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Ubiquitous nature of fluid flows with phase change

Cometary atmospheres. Laser induced
vaporisation of solids.

Capillary cooling of
electronic devices.

Diesel fuel droplet
dynamics.
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Outline

1 The Enskog-Vlasov model
2 Evaporation of monoatomic gases - origin of temperature anisotropy in the

distribution of evaporated molecules
3 Evaporation of polyatomic gases - distribution function of evaporated

molecules
4 Enskog-Vlasov in spherical geometry - growth of droplets in

superheated/supercooled vapor and bubbles in superheated liquid
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The Enskog-Vlasov equation (I)

Unlike the Boltzmann equation, the Enskog-Vlasov equation has the
capability of handling both the liquid and vapor phases.
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The Enskog-Vlasov equation (I)

Let us consider a system of particles of mass m and diameter d.

Let us assume that interactions between particles occur through the
Sutherland potential:

φ(ρ) =

+∞ , ρ < a,

−φa

(
ρ

a

)−γ
, ρ ≥ a,
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The Enskog-Vlasov equation (II)

The dynamics of the system of particles can be described by the following
exact kinetic equation:

∂ f
∂t

+ v · ∇r f =
1
m
∇v ·

{∫
R3

dv∗

∫
r>d

dr∗
dφ
dr

f2(r,v, r∗,v∗) k̂
}

+

a2
∫
R3

dv∗

∫
S+

d2k̂
{
f2(r,v′, r + a k̂,v′∗) − f2(r,v, r − a k̂,v∗)

}
(vr · k̂).

Let us now make the following simplifying assumptions:

- Long-range correlations are neglected:

f2(r,v, r∗,v∗, t) = f (r,v, t) f (r∗,v∗, t).

- Short-range correlations are taken into account as in Enskog theory:

f2(r,v, r ± d k̂,v∗, t) = χ
[
n
(
r ±

a
2
k̂
)]

f (r,v, t) f (r ± a k̂,v∗, t).

where χ is the contact value of the pair correlation function of a hard sphere fluid.

Non-local collision are natural when dealing with non-punctiform particles
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The Enskog-Vlasov equation (III)

Different expression of the contact value of the pair correlation function can
be used:

Standard Enskog Theory (SET): value of the pair correlation function in a fluid in
uniform equilibrium with density at the contact point.

χ = χSET

(
n
(
r ±

a
2
k̂
))

=
1

nb

(
pCS

nkBT
− 1

)
=

1
2

2 − η
(1 − η)3 ; b =

2πa3

3
; η =

πa3n
6
·

where pCS is given by:

pCS =
1 + η + η2 − η3

(1 − η)3 (2)
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The Enskog-Vlasov equation (III)

Different expression of the contact value of the pair correlation function can
be used:

Revised Enskog Theory (RET): value of the pair correlation function in a fluid in
non-uniform equilibrium with density at the contact point.

Fischer-Methfessel
approximation

 χ = χRET-FM

[
n
(
r ±

a
2
k̂
)]

= χSET

n r ± a
k̂

2

 .
where

n (r, t) =
3

4πa3

∫
S

n(r1, t)w(r, r1) dr1, w(r, r1) =

{
1, ‖r1 − r‖ < a
0, ‖r1 − r‖ > a

·

S. Busuioc and L. Gibelli Frankfurt - 19th May 2022 8 / 50



The Enskog-Vlasov equation (IV)

The above simplifying assumptions lead to the following closed kinetic
equation, which is referred to as Enskog-Vlasov equation1,2,3,4:

∂ f
∂t

+ v · ∇r f +
F (r)

m
· ∇v f︸         ︷︷         ︸

Vlasov term

= C( f , f ).︸   ︷︷   ︸
Enskog term

F (r) =

∫
r>a

dr∗
1
r

dφ
dr

(r∗ − r) n(r∗),

C ( f , f ) = a2
∫
R3

dv∗

∫
S+

d2k̂
{
χSET[n̄(r − a/2k)] f (r,v′) f (r + ak̂,v′∗)−

χSET[n̄(r − a/2k)] f (r,v) f (r − ak̂,v∗) (vr · k̂)
}
·

1 L. De Sobrino, Can. J. Phys. 45 (2), 363-385 (1967).
2 M. Grmela, J. Stat. Phys. 3 (3), 347-364 (1971).
3 J. Karkheck, G. Stell, J. Chem. Phys 75 (3), 1475-1487 (1981).
4 A. Frezzotti, L. Gibelli, S. Lorenzani, Phys. Fluids 17, 012012 (2005).
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The Enskog-Vlasov equation (IV)
Short−range
interactions

