Studies of Dilepton Production with UrQMD

Stephan Endres

Frankfurt Institute for Advanced Studies ITP Uni Frankfurt

May 24th, 2012

Introduction	Dileps in UrQMD	Results 00000000000000000	Further Plans 0000
Overview			

- Dilepton Production in UrQMD
- 3 Results
 - Results for HADES Energies
 - Rho Contribution
 - Cross-sections

- Looking at NA60, RHIC and LHC
- Next Steps

Introduction	Dileps in UrQMD	Results 000000000000000000	Further Plans 0000
Overview			

1 Introduction

2 Dilepton Production in UrQMD

3 Results

- Results for HADES Energies
- Rho Contribution
- Cross-sections

- Looking at NA60, RHIC and LHC
- Next Steps

Introduction	Dileps in UrQMD	Results 0000000000000000000	Further Plans
Overview			

2 Dilepton Production in UrQMD

3 Results

- Results for HADES Energies
- Rho Contribution
- Cross-sections

- Looking at NA60, RHIC and LHC
- Next Steps

Introduction	Dileps in UrQMD	Results 00000000000000000	Further Plans 0000
Overview			

2 Dilepton Production in UrQMD

3 Results

- Results for HADES Energies
- Rho Contribution
- Cross-sections

- Looking at NA60, RHIC and LHC
- Next Steps

Introduction	Dileps in UrQMD	Results 00000000000000000	Further Plans 0000
Why Dilentons	2		

- Dileptons represent a a clean and penetrating probe of hot and dense nuclear matter
- Once produced they do not interact with the surrounding matter
- Aim of studies
 - \Rightarrow In-medium modification of vector meson properties
 - \Rightarrow Chiral symmetry restoration

Further Plans

Dilepton sources in UrQMD

Resonances and Branching Ratios in UrQMD

- Two processes possible in UrQMD Collisions (e.g. $\pi\pi \to \rho$) **Resonance decays** (e.g. $N^* \rightarrow N + \rho$) • At SIS energies, the resonance excitation and decay is dominant
- Branching ratios are in accordance with PDG

Resonance	Mass	Width	$N\pi$	$N\eta$	$N\omega$	Nρ
N^{*}_{1440}	1.440	350	0.65			
N_{1520}^{*}	1.515	120	0.60			0.15
N [*] ₁₅₃₅	1.550	140	0.60	0.30		
N_{1650}^{*}	1.645	160	0.60	0.06		0.06
N_{1675}^{*}	1.675	140	0.40			
N_{1680}^{*}	1.680	140	0.60			0.10
N_{1700}^{*}	1.730	150	0.05			0.20
N_{1710}^{*}	1.710	500	0.16	0.15		0.05
N_{1720}^{*}	1.720	550	0.10			0.73
N_{1900}^{*}	1.850	350	0.30	0.14	0.39	0.15
N_{1990}^{*}	1.950	500	0.12			0.43
N_{2080}^{*}	2.000	550	0.42	0.04	0.15	0.12
N_{2190}^{*}	2.150	470	0.29			0.24
N_{2220}^{*}	2.220	550	0.29		0.05	0.22
N_{2250}^{*}	2.250	470	0.18			0.25
Δ_{1232}	1.232	115	1.00			
Δ^{*}_{1600}	1.700	350	0.10			
Δ^{*}_{1620}	1.675	160	0.15			0.05
Δ^{*}_{1700}	1.750	350	0.20			0.25
Δ_{1900}^{*}	1.840	260	0.25			0.25
Δ_{1905}^{*}	1.880	350	0.18			0.80
Δ_{1910}^{*}	1.900	250	0.30			0.10
Δ^{*}_{1920}	1.920	200	0.27			
Δ_{1930}^{*}	1.970	350	0.15			0.22
Δ^{*}_{1950}	1.990	350	0.38			0.08

Introduction	Dileps in UrQMD	Results 00000000000000000	Further Plans
Dalitz Decays			

• Dalitz decays can be decomposed into the corresponding decays into a virtual photon and the subsequent decay of the photon via electromagnetic conversion

