Implementation of Hagedorn States into UrQMD

Max Beitel
Institute for Theoretical Physics Goethe University Frankfurt am Main

Transport Group Meeting

12.07.2012

HOQ-HIDEFOY FAAIP
Helmholtz Graduate School for Hadron and Ion Research
(1) Problem
(2) Motivation
(3) Statistical Bootstrap Model

- Partition Function
- Phase-Space Approach
(4) Detailed Balance
(5) Conclusions

Setup of UrQMD box calculations

- cubic box with cyclic boundary conditions
- inital particles: $80 n+80 p$ in $V=1000 \mathrm{fm}^{3}$
- uniform distribution in configuraton and momentum space
- fixed $\rho_{B}=0.16 \mathrm{fm}^{-3}$ and $\rho_{S}=0 \mathrm{fm}^{-3}$
- runs done for $\epsilon=0.2 \mathrm{GeV} / \mathrm{fm}^{3}$ and $\epsilon=0.7 \mathrm{GeV} / \mathrm{fm}^{3}$
- multiplicities of kaons, pions and nucleons are averaged over 50 events

Problem - Chem. equilibration in UrQMD(box) too long

M. Belkacem et al., PRC 58 (1998), 1727

Successfull Application: C. Greiner, J. Noronha-Hostler et al.

- at SPS energies strong increase of anitprotons and antihyperons is explained by 'clustering' of mesons

$$
\begin{equation*}
n_{1} \pi+n_{2} K \leftrightarrow \bar{Y}+p \tag{1}
\end{equation*}
$$

- giving an chemical equilibration time of $t_{e q} \approx 1-3 \mathrm{fm} / \mathrm{c}$
- for RHIC energies $t_{e q} \sim 10 \mathrm{fm} / \mathrm{c}$ for antibaryons
- quick chemical equilibration mechanism is provided by HS:

$$
\begin{equation*}
\left(n_{1} \pi+n_{2} K+n_{3} \bar{K} \leftrightarrow\right) H S \leftrightarrow \bar{B}+B+X \tag{2}
\end{equation*}
$$

- dynamical description of (2) described by set of coupled rate equations
- assuming HS and pions start in equilibrium $B \bar{B}$-pairs chem. equilibrate in $t_{e q} \approx 5 \mathrm{fm} / \mathrm{c}$

Intention

Full integration of Hagedorn States $(H S)$ into UrQMD

- particle multiplicities
- chemical equilibration times
- $\frac{\eta}{s}$
- ...

UrQMD

- microscopic Hadron-String Transport model simulating $p+p$, $p+N$ and $A+A$ collisions in the energy range from Bevalac and SIS up to AGS, SPS and RHIC
- detailed balance is enforced for following processes: meson-baryon, meson-meson, resonance-nucleon and resonance-resonance interaction
- for high \sqrt{s} beside string production also HS production should be possible

Aspired changes

strings in UrQMD now

our project: strings + HS

History

- in 1965 Rolf Hagedorn posutlated the so called "Statistical Bootstrap Model" ${ }^{1}$
- highly excited lumps of matter are not essentially different from observed hadronic resonances at lower excitation
- fireballs contain all known and unknown particles, among them the 'resonances', which are regarded as small fireballs too
- fireballs and their constituents are the same and they all should be counted by the same mass spectrum
- nesting fireballs into each other leads to a mathematical self-consistency condition on the hadron mass spectrum

[^0]
Thermodynamical Approach

- the original approach is based on derivation of the partition function
- in high energy collisions a created system decays in about $3 \mathrm{fm} / \mathrm{c}$
- assumption of establishment of equilibrium in a shorter time than typical time scales must be made since a temperature will be introduced
- strong forward-backward motions can be kinematically separated from the isotropic thermal motion
- number of different kinds of hadrons is infinite

Thermodynamical Approach

- usual partition function of a non-interacting gas reads

$$
\begin{equation*}
Z(T, V)=\sum_{i} \exp \left(\frac{E_{i}}{T}\right) \equiv \int_{0}^{\infty} \mathrm{d} E \sigma(E, V) \exp \left(-\frac{E}{T}\right) \tag{3}
\end{equation*}
$$

- σ is a continous density of states in the system
- partition function of a relativistic gas of massive particles with quantum statistics reads

$$
\begin{equation*}
Z(T, V)=\exp \left(\frac{V T}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{(\mp 1)^{n+1}}{n^{2}} \sum_{i} m_{i}^{2} K_{2}\left(\frac{n m_{i}}{T}\right)\right) \tag{4}
\end{equation*}
$$