Long−range
interactions
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∂ f
∂t

+ v · ∇r f +
F (r)

m
· ∇v f︸         ︷︷         ︸

Vlasov term

= C( f , f ).︸   ︷︷   ︸
Enskog term

F (r) =

∫
r>a

dr∗
1
r

dφ
dr

(r∗ − r) n(r∗),

C ( f , f ) = a2
∫
R3

dv∗

∫
S+

d2k̂
{
χSET[n̄(r − a/2k)] f (r,v′) f (r + ak̂,v′∗)−

χSET[n̄(r − a/2k)] f (r,v) f (r − ak̂,v∗) (vr · k̂)
}
·

1 L. De Sobrino, Can. J. Phys. 45 (2), 363-385 (1967).
2 M. Grmela, J. Stat. Phys. 3 (3), 347-364 (1971).
3 J. Karkheck, G. Stell, J. Chem. Phys 75 (3), 1475-1487 (1981).
4 A. Frezzotti, L. Gibelli, S. Lorenzani, Phys. Fluids 17, 012012 (2005).
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Liquid-vapour coexistence curve for simple liquids
Equation of state of the fluid described by the Enskog-Vlasov equation has a
generalised van der Waals form:

p0(n,T ) = nkT
1 + η + η2 − η3

(1 − η)3︸                   ︷︷                   ︸
repulsive
interactions

−
2πa3

3
γ

γ − 3
φan2︸                 ︷︷                 ︸

attractive
interactions

,  
Tc ' 0.094

4γ
γ − 3

φa

k
ηc ' 0.13

·
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The Enskog-Vlasov equation: Fluid-dynamic description

The Enskog-Vlasov equation leads to the following fluid dynamics equations:

∂t (ρ) + ∇ · (ρu) = 0
1
1
,

∂t (ρu) + ∇ · (ρuu + Π) = 0
1
1
,

∂t

[(
ρe +

1
2
ρu2 + κ|∇ρ|2

)]
+ ∇ ·

[
u

(
ρe +

1
2
ρu2 + κ|∇ρ|2

)
+ Π · u + q

]
= 0,

where κ = 2
15

γ
γ−5 φaa5.

“Korteweg” contributions appear in the expressions of the stress tensor and
heat flux:

Π =

(
p0−κρ∇

2ρ −
κ

2
|∇ρ|2

)
I − µ

(
∇u + ∇uT) − λ (∇ · u) I + κ∇ρ∇ρ,

q = −k∇T + κρ (∇ · u)∇ρ.

1 D.M. Anderson, G.B. McFadden, A.A. Wheeler, Ann. Rev. Fluid Mech. 30 (1), 139-165 (1998).
2 X. He, G.D. Doolen, J. Stat. Phys. 107 (1), 309-328 (2002).

S. Busuioc and L. Gibelli Frankfurt - 19th May 2022 12 / 50



The Enskog-Vlasov DSMC-like method1,2

In Cartesian coordinates, the components of the self-consistent force field normal
direction to the vapor-liquid interface(i.e. x direction) reads:

F (x|t) = 2πφa

[
aγ

∫
|x−y|>a

(y − x)n(y|t)
|x − y|γ

dy +

∫
|x−y|≤a

(y − x)n(y|t)dy
]

(3)

Unlike Direct simulation Monte-Carlo (DSMC) for Boltzmann equation, where
collision are local (same computing cell), the colliding partners are chosen as
follows:

a particle is chosen for collision based on the collision probability

then the collision partner can therefore be chosen by drawing a random
vector k̂ on the unit sphere and an elastic collision is applied
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Kinetic theory approach to evaporation processes
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Bulk of the

liquid

Liquid−vapor

interface

Bulk of the

vapor

molecular 
exchange
processes

Knudsen

layer

The vapor is described by the Boltzmann equation with a phenomenological
boundary condition at the liquid-vapor interface.

