Dissipative effects in mixtures

arXiv:1206.3465
Andrej El
together with I. Bouras, C. Greiner, Z. Xu, C. Wesp

Transport group meeting, Frankfurt am Main, June 21, 2012

Motivation

Comparison of hydrodynamic calculations with experimental data \rightarrow extraction of η / s, EoS ...

From η / s we learn about the inner dynamics in the medium

Motivation

Can we apply standard, one-component hydrodynamics to describe dissipative effects in a mixture?

Interaction cross sections
$\sigma_{11}, \sigma_{12}, \sigma_{22}$
Two distinct mean-free path scales

QGP or Hadron Gas are mixtures

Dissinative hydro

Ideal hydrodynamics:
$\partial_{\mu} T^{\mu \nu}=0 \quad T^{\mu \nu}$ is isotropic locally \leftrightarrow Momentum distribution is isotropic
$\partial_{\mu} N^{\mu}=0$
EoS

Israel-Stewart hydrodynamics:
$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} N^{\mu}=0$
$\dot{\pi}^{\mu \nu}=-\frac{\pi^{\mu \nu}}{\tau_{\pi}}+\frac{\sigma^{\mu \nu}}{\beta_{2}}+\pi^{\mu \nu} \frac{T}{\beta_{2}} \partial_{\alpha}\left(\frac{\beta_{2}}{2 \mathrm{~T}} u^{\alpha}\right)$
\downarrow
Relaxation time $\tau_{\pi}=2 \beta_{2} \eta$
$\pi^{\mu v}$ describes anisotropy of the momentum space distribution

Dissipative hydro in a mixture

$\partial_{\mu} T^{\mu \nu}=0 \quad$ total energy is conserved
$\partial_{\mu} N^{\mu}=0 \quad$ total particle number is conserved
$\dot{\pi}^{\mu \nu}=\sum \dot{\pi}_{i}^{\mu \nu}$

Same as the standard Israel-Stewart for each mixture component?
Then, what is the viscosity of mixture components?

Dissipative hydro in a mixture

For our derivation we assume:
> particle numbers are conserved (no radiative processes)
$>T_{1}=T_{2}=T$ (rather strong assumption, but we really need this one)
$>$ the global frame u^{μ} is not very different from the frames $u^{\mu}{ }_{i}$ of the components

Need to check these two in transport calculations

Dissipative hydro in a mixture

For our derivation we assume:
$>$ particle numbers N_{i} are conserved (no radiative processes)
$>T_{1}=T_{2}=T$ (rather strong assumption, but we really need this one)
$>$ the global frame u^{μ} is not very different from the frames $u^{\mu}{ }_{i}$ of the components
$>$ we take isotropic scatterings, $d \sigma / d \Omega$ independent of Ω

$$
7
$$

can translate cross section to viscosity $\eta=\frac{6}{5} \frac{T}{\sigma}$

Dissinative hydro in a mixture

For two components with a given n_{1} / n_{2} and cross sections $\sigma_{11}, \sigma_{12}, \sigma_{22}$

$$
\begin{aligned}
& \dot{\pi}_{1}=-\pi_{1} \cdot\left(\frac{5}{9} n_{1} \sigma_{11}+\frac{7}{9} n_{2} \sigma_{12}\right)+\pi_{2} \cdot \frac{2}{9} n_{1} \sigma_{12}+\text { gradient terms } \\
& \dot{\pi}_{2}=-\pi_{2} \cdot\left(\frac{5}{9} n_{2} \sigma_{22}+\frac{7}{9} n_{1} \sigma_{12}\right)+\pi_{1} \cdot \frac{2}{9} n_{2} \sigma_{12}+\text { gradient terms }
\end{aligned}
$$

Two relaxation times per equation Compare with the Israel-Stewart Eq.:

$$
\dot{\pi}=-\pi \cdot \frac{5}{9} n \sigma++ \text { gradient terms }
$$

Dynamics in a mixture

Let's check the relaxation part of the equations

$$
\begin{aligned}
& \dot{\pi}_{1}=-\pi_{1} \cdot\left(\frac{5}{9} n_{1} \sigma_{11}+\frac{7}{9} n_{2} \sigma_{12}\right)+\pi_{2} \cdot \frac{2}{9} n_{1} \sigma_{12}+\text { gradient terms } \\
& \dot{\pi}_{2}=-\pi_{2} \cdot\left(\frac{5}{9} n_{2} \sigma_{22}+\frac{7}{9} n_{1} \sigma_{12}\right)+\pi_{1} \cdot \frac{2}{9} n_{2} \sigma_{12}+\text { gradient terms }
\end{aligned}
$$

