

NATIONAL SCIENCE CENTRE

Does η/s extracted from the data depend on the EoS?

Pasi Huovinen Uniwersytet Wrocławski

CRC-TR 211 Transport meeting

June 21, 2018, Institut für Theoretische Physik, Frankfurt

reporting work done by Jussi Auvinen and Harri Niemi

in collaboration with Kari J. Eskola, Risto Paatelainen, and Peter Petreczky

Lattice EoS at 2009

• Good at large T, not at low T

s95p

- HRG below $T \approx 170\text{--}190~\text{MeV}$
- lattice above T = 250 MeV
- interpolate between

Budapest-Wuppertal trace anomaly

Effect on distributions

- ideal fluid
- Au+Au collision at RHIC, $\sqrt{s} = 200$ GeV, b=7 fm
- $T_{\text{dec}} = 124$ MeV; all EoSs!

Effect on η/s

- Alba et al., arXiv:1711.05207
 - s95p: $\eta/s = 0.025$
 - **B-W:** $\eta/s = 0.047$

Lattice EoS at 2018

• s95p: PDG 2005, hotQCD 2008

- s87r: PDG 2005, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

- s87r: PDG 2005, latest hotQCD data
- s88s: PDG 2017, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

- s83z: PDG 2017, latest B-W data
- s87r: PDG 2005, latest hotQCD data
- s88s: PDG 2017, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

- s83z: PDG 2017, latest B-W data
- s87r: PDG 2005, latest hotQCD data
- s88s: PDG 2017, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

The model

- 2+1D viscous hydro with shear viscosity only
 - EKRT initialisation, normalisation parameter ${\it K}_{\rm sat}$
 - $T_{\rm dec} = 120$ MeV fixed
 - $\tau_0 = 0.2$ fm fixed
 - initial $v_r = 0$ and $\pi^{\mu\nu} = 0$
- $(\eta/s)(T)$ of the form

$$\begin{aligned} &(\eta/s)(T) &= S_{\mathrm{HG}}(T_{\mathrm{min}} - T) + (\eta/s)_{\mathrm{min}}, & T < T_{\mathrm{min}} \\ &(\eta/s)(T) &= S_{\mathrm{QGP}}(T - T_{\mathrm{min}}) + (\eta/s)_{\mathrm{min}}, & T > T_{\mathrm{min}} \end{aligned}$$

The model

- 2+1D viscous hydro with shear viscosity only
 - EKRT initialisation, normalisation parameter $K_{\rm sat}$
 - $T_{\rm dec} = 120$ MeV fixed
 - $\tau_0 = 0.2$ fm fixed
 - initial $v_r = 0$ and $\pi^{\mu\nu} = 0$
- $(\eta/s)(T)$ of the form

$$\begin{aligned} &(\eta/s)(T) &= S_{\mathrm{HG}}(T_{\mathrm{min}} - T) + (\eta/s)_{\mathrm{min}}, & T < T_{\mathrm{min}} \\ &(\eta/s)(T) &= S_{\mathrm{QGP}}(T - T_{\mathrm{min}}) + (\eta/s)_{\mathrm{min}}, & T > T_{\mathrm{min}} \end{aligned}$$

• Free parameters $K_{
m sat}$, $(\eta/s)_{
m min}$, $S_{
m HG}$, $S_{
m QGP}$, $T_{
m min}$

The data

• Au+Au at $\sqrt{s_{\rm NN}} = 200$ GeV (RHIC)

- N_{ch} in $|\eta| < 0.5$ in 0-5%, 5-10%, 10-20%, 20-30%, and 30-40% centrality [STAR]
- $-v_2\{2\}$ in 0-5%, 5-10%, 10-20%, 20-30% and 30-40% centrality [STAR]
- Pb+Pb at $\sqrt{s_{\rm NN}} = 2.76$ TeV (LHC)
 - N_{ch} in $|\eta| < 0.5$ in 5-10%, 10-20%, 20-30% and 30-40% centrality [ALICE]
 - $-v_2\{2\}$ in 5-10%, 10-20%, 20-30% and 30-40% centrality [ALICE]
- Pb+Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV (LHC)
 - N_{ch} in $|\eta| < 0.5$ in 10-20%, 20-30% and 30-40% centrality [ALICE] - $v_2\{2\}$ in 10-20%, 20-30% and 30-40% centrality [ALICE]

The task

What is the most probable set of parameters to reproduce the data as well as possible?

Model parameters (input): $\vec{x} = (x_1, ..., x_n)$ $(K_{\text{sat}}, (\eta/s)_{\min}, T_{\min}, S_{\text{HG}}, S_{\text{QGP}})$ $\downarrow \downarrow$ Model output $\vec{y} = (y_1, ..., y_m) \Leftrightarrow$ Experimental values \vec{y}^{\exp} $(N_{ch}(\sqrt{s_{\text{NN}}}, \text{centrality}), v_2(\sqrt{s_{\text{NN}}}, \text{centrality}))$

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

- **Prior knowledge:** Range of parameter values

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

• Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) - \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) - \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

- Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix
- \bullet evaluation of the likelihood function $\mathcal{O}(10^6)$ runs. . .
- use Gaussian emulator instead
 stochastic, non-parametric interpolation of the model

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

- Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix
- \bullet evaluation of the likelihood function $\mathcal{O}(10^6)$ runs. . .
- use Gaussian emulator instead
 stochastic, non-parametric interpolation of the model
- Sample the likelihood function using Markov chain Monte Carlo = random walk in parameter space constrained to favour high likelihood

 \rightarrow distribution of Markov chain steps \equiv probability distribution P. Huovinen @ ITP, June 21, 2018

Posterior probabilities

 $K_{\rm sat}$

• consistent with previous calculations

 $(\eta/s)_{\min}$

- median affected by EoS
- widths overlap

 $(\eta/s)_{\min}$

- median affected by EoS
- widths overlap

 T_{\min}

not constrained

 $S_{
m HG}$

not constrained

 $S_{
m QGP}$

weakly constrained

Does η/s depend on EoS?

• yes, it does

Does η/s **depend on EoS?**

- yes, it does
- but very weakly, effect within the confidence limits

Does η/s **depend on EoS?**

- yes, it does
- but very weakly, effect within the confidence limits
- $(\eta/s)(T)$ not constrained
- \bullet where η/s has its minimum is not constrained

The speaker has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778 via the National Science Center, Poland, under grant Polonez DEC-2015/19/P/ST2/03333