In case of evaporation into vacuum, the classical boundary condition reads:

f (0,v) = αenV(TL)
(

1
2πRTL

)3/2

exp
(
−

v2

2RTL

)
, v⊥ > 0,

TL : temperature of the bulk liquid;
nV(TL): saturated vapor density;
αe : evaporation coefficient.

S. Busuioc and L. Gibelli Frankfurt - 19th May 2022 14 / 50



Kinetic theory approach to evaporation processes
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The boundary conditions assumed at the liquid-vapor have been extensively
investigated by using molecular dynamics simulations1,2.

Unlike the Boltzmann equation, the Enskog-Vlasov equation has the
capability of handling both the liquid and vapor phases3,4,5:

1 V.V. Zhakhovskǐi, S.I. Anisimov, JETP 84 (4), 734-745 (1997).
2 T. Ishiyama, T. Yano, S. Fujikawa, Phys. Fluids 16 (8), 2899-2906 (2004).
3 A. Frezzotti, L. Gibelli, S. Lorenzani, Phys. Fluids 17, 012012 (2005).
4 M. Kon, K. Kobayashi, M. Watanabe, Phys. Fluids 26, 072003 (2014).
5 A. Frezzotti, L. Gibelli, D.A. Lockerby, J.E. Sprittles, Phys.Rev. Fluids 3, 054001 (2018).
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Kinetic theory approach to evaporation processes
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Usual distribution assumed:

Undrifted Anisotropic: f (v‖, v⊥) =
C1

(2πR)3/2θ⊥θ
1/2
‖

exp

− v2
⊥

2Rθ⊥
−

v2
‖

2Rθ‖

, v⊥ > 0,

Proposed distribution:

Drifted Anisotropic: f (v‖, v⊥) =
C2

(2πR)3/2θ⊥θ
1/2
‖

exp

− (v⊥ − ξ)2

2Rθ⊥
−

v2
‖

2Rθ‖

, v⊥ > 0,

where Ci are constants used to normalise the velocity distribution functions.
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Evaporation into near vacuum conditions

The evaporation of a single-component liquid slab into near vacuum
conditions has been studied.

Goal: describe the origin of temperature anisotropy in the distribution of
evaporated molecules
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Velocity distribution functions
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Figure: Reduced normalised velocity distribution functions of evaporated molecules normal
and parallel to the liquid-vapor interface at different liquid bulk temperatures. Coloured
histograms are the numerical results of the Enskog-Vlasov equation; solid and dashed lines
are their best fits based on a drifted anisotropic Maxwellian with parameters θ‖, θ⊥, and ξ.
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Velocity drift and temperature anysotropy
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Figure: Parameters of the velocity distribution function of spontaneously evaporating atoms
as a function of the liquid bulk temperature. The increasing trend of the the velocity drift
and the temperature anisotropy with the liquid bulk temperature can be clearly observed.
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Temperature anysotropy

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

46 48 50 52 54 56 58 60

z/a

Last collision cell
na3

Txy/Tc

Tz/Tc

Vz/(RT0)
1/2

Fz

(a) T`/Tc = 0.53

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

46 48 50 52 54 56 58 60

z/a

Last collision cell
na3

Txy/Tc

Tz/Tc

Vz/(RT0)
1/2

Fz

(b) T`/Tc = 0.729

Figure: Histogram of the last collisional cell of evaporated particles for the smallest and
largest liquid bulk temperatures considered in the simulation campaign. The peak of the
distribution is close to the separation point which is marked by the vertical black line. The
mean force field Fz is scaled down by a factor 10.
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Temperature anysotropy
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Figure: Isocontours of the distribution functions of evaporated atoms (dashed lines) and
“potentially” evaporating atoms (solid lines). Atoms originate from locations before the
separation point.
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Toy model for the spontaneous evaporation

Half-Maxwellian

x

z

v

θ

d̄

We assume a Poisson distribution of the number of collisions at a collision
rate ν̄:

Pr(N Collisions in the time interval ∆t) =
(ν̄∆t)Ne−ν̄∆t

N!
(4)

Collision rate ν̄ is evaluated using the average of number density n̄ and
temperature T̄ between the separation point and the absortion plane (this
distance will be called d̄):

ν̄(v) = χ(n̄)
πa2n̄
√
πβ

[
e−β

2v2
+

(
2βv +

1
βv

)
π

2
erf(βv)

]
, (5)

where β2 = 1/(2RT̄ )3.
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Toy model for the spontaneous evaporation

Particles need to have a velocity sufficiently large to overcome the potential
barrier of the mean force field. This is modelled as the potential jump
between a gas system of length d̄ and number density n̄ and vacuum.