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\mathsf{M}^2} = \Gamma_{\mathsf{P}\to\gamma\gamma\ast,\mathsf{V}\to\mathsf{P}\gamma\ast}\frac{1}{\pi\mathsf{M}^4}\mathsf{M}\Gamma_{\gamma\ast\to\mathsf{ee}}$$

• Internal conversion probability of the photon

$$\mathsf{M}\Gamma_{\gamma*\to\mathsf{ee}} = \frac{\alpha}{3}\mathsf{M}^2\sqrt{1-\frac{4\mathsf{m}_\mathsf{e}}{\mathsf{M}^2}}\left(1+\frac{2\mathsf{m}_\mathsf{e}^2}{\mathsf{M}^2}\right)$$

Introduction	Dileps in UrQMD	Results 0000000000000000	Further Plans 0000
Dalitz Decays			

• The widths $\Gamma_{P\to\gamma\gamma^*}$ and $\Gamma_{V\to P\gamma^*}$ can be related to corresponding radiative widths

$$\Gamma_{P \rightarrow \gamma \gamma^*} = 2 \Gamma_{P \rightarrow 2 \gamma} \left(1 - \frac{M^2}{m_p^2} \right)^3 \left| F_{P \gamma \gamma^*}(M^2) \right|^2$$

$$\begin{split} \Gamma_{V \rightarrow P\gamma^*} = & 2\Gamma_{V \rightarrow P\gamma} \left[\left(1 + \frac{M^2}{m_V^2 - m_p^2}\right)^2 - \left(\frac{2m_V M}{m_V^2 - m_p^2}\right)^2 \right]^{3/2} \\ & \cdot \left|F_{V P\gamma^*}(M^2)\right|^2 \end{split}$$

Form Factors & Direct Decays

- Form factors for the Dalitz decays are obtained from the vector-meson dominance model (VMD). We use the parametrizations by Landsberg and Li/Ko/Brown/Sorge
- $\bullet\,$ The width for the direct decay of a vector meson V to a dilepton pair varies with the dilepton mass like M^{-3}

$$\Gamma_{V \rightarrow ee}(M) = \frac{\Gamma_{V \rightarrow ee}(m_V)}{m_V} \frac{m_V^4}{M^3} \sqrt{1 - \frac{4m_e}{M^2}} (1 + \frac{2m_e^2}{M^2})$$

Time Integration Method (Shining)

- Shining in UrQMD applied for $\Delta,~\rho,~\omega,~\phi$ and η'
- Assumption: Resonance can continuously emit dileptons over its whole lifetime
- Integration of the dilepton emission rate over time
- Collisional broadening of each individual parent resonance is taken into account

$$\frac{d\mathsf{N}_{\mathsf{ee}}}{d\mathsf{M}} = \frac{\Delta\mathsf{N}_{\mathsf{ee}}}{\Delta\mathsf{M}} = \sum_{j=1}^{\mathsf{N}_{\Delta\mathsf{M}}} \int\limits_{t_{i}^{j}}^{t_{f}^{j}} \frac{dt}{\gamma} \frac{\Gamma_{\mathsf{ee}}(\mathsf{M})}{\Delta\mathsf{M}}$$

p + p @ 1.25 GeV

- $E_{lab} = 1.25$ GeV just below η threshold
- Small sub-threshold contribution from ρ expected
- Good agreement with data at low masses
- Too many dileptons from 0.3 GeV on \rightarrow especially ρ^0

p + p @ 2.2 GeV

- Above η threshold, energy sufficient to reach pole mass of ω and ρ
- Overestimation of ρ contribution even larger than at 1.25 GeV

n + p @ 1.25 GeV

- \bullet Deuteron beam with 1.25AGeV has been used by HADES besides p+p
- Trigger on forward-going protons in order to select the (quasi-free) np collisions
- Fermi motion of the bound nucleons in the deuteron leads to a smearing of the NN collision energy \rightarrow reaching above η -production threshold

 $\Rightarrow\,$ One can not easily compare data with pure n+p simulations

n + p @ 1.25 GeV

- η and more ρ are produced in d+p, compared to n+p
- $\bullet\,$ However, even for d+p the Yield is underestimated by a factor of about 5 to 10

