrQMD box calculations

cubic box with cyclic boundary conditions

inital particles: 80 n + 80 p in V = 1000 fm3

uniform distribution in configuraton and momentum space

fixed ρB = 0.16 fm−3 and ρS = 0 fm−3

runs done for ǫ = 0.2 GeV/fm3 and ǫ = 0.7 GeV/fm3

multiplicities of kaons, pions and nucleons are averaged over
50 events
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Problem - Chem. equilibration in UrQMD(box) too long

M.Belkacem et al., PRC 58 (1998), 1727
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Successfull Application: C.Greiner, J. Noronha-Hostler et al.

at SPS energies strong increase of anitprotons and
antihyperons is explained by ‘clustering’ of mesons

n1π + n2K ↔ Ȳ + p (1)

giving an chemical equilibration time of teq ≈ 1− 3 fm/c

for RHIC energies teq ∼ 10 fm/c for antibaryons

quick chemical equilibration mechanism is provided by HS:

(

n1π + n2K + n3K̄ ↔
)

HS ↔ B̄ +B +X (2)

dynamical description of (2) described by set of coupled rate
equations

assuming HS and pions start in equilibrium
BB̄-pairs chem. equilibrate in teq ≈ 5 fm/c
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Intention

Full integration of Hagedorn States (HS) into UrQMD

particle multiplicities

chemical equilibration times
η
s

. . .
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UrQMD

microscopic Hadron-String Transport model simulating p+p,
p+N and A+A collisions in the energy range from Bevalac
and SIS up to AGS, SPS and RHIC

detailed balance is enforced for following processes:
meson-baryon, meson-meson, resonance-nucleon and
resonance-resonance interaction

for high
√
s beside string production also HS production

should be possible
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Aspired changes

h

h
string

string

h

h

HS

qa

qb

strings in UrQMD now our project: strings + HS
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History

in 1965 Rolf Hagedorn posutlated the so called ”Statistical
Bootstrap Model” 1

highly excited lumps of matter are not essentially different
from observed hadronic resonances at lower excitation

fireballs contain all known and unknown particles, among
them the ’resonances’, which are regarded as small fireballs
too

fireballs and their constituents are the same and they all
should be counted by the same mass spectrum

nesting fireballs into each other leads to a mathematical
self-consistency condition on the hadron mass spectrum

1Nuovo Cim.Suppl. 3 (1965) 147-186
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Thermodynamical Approach

the original approach is based on derivation of the partition
function

in high energy collisions a created system decays
in about 3 fm/c

assumption of establishment of equilibrium in a shorter time
than typical time scales must be made since a temperature
will be introduced

strong forward-backward motions can be kinematically
separated from the isotropic thermal motion

number of different kinds of hadrons is infinite
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Thermodynamical Approach

usual partition function of a non-interacting gas reads

Z (T, V ) =
∑

i

exp

(

Ei

T

)

≡
∞
∫

0

dE σ (E,V ) exp

(

−E

T

)

(3)

σ is a continous density of states in the system

partition function of a relativistic gas of massive particles with
quantum statistics reads

Z (T, V ) = exp

(

V T

2π2

∞
∑

n=1

(∓1)n+1

n2

∑

i

m2
iK2

(nmi

T

)

)

(4)
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Thermodynamical Approach

introduction of continuous particle spectrum ρ

Z (T, V ) = exp





V T

2π2

∞
∑

n=1

(∓1)n+1

n2

∞
∫

0

dmρ (m,n)m2K2

(nm

T

)





(5)

bootrap condition requires

lim
m→∞

log (ρ (m))

log (σ (m))
= 1 (6)

σ is inverse Laplace transformation of Z and hence a function
of ρ

σ (m) = F [ρ (m)] (7)
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Thermodynamical Approach

solution of bootstrap condition obtained by iteration ρi+1 = σi

ρ (m) ∼ σ (m) ∼ exp
(m

T

)

(8)

make solution more unique employ ”weak bootstrap
condition”

lim
m→∞

cmaρ (m)

σ (m)
= 1 (9)

the weak non-logarithmic bootstrap condition leads to

ρ (m) ∼ σ (m) ∼ cma exp
(m

T

)

(10)

(9) only fullfilled if a = −2.5
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Phase-Space Approach: S. Frautschi, 1971

partition function ansatz starts with n = 1 where n = 2
required for compound systems

use of temperature requires a thermally equilibrated system

to circumvent this drawbacks work with phase space directly

ρncout (m) =

∞
∑

n=2

(

V

(2π)3

)n−1 1

n!

n
∏

i=1

∫

dmi ρin (mi)

×
∫

d3pi δ

(

n
∑

i=1

Ei −m

)

δ(3)

(

n
∑

i=1

~pi

)

(11)

nc denotes non-covariant measure d3p

covariant counterpart d3p
2E would be more justified
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Low Mass Input

(11) known from microcanonical ensemble by conserving
energy and momentum

each state of motion can be occupied by particles with
different masses considered by ρin

ρout and ρin should asymptotically converge as required by
”strong bootstrap condition”

ρout (m) ∼ ρin (m) for m → ∞ (12)

this condition requires a < −2.5 in ρin

to bound a from below a strenghtened assumption is made:
ρout = ρin for all masses above some threshold

to describe low mass region more accurate a low-mass-input
must be taken into account

ρin (m) = ρout (m) + ρ (low-mass-input) (13)
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Charged Spectra

charged spectra with B,S and Q are described by

ρoutB,S,Q (m) =

∞
∑

n=2

(

V

(2π)3

)n−1 1

n!