We are interested in the distribution of particles that do not collide:

Pr(N = 0) = e−ν̄t = e−ν̄
d̄

v⊥ (6)

The distribution function of particles collected at the absorbing plate is found to be:

fe
(
ṽ‖, ṽ⊥

)
=

ns

(2πRTs)3/2 exp

− ṽ2
⊥,min

2RTs

 exp

− ṽ2
‖

+ ṽ2
⊥

2RTs

 exp

− ν̄d̄√
ṽ2
⊥ + v2

⊥,min

 (7)
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Toy model
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(d) Toy model prediction, T`/Tc = 0.729
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Conclusions4

The Enskog-Vlasov (EV) equation has been used to study the
one-dimensional steady evaporation of a monatomic liquid into near vacuum
conditions.

Evaporated atoms are distributed according to a drifted anisotropic
half-Maxwellian. Deviations from the isotropic half-Maxwellian become more
pronounced as the liquid bulk temperature increases.

The velocity drift and the temperature anisotropy are the results of collisions
in the liquid-vapor interface region which preferentially backscatter atoms
with a lower normal-velocity component. This statement is reinforced using a
simple mathematical model.
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Polyatomic gases

The Larsen-Borgnakke model is used for the redistribution between rotational
and translational modes during inelastic collisions.

The procedures of this model set the post-collision internal energies to values
that satisfy the detailed balance principle.

In this model the rotation energy adjustment is applied to a fraction of the
total collisions, denoted zc = N inelastic

coll /Ncoll.

The strength of translational-rotational coupling is determined by the inelastic
collision fraction zc, which can be made to depend on the local flowfield
temperature to fit experimental data5.
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The Enskog-Vlasov equation

The evolution of the one-particle distribution function f of classical rigid rotators
having j = 2 (linear molecule) or j = 3 (non-linear molecule) rotational degrees of
freedom is given by:

∂ f
∂t

+ v · ∇r f +
F (r)

m
· ∇v f︸         ︷︷         ︸

Vlasov term

= C( f , f ).︸   ︷︷   ︸
Enskog term

F (r) =

∫
r>a

dr∗
1
r

dφ
dr

(r∗ − r) n(r∗),

C ( f , f ) =

∫
dε∗dv∗d2k̂(vr · k̂)+Qε

µ
∗

{
χ[n̄(r − a/2k)] f (r,v′) f (r + ak̂,v′∗)−

χ[n̄(r − a/2k)] f (r,v) f (r − ak̂,v∗) (vr · k̂)
}
·

(8)
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The Enskog-Vlasov equation

Q is defined as:

Q =

∫
S

d2ê′

E∫
0

dε′ ε′µ
E−ε′∫
0

dε′∗ ε
′µ
∗

v′2r
vr
σ(ε′, ε′∗ → ε, ε∗; E, ê′ · ê).

where σ(ε′, ε′∗ → ε, ε∗; E, ê′ · ê) is the differential cross-section associated with the
binary collision of a pair of molecules in the initial states (v′, ε′), (v′∗, ε

′
∗) that move

to the final states (v, ε), (v∗, ε∗); ê = vr/vr and ê′ = v′r/v
′
r are unit vectors with the

direction of the relative velocities vr = v∗ − v and v′r = v′∗ − v
′; E is the total

energy of the collision pairs in the center of mass reference frame.

S. Busuioc and L. Gibelli Frankfurt - 19th May 2022 28 / 50



Larsen-Borgnakke model: numerical scheme (I)

The selection of the collision partners follows the same procedure as described by
Frezzotti6, while the collision dynamics can be summarized as follows:

A collision is inelastic with probability zc or elastic with probability 1 − zc.

In an elastic collision, the rotational energies of the two colliding partners do
not change, such that ε = ε′ and ε∗ = ε′∗. Conservation of total energy leads
to vr = v′r and the post-collision relative velocity is given by vr = vrê., with ê a
random vector uniformly distributed on a unit sphere.
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Larsen-Borgnakke model: numerical scheme (II)

In an inelastic collision, an exchange between translational and rotational
energies occurs as follows:

- the translational energy Etr/E is sampled from the probability density
Pt(Etr/E; j).