Let's check the relaxation part of the equations

Dynamics in a mixture

Let's check the relaxation part of the equations

$$
\begin{aligned}
& \dot{\pi}_{1}=-\pi_{1} \cdot\left(\frac{5}{9} n_{1} \sigma_{11}+\frac{7}{9} n_{2} \sigma_{12}\right)+\pi_{2} \cdot \frac{2}{9} n_{1} \sigma_{12}+\text { gradient terms } \\
& \dot{\pi}_{2}=-\pi_{2} \cdot\left(\frac{5}{9} n_{2} \sigma_{22}+\frac{7}{9} n_{1} \sigma_{12}\right)+\pi_{1} \cdot \frac{2}{9} n_{2} \sigma_{12}+\text { gradient terms }
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}, n_{2} \\
& T_{1}=T_{2}=T \\
& \sigma_{11}, \sigma_{12}, \sigma_{22} \\
& \Pi_{1}, \Pi_{2}
\end{aligned}
$$

BAMPS BOX
 $f_{i}=d \cdot e^{-E / T} \cdot\left(1+\frac{3}{8 e_{i} T^{2}} \cdot \pi_{i} \cdot\left(\frac{1}{2} p_{T}^{2}-p_{z}^{2}\right)\right)$

Grad 's Formalism

Mixture in BAMPS

Relaxation in BAMPS

In the standard one-component Israel-Stewart hydrodynamics:
$\dot{\pi}=-\frac{\pi}{\tau_{\pi}}=-\pi \cdot \frac{5}{9} n \sigma \longrightarrow \pi=\pi(0) \cdot e^{-\tau / \tau_{\pi}}$

Green-Kubo

Application of Green-Kubo formula in BAMPS: C.Wesp et al, arXiv:1106.4306

$$
\eta=\frac{V}{T} \int_{0}^{\infty} C(\tau) d \tau
$$

Auto-correlation function
$C(\tau)=\frac{1}{3}\left\langle\left\langle\pi^{x y}(0) \pi^{x y}(\tau)\right\rangle+\left\langle\pi^{x z}(0) \pi^{x z}(\tau)\right\rangle+\left\langle\pi^{y z}(0) \pi^{y z}(\tau)\right\rangle\right)$
$\tau=$ correlation time

Green-Kubo

Application of Green-Kubo formula in BAMPS: C.Wesp et al, arXiv:1106.4306

$$
\eta=\frac{V}{T} \int_{0}^{\infty} C(\tau) d \tau
$$

Mixture in BAMPS

Mixture in BAMPS

Dynamics in a mixture

$$
\begin{aligned}
& \dot{\pi}_{1}=-\pi_{1} \cdot\left(\frac{5}{9} n_{1} \sigma_{11}+\frac{7}{9} n_{2} \sigma_{12}\right)+\pi_{2} \cdot \frac{2}{9} n_{1} \sigma_{12} \\
& \dot{\pi}_{2}=-\pi_{2} \cdot\left(\frac{5}{9} n_{2} \sigma_{22}+\frac{7}{9} n_{1} \sigma_{12}\right)+\pi_{1} \cdot \frac{2}{9} n_{2} \sigma_{12} \\
& \pi(\tau)=A \cdot e^{-\tau / \tau_{1}}+B \cdot e^{-\tau / \tau_{2}} \\
& \quad \pi(\tau)=\pi_{0} \cdot e^{-\tau / \tau_{\pi}} \\
& \eta(\tau)=\frac{2}{5} \cdot e \cdot\left(\frac{r(\tau)}{1+r(\tau)} \cdot \lambda_{1}^{-1}+\frac{1}{1+r(\tau)} \cdot \lambda_{2}^{-1}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& r(\tau)=\frac{\pi_{1}(\tau)}{\pi_{2}(\tau)}=A(n, \sigma) \cdot \tanh \left(\tau \cdot B(n, \sigma)+C\left(n, \sigma, \pi_{0}\right)\right) \\
& \lambda_{1}^{-1}=n_{1} \sigma_{11}+n_{2} \sigma_{12} \quad \lambda_{2}^{-1}=n_{2} \sigma_{22}+n_{1} \sigma_{12}
\end{aligned}
$$