Thermodynamical Approach

- introduction of continuous particle spectrum ρ

$$
\begin{equation*}
Z(T, V)=\exp \left(\frac{V T}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{(\mp 1)^{n+1}}{n^{2}} \int_{0}^{\infty} \mathrm{d} m \rho(m, n) m^{2} K_{2}\left(\frac{n m}{T}\right)\right) \tag{5}
\end{equation*}
$$

- bootrap condition requires

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\log (\rho(m))}{\log (\sigma(m))}=1 \tag{6}
\end{equation*}
$$

- σ is inverse Laplace transformation of Z and hence a function of ρ

$$
\begin{equation*}
\sigma(m)=F[\rho(m)] \tag{7}
\end{equation*}
$$

Thermodynamical Approach

- solution of bootstrap condition obtained by iteration $\rho^{i+1}=\sigma^{i}$

$$
\begin{equation*}
\rho(m) \sim \sigma(m) \sim \exp \left(\frac{m}{T}\right) \tag{8}
\end{equation*}
$$

- make solution more unique employ "weak bootstrap condition"

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{c m^{a} \rho(m)}{\sigma(m)}=1 \tag{9}
\end{equation*}
$$

- the weak non-logarithmic bootstrap condition leads to

$$
\begin{equation*}
\rho(m) \sim \sigma(m) \sim c m^{a} \exp \left(\frac{m}{T}\right) \tag{10}
\end{equation*}
$$

- (9) only fullfilled if $a=-2.5$

Phase-Space Approach: S. Frautschi, 1971

- partition function ansatz starts with $n=1$ where $n=2$ required for compound systems
- use of temperature requires a thermally equilibrated system
- to circumvent this drawbacks work with phase space directly

$$
\begin{align*}
\rho_{\text {out }}^{n c}(m)= & \sum_{n=2}^{\infty}\left(\frac{V}{(2 \pi)^{3}}\right)^{n-1} \frac{1}{n!} \prod_{i=1}^{n} \int \mathrm{~d} m_{i} \rho_{i n}\left(m_{i}\right) \\
& \times \int \mathrm{d}^{3} p_{i} \delta\left(\sum_{i=1}^{n} E_{i}-m\right) \delta^{(3)}\left(\sum_{i=1}^{n} \vec{p}_{i}\right) \tag{11}
\end{align*}
$$

- nc denotes non-covariant measure $\mathrm{d}^{3} p$
- covariant counterpart $\frac{\mathrm{d}^{3} p}{2 E}$ would be more justified

Low Mass Input

- (11) known from microcanonical ensemble by conserving energy and momentum
- each state of motion can be occupied by particles with different masses considered by $\rho_{i n}$
- $\rho_{\text {out }}$ and $\rho_{\text {in }}$ should asymptotically converge as required by "strong bootstrap condition"

$$
\begin{equation*}
\rho_{\text {out }}(m) \sim \rho_{\text {in }}(m) \quad \text { for } \quad m \rightarrow \infty \tag{12}
\end{equation*}
$$

- this condition requires $a<-2.5$ in $\rho_{\text {in }}$
- to bound a from below a strenghtened assumption is made: $\rho_{\text {out }}=\rho_{\text {in }}$ for all masses above some threshold
- to describe low mass region more accurate a low-mass-input must be taken into account

$$
\begin{equation*}
\rho_{\text {in }}(m)=\rho_{\text {out }}(m)+\rho(\text { low-mass-input }) \tag{13}
\end{equation*}
$$

Charged Spectra

- charged spectra with B, S and Q are described by

$$
\begin{align*}
\rho_{B, S, Q}^{\text {out }} & (m)=\sum_{n=2}^{\infty}\left(\frac{V}{(2 \pi)^{3}}\right)^{n-1} \frac{1}{n!} \prod_{i=1}^{n} \int \mathrm{~d} m_{i} \sum_{B_{i}, S_{i}, Q_{i}} \rho_{B_{i}, S_{i}, Q_{i}}^{i n}\left(m_{i}\right) \\
& \times \int \mathrm{d}^{3} p_{i} \delta\left(\sum_{i=1}^{n} E_{i}-m\right) \delta^{(3)}\left(\sum_{i=1}^{n} \vec{p}_{i}\right) \\
& \times \delta\left(\sum_{i} B_{i}-B\right) \delta\left(\sum_{i} S_{i}-S\right) \delta\left(\sum_{i} Q_{i}-Q\right) \tag{14}
\end{align*}
$$