Study of A+A collisions

- In nucleus-nucleus collisions, additional effects compared to pp are expected
 - Fermi Momentum
 - Not only p+p, but also p+n and n+n collisions
 - Secondary interactions, depending on system size and energy
- Vector meson spectral functions may be changed in the medium
 - Shift of the pole mass (of the ρ)
 - Resonance melting in the medium
- In UrQMD, no such in-medium effects are implemented

$\mathsf{C} + \mathsf{C} @ 1 \ \mathsf{AGeV}$

- Here the ρ contribution fits quite well
- Underestimation below for energies above the pion peak
- Hardly any ω produced, η is relatively small

Ar + KCl @ 1.76 AGeV & C + \overline{C} @ 2 AGeV

- As in elementary reactions, we get too many dileptons via the ρ^0 resonance, especially in the high-mass tail
- How are the ρ mesons produced?

ho^0 Contribution

- Main contribution below pole mass by N^{*}₁₅₂₀ resonance
- For pole mass peak via N^*_{1680} , N^*_{1680} and N^*_{1700}
- $\pi\pi \rightarrow \rho$ negligible (but contributes!)

Results

Further Plans 0000

ho^0 Contribution

- Main contribution below pole mass again by N^{*}₁₅₂₀
- For pole mass peak via N^*_{1720}, Δ^*_{1700} and Δ^*_{1905}
- $\pi\pi \rightarrow \rho$ makes up already 10%

Comparison with / without Resonance Contribution

- Even a complete switch-off of all processes $\Delta / N^* \rightarrow \rho$ gives too many dileptons in the high mass tail
- Question: Why do we get so much ρ contribution ???

Why too many dileptons from ρ ?

- All HADES energies are close to thresholds
 - Cross-sections change rapidly with small energy differences
 - Are the cross-sections in order?
- Do in-medium effects not included in UrQMD play a role ?
- Possible Σ channel for a part of what we treat as a ρ ?
- Why do we see the large overestimation for invarinat masses above 700 GeV (pole mass)?

Cross-sections $N+N \rightarrow \rho^0+X$

- Good description of inclusive cross-section
- For energies near threshold, σ might be too high, but no data are available for this region
- However, can't explain the overestimation at masses higher than the ρ pole mass

Cross-sections $\pi + N \rightarrow \rho + X$

- ρ^+ production overestimated below $\sqrt{s} = 3$ GeV (but not relevant for dileptons)
- ρ^0 from UrQMD fits quite well to data, except for threshold region
- Does experiment just don't see these ρ which are significantly below pol mass?

Cross-sections $N+N \rightarrow \omega + X$

Cross-sections π +N $\rightarrow \omega$ +X

Introduction	Dileps in UrQMD	Results ○○○○○○○○○○○○○○○	Further Plans 0000
Cross_sections			

- $\bullet\,$ Other cross-sections might as well play a role, especially R+N or R+R
- Not relevant for elementary, but significant for A+A collision
- Little data is available for these cases \rightarrow Inclusion in UrQMD is is on a vague basis
- \Rightarrow Has to be checked next...

Going to ultra-relativistic Energies...

- Going to systems with a hot and dense fireball, does a pure transport approach still work to describe dilepton spectra?
- However, even at RHIC or LHC energies, low mass dileptons from the hadronic phase should dominate clearly over a possible QGP radiation
- In-medium effects are expected to become more dominant

Further Plans 0●00

Comparison with NA60 Data

- UrQMD results for Dimuons at SPS energies show good agreement with experimental data
- Only for higher masses the yield is too low, φ production is underestimated

Further Plans 00●0

Comparison with STAR Data

- Same problem as at low energies: Too many e^+e^- via ρ decay
- However, completely different processes responsible here

Introduction	Dileps in UrQMD	Results	Further Plans
		000000000000000000000000000000000000000	0000
Nevt Stens			

- Reduce the overestimation dilepton production in UrQMD, especially via the ρ^0 (Δ and η could be optimezed as well)
- Coarse graining to be done for HADES energies
 - * Take local temperature and and baryon chemical potential as functions of space and time
 - * Accumulate an ensemble of events and determine local variables via coarse graining
- Dilepton calculation with hybrid model (transport + hydro)
 - * Previous work (Dimuons from NA60) by Elvira Santini
 - * Proceed with this work and calculate yields for RHIC and LHC ebergies