Mixture in BAMPS

$$
\eta(\tau)=\frac{2}{5} \cdot e \cdot\left(\frac{r(\tau)}{1+r(\tau)} \cdot \lambda_{1}^{-1}+\frac{1}{1+r(\tau)} \cdot \lambda_{2}^{-1}\right)
$$

$$
r(\tau)=\frac{\pi_{1}(\tau)}{\pi_{2}(\tau)}=A(n, \sigma) \cdot \tanh \left(\tau \cdot B(n, \sigma)+C\left(n, \sigma, \pi_{0}\right)\right)
$$

Existence of a characteristic stationary value

Dynamics in mixtures

$$
\begin{aligned}
& \eta(\tau)=\frac{2}{5} \cdot e \cdot\left(\frac{r(\tau)}{1+r(\tau)} \cdot \lambda_{1}^{-1}+\frac{1}{1+r(\tau)} \cdot \lambda_{2}^{-1}\right) \\
& r(\tau)=\frac{\pi_{1}(\tau)}{\pi_{2}(\tau)}=A(n, \sigma) \cdot \tanh \left(\tau \cdot B(n, \sigma)+C\left(n, \sigma, \pi_{0}\right)\right)
\end{aligned}
$$

mixture with mean free path scales $\lambda_{1} \sim 0.2 \mathrm{fm}$ and $\lambda_{2} \sim 0.4 \mathrm{fm}$

Dynamics in mixtures

$\eta(\tau)=\frac{2}{5} \cdot e \cdot\left(\frac{r(\tau)}{1+r(\tau)} \cdot \lambda_{1}^{-1}+\frac{1}{1+r(\tau)} \cdot \lambda_{2}^{-1}\right)$
$r(\tau)=\frac{\pi_{1}(\tau)}{\pi_{2}(\tau)}=A(n, \sigma) \cdot \tanh \left(\tau \cdot B(n, \sigma)+C\left(n, \sigma, \pi_{0}\right)\right)$

From the results so far we can conclude
$>$ Existence of a characteristic time-dependence of the viscosity in a mixture
> Applicability of one-component hydrodynamics to a mixture depends on the chosen initial conditions

Initializing hydrodvnamic calculations

$$
\dot{\pi}^{\mu \nu}=-\frac{\pi^{\mu \nu}}{\tau_{\pi}}+\frac{\sigma^{\mu \nu}}{\beta_{2}}+\pi^{\mu \nu} \frac{T}{\beta_{2}} \partial_{\alpha}\left(\frac{\beta_{2}}{2 \mathrm{~T}} u^{\alpha}\right)
$$

In one-component hydrodynamic calculations the standard choices are
$\pi^{\mu \nu}\left(\tau_{0}\right)=0 \quad \vee \quad \pi^{\mu \nu}\left(\tau_{0}\right)=2 \eta \sigma^{\mu \nu}$
...but there is no clear prescription what's the right choice.
For a mixture this would mean

$$
\pi_{i}^{\mu \nu}\left(\tau_{0}\right)=0 \rightarrow \dot{\pi}_{i}^{\mu \nu}\left(\tau_{0}\right)=\frac{\sigma^{\mu \nu}}{\beta_{i}} \rightarrow \frac{\pi_{1}\left(\tau_{0}+d \tau\right)}{\pi_{2}\left(\tau_{0}+d \tau\right)}=\frac{\beta_{2}}{\beta_{1}}=\frac{e_{1}}{e_{2}}=\frac{n_{1}}{n_{2}}
$$

Which also means, that the characteristic time-dependence of shear viscosity must be taken into account

Conclusions and Outlook

> standard one-component hydrodynamics in general cannot be applied to describe dissipative effects in mixtures
> It is only in case the initial conditions are chosen properly that onecomponent description can be applied
> Green-Kubo formalism is not reliable for mixtures - additional timemodulation must be taken into account

$$
\eta / s=\eta / s(T) \rightarrow \eta / s=\eta / s(T){ }^{*} f(t)
$$

Conclusions and Outlook

> Most reliable way to check these conclusions: Kinetic transport calculations \rightarrow BAMPS

See how evolution of an expanding "QGP" with $\sigma_{g g^{\prime}} \sigma_{g q}, \sigma_{q q} \sim 1 / T^{2}$
can be reproduced by one-component calculations.
How the cross section (i.e. η / s) must be chosen in one-component case? Can any hint of the time-depence of η be seen?

Mixture in BAMPS \rightarrow (isochronous) freeze-out \rightarrow flow observables vs
One-component fluid in BAMPS \rightarrow (isochronous) freeze-out \rightarrow flow observables

Work in progress