Toy Model

- the iteration character is mathematically represented by

$$
\begin{equation*}
f^{j+1}(x)=\int^{x} \mathrm{~d} x^{\prime} f^{j}\left(x^{\prime}\right) \tag{15}
\end{equation*}
$$

- first toy model is to build up the particle density spectrum solely of π^{0}
- only $n=2$ term is regarded and $\rho_{\text {low }}=\delta\left(m_{i}-m_{0}\right)$

$$
\begin{align*}
& \rho_{\text {out }}^{j+1}(m)=\frac{1}{2} \frac{V}{(2 \pi)^{3}} \int^{m} \mathrm{~d} m_{1} \int^{m-m 1} \mathrm{~d} m_{2} \\
& \times\left[\rho_{\text {out }}^{j}\left(m_{1}\right)+\delta\left(m_{1}-m_{0}\right)\right]\left[\rho_{\text {out }}^{j}\left(m_{2}\right)+\delta\left(m_{2}-m_{0}\right)\right] \\
& \times \frac{4 \pi}{4 m^{3}}\left(m_{1}^{2}-m_{2}^{2}+m^{2}\right)\left(m_{2}^{2}-m_{1}^{2}+m^{2}\right) p_{c m}\left(m, m_{1}, m_{2}\right) \tag{16}
\end{align*}
$$

Toy Model

- for $\mathrm{j}=0$ we start with two δ-functions containing m_{0}

$$
\begin{equation*}
\rho_{\text {out }}^{1}(m)=\frac{1}{2} \frac{V}{(2 \pi)^{3}} \frac{4 \pi}{8} m \sqrt{m^{2}-\left(2 m_{0}\right)^{2}} \tag{17}
\end{equation*}
$$

- look for upper mass limit k for which $\rho_{\text {out }}^{1}$ contains at least one particle

$$
\int_{2 m_{0}}^{k m_{0}} \mathrm{~d} m \rho_{o u t}^{1}(m) \geq 1
$$

- if k is found add low-mass-input and put it back into (16)
- procedure is repeated where the mass intervall before each iteration is increased by m_{0}

Toy Model Result

Cross Section and Decay Width

- cross section for formation of a resonance q out of two particles q_{1} and q_{2}

$$
\begin{equation*}
\sigma\left(q_{1}+q_{2} \rightarrow q\right)=\frac{2 \pi m_{1} m_{2}}{m p_{c m}\left(m, m_{1}, m_{2}\right)} \rho(m)\left|\mathcal{M}_{q_{1}+q_{2} \rightarrow q}\right|^{2} \tag{19}
\end{equation*}
$$

- partial decay width of a resonance q into two particles q_{1} and q_{2}

$$
\begin{align*}
\Gamma\left(q \rightarrow q_{1}+q_{2}\right)= & \frac{p_{c m}}{\pi m} \int \mathrm{~d} m_{1} \frac{m_{1} \rho\left(m_{1}, q_{1}\right)}{2 E_{1}} \int \mathrm{~d} m_{2} \frac{m_{2} \rho\left(m_{2}, q_{2}\right)}{2 E_{1}} \\
& \times\left|\mathcal{M}_{q \rightarrow q_{1}+q_{2}}\right|^{2} \tag{20}
\end{align*}
$$

- detailed balance requires $\left|\mathcal{M}_{q_{1}+q_{2} \rightarrow q}\right|^{2}=\left|\mathcal{M}_{q \rightarrow q_{1}+q_{2}}\right|^{2}$

$$
\begin{equation*}
\sigma\left(q_{1}+q_{2} \rightarrow q\right)=\frac{2 \pi^{2} \rho(m, q)}{p_{c m}^{2}\left(m, m_{1}, m_{2}\right)} \Gamma\left(q \rightarrow q_{1}+q_{2}\right) \tag{21}
\end{equation*}
$$

- $\sigma\left(q_{1}+q_{2} \rightarrow q\right)$ and $\Gamma\left(q \rightarrow q_{1}+q_{2}\right)$ are both not known
- for finial state in continuum geometrical cross section is used

$$
\sigma\left(q_{1}+q_{2} \rightarrow q\right)=\left\langle I^{1} I_{z}^{1} I^{2} I_{z}^{2} \| I I_{z}\right\rangle \pi R^{2} \quad \text { with } R \approx r_{0}\left(\frac{m}{m_{d}}\right)^{\frac{1}{3}}
$$