n
∏

i=1

∫

dmi

∑

Bi,Si,Qi

ρinBi,Si,Qi
(mi)

×
∫

d3pi δ

(

n
∑

i=1

Ei −m

)

δ(3)

(

n
∑

i=1

~pi

)

× δ

(

∑

i

Bi −B

)

δ

(

∑

i

Si − S

)

δ

(

∑

i

Qi −Q

)

(14)

Max Beitel Implementation of Hagedorn States into UrQMD



Problem Motivation Statistical Bootstrap Model Detailed Balance Conclusions

Toy Model

the iteration character is mathematically represented by

f j+1 (x) =

x
∫

dx′f j
(

x′
)

(15)

first toy model is to build up the particle density spectrum
solely of π0

only n = 2 term is regarded and ρlow = δ (mi −m0)

ρ
j+1
out (m) =

1

2

V

(2π)3

m
∫

dm1

m−m1
∫

dm2

×
[

ρ
j
out (m1) + δ (m1 −m0)

] [

ρ
j
out (m2) + δ (m2 −m0)

]

× 4π

4m3

(

m2
1 −m2

2 +m2
) (

m2
2 −m2

1 +m2
)

pcm (m,m1,m2)

(16)
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Toy Model

for j=0 we start with two δ-functions containing m0

ρ1out (m) =
1

2

V

(2π)3
4π

8
m

√

m2 − (2m0)
2 (17)

look for upper mass limit k for which ρ1out contains at least
one particle

km0
∫

2m0

dmρ1out (m) ≥ 1 (18)

if k is found add low-mass-input and put it back into (16)

procedure is repeated where the mass intervall before each
iteration is increased by m0

Max Beitel Implementation of Hagedorn States into UrQMD



Problem Motivation Statistical Bootstrap Model Detailed Balance Conclusions

Toy Model Result
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Fit: ρ(k)=ckaebk

where a=-2.96
b=0.773
c=1.06

C.Hamer, S. Frautschi, PRD 4 (1971), 2125
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Cross Section and Decay Width

cross section for formation of a resonance q out of two
particles q1 and q2

σ (q1 + q2 → q) =
2πm1m2

mpcm (m,m1,m2)
ρ (m) |Mq1+q2→q|2

(19)

partial decay width of a resonance q into two particles q1 and
q2

Γ (q → q1 + q2) =
pcm

πm

∫

dm1
m1ρ (m1, q1)

2E1

∫

dm2
m2ρ (m2, q2)

2E1

× |Mq→q1+q2 |2 (20)

detailed balance requires |Mq1+q2→q|2 = |Mq→q1+q2 |2

σ (q1 + q2 → q) =
2π2ρ (m, q)

p2cm (m,m1,m2)
Γ (q → q1 + q2) (21)
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σ (q1 + q2 → q) and Γ (q → q1 + q2) are both not known

for finial state in continuum geometrical cross section is used

σ (q1 + q2 → q) =
〈

I1I1z I
2I2z ‖IIz

〉

πR2 with R ≈ r0

(

m

md

)
1

3

(22)

now the partial decay width reads

Γ (q → q1 + q2) =

〈

I1I1z I
2I2z‖IIz

〉

R2p2cm

2πρ (m, q)

×
∫

dm1
m1ρ (m1, q1)

2E1

∫

dm2
m2ρ (m2, q2)

2E1

(23)

three different decay modes possible (i) q1 and q2 both
hadrons, (ii) q1 hadron q2 HS, (iii) q1 and q2 both HS
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decay mode (i) (both hadrons represented by δ-functions)

Γ(i) (m, q) =

〈

I1I1z I
2I2z‖IIz

〉

R2 (m) p2cm (m)

2πρ (m, q)
(24)

decay mode (ii) (hadron+HS)

Γ(ii) (m, q) =

〈

I1I1z I
2I2z‖IIz

〉

mR2 (m)

2πρ (m, q)

×
pcm
∫

0

dpp3
ρ
(

√

m2 +m2
1 − 2mE1, q1

)

E1

√

m2 +m2
1 − 2mE1

(25)

decay mode (iii) (both HS)

Γ(iii) (m, q) =

〈

I1I1z I
2I2z ‖IIz

〉

R2 (m)

2πρ (m, q)

×
m
∫

dm1

m−m1
∫

dm2pcm (m,m1,m2) ρ (m1, q1) ρ (m2, q2)

(26)
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in total decay width expression sums run over all quantum
numbers allowed (q = q1 + q2)

Γ (m, q) =
∑

q1,q2

Γ(i) +
∑

q1,q2

Γ(ii) +
∑

q1,q2

Γ(iii) (27)

a moving resonance will live an avereage time 〈τ〉 where γ is
the resonance Lorentz factor

〈τ〉 = γ

Γ (m, q)
(28)
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Conclusions and Outlook

chemical equilibration times in UrQMD teq. ≫ 3 fm/c

violation of detailed balance by strings and some hadronic
decays (ω → 3π)

creation and propagation of HS in UrQMD in binary collisions
with

√
s ≤ 6 GeV using geometrical cross section

(

σ ∼ R2
)

deployment of Statistical Bootstrap Model according to
phase-space formulation to get ρ

no decay of HS in UrQMD realized because ρB,S,Q for each
binary collison of particles q1 and q2 is not known yet

calculation of particle densities ρB,S,Q out of the phase-space
approach

examination of chem. equilibration times in UrQMD with HS
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