- now the partial decay width reads

$$
\begin{align*}
\Gamma\left(q \rightarrow q_{1}+q_{2}\right) & =\frac{\left\langle I^{1} I_{z}^{1} I^{2} I_{z}^{2} \| I I_{z}\right\rangle R^{2} p_{c m}^{2}}{2 \pi \rho(m, q)} \\
& \times \int \mathrm{d} m_{1} \frac{m_{1} \rho\left(m_{1}, q_{1}\right)}{2 E_{1}} \int \mathrm{~d} m_{2} \frac{m_{2} \rho\left(m_{2}, q_{2}\right)}{2 E_{1}} \tag{23}
\end{align*}
$$

- three different decay modes possible $(i) q_{1}$ and q_{2} both hadrons, (ii) q_{1} hadron $q_{2} \mathrm{HS}$, (iii) q_{1} and q_{2} both HS
- decay mode (i) (both hadrons represented by δ-functions)

$$
\begin{equation*}
\Gamma^{(i)}(m, q)=\frac{\left\langle I^{1} I_{z}^{1} I^{2} I_{z}^{2} \| I I_{z}\right\rangle R^{2}(m) p_{c m}^{2}(m)}{2 \pi \rho(m, q)} \tag{24}
\end{equation*}
$$

- decay mode (ii) (hadron+HS)

$$
\begin{align*}
& \Gamma^{(i i)}(m, q)=\frac{\left\langle I^{1} I_{z}^{1} I^{2} I_{z}^{2} \| I I_{z}\right\rangle m R^{2}(m)}{2 \pi \rho(m, q)} \\
& \quad \times \int_{0}^{p_{c m}} \mathrm{~d} p p^{3} \frac{\rho\left(\sqrt{m^{2}+m_{1}^{2}-2 m E_{1}}, q_{1}\right)}{E_{1} \sqrt{m^{2}+m_{1}^{2}-2 m E_{1}}} \tag{25}
\end{align*}
$$

- decay mode (iii) (both HS)

$$
\begin{aligned}
& \Gamma^{(i i i)}(m, q)=\frac{\left\langle I^{1} I_{z}^{1} I^{2} I_{z}^{2} \| I I_{z}\right\rangle R^{2}(m)}{2 \pi \rho(m, q)} \\
& \times \int^{m} \mathrm{~d} m_{1} \int^{m-m_{1}} \mathrm{~d} m_{2} p_{c m}\left(m, m_{1}, m_{2}\right) \rho\left(m_{1}, q_{1}\right) \rho\left(m_{2}, q_{2}\right)
\end{aligned}
$$

- in total decay width expression sums run over all quantum numbers allowed $\left(q=q_{1}+q_{2}\right)$

$$
\begin{equation*}
\Gamma(m, q)=\sum_{q_{1}, q_{2}} \Gamma^{(i)}+\sum_{q_{1}, q_{2}} \Gamma^{(i i)}+\sum_{q_{1}, q_{2}} \Gamma^{(i i i)} \tag{27}
\end{equation*}
$$

- a moving resonance will live an avereage time $\langle\tau\rangle$ where γ is the resonance Lorentz factor

$$
\begin{equation*}
\langle\tau\rangle=\frac{\gamma}{\Gamma(m, q)} \tag{28}
\end{equation*}
$$

Conclusions and Outlook

- chemical equilibration times in UrQMD $t_{\text {eq. }} \gg 3 \mathrm{fm} / \mathrm{c}$
- violation of detailed balance by strings and some hadronic decays ($\omega \rightarrow 3 \pi$)
- creation and propagation of HS in UrQMD in binary collisions with $\sqrt{s} \leq 6 \mathrm{GeV}$ using geometrical cross section $\left(\sigma \sim R^{2}\right)$
- deployment of Statistical Bootstrap Model according to phase-space formulation to get ρ
- no decay of HS in UrQMD realized because $\rho_{B, S, Q}$ for each binary collison of particles q_{1} and q_{2} is not known yet
- calculation of particle densities $\rho_{B, S, Q}$ out of the phase-space approach
- examination of chem. equilibration times in UrQMD with HS

[^0]: ${ }^{1}$ Nuovo Cim.Suppl. 3 (1965) 147-186