- the remaining total rotational energy Erot = E − Etr is then divided between the
collision partners by sampling the fraction ε/Erot from the probability density
Pr(ε/Erot; j).

- the post-collision relative velocity is updated to vr = vr(Etr)ê, with
vr(Etr) =

√
4Etr/m.

Pt(Etr/E; j = 2) = 4
Etr

E

(
1 −

Etr

E

)
, Pr(ε/Erot; j = 2) = 1,

Pt(Etr/E; j = 3) =
27
4

Etr

E

(
1 −

Etr

E

)2

, Pr(ε/Erot; j = 3) = 2

√
ε

Erot

(
1 −

ε

Erot

)
.
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Evaporation into vacuum

The Enskog-Vlasov equation has been solved numerically by an extension of
Direct Simulation Monte Carlo (DSMC) method to dense polyatomic fluids.
The simulation campaign is carried out for temperatures in the range
T`/Tc = [0.53, 0.729] and for values spanning the entire range zc ∈ [0, 1], for
both j = 2 and j = 3.
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Evaporated molecules: Distribution functions
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(a) j = 2
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(b) j = 3

Reduced velocity distribution function and molecular flux, parallel (violet) and normal
(green) to the liquid-vapor interface, respectively, and rotational energy distribution (blue) of
evaporated molecules, at T`/Tc = 0.729 liquid bulk temperature, for (a) linear ( j = 2) and (b)
nonlinear ( j = 3) molecules, and inelastic collision fraction equal to unity (zc = 1). The
dashed lines are the best fits based on the drifted anisotropic Maxwellian with parameters
ξ, θ⊥, θ‖ and the Boltzmann distribution with parameter θR.
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Evaporated molecules: Distribution functions
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Fitted temperatures versus the inelastic collision fraction zc for non-linear molecules ( j = 3)
at the highest liquid bulk temperatures T` considered.
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Conclusions7

The Enskog-Vlasov equation has been extended to deal with polyatomic
substances composed of classical rigid rotators.

The translational velocities of evaporated molecules are distributed according
to a half-range drifted anisotropic Maxwellian.
The rotational energy of evaporated molecules is distributed according to the
Boltzmann distribution at a temperature θR which depends on the inelastic
collision fraction zc, namely:

- The separation temperature Ts (low values of zc).
- The parallel temperature θ‖ (high values of zc).
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Weighted scheme for spherically symmetric EV

The aim of this research is to develop a weighted particle scheme for solving the
Enskog-Vlasov equation in spherical geometry. This required a special treatment
of the collision mechanism as well as an efficient way to evaluate the mean-field in
spherical coordinates.
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Introduction

The evolution equation of the one-particle distribution in spherical coordinates
with spherical symmetry reads:

∂ f
∂t

+ vr
∂ f
∂r

+

(
Fr[n]

m
−

v2
t

r

)
∂ f
∂vr

= CE[ f ], (9)

where Fr[n] is the radial component of the self-consistent force field generated by
the soft attractive tail, which depends on the number density field n(r, t), and CE[ f ]
is the hard-sphere collision integral (square brackets are used to highlight the
functional dependence).
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Self-consistent force field - Illustration

z

y

x
Inner Sheels

Cut−Out Sheels

Outer Sheels

r a

Figure: Radial component of the self-consistent force field evaluation. The spherical shells
are partitioned into 3 groups: the inner shells (11), the outer shells (12) and the cutout
spherical shells (13).The cut out sphere of radius a has the origin on the cell center and,
subsequently, the edges on a cell center.

S. Busuioc and L. Gibelli Frankfurt - 19th May 2022 37 / 50



Self-consistent force field - Evaluation

The general expression of the self-consistent force field generated by the soft
attractive tail is given by:

F [n] =

∫
||r1−r||>a

dφa(ρ)
dρ

r1 − r

||r1 − r||
n(r1)dr1. (10)

Inner whole shells contribution:

Fr(r|t) = 2πφaa6
∫

(r−R)>a

[ (r2 − R2)−γ(−(r − R)γ(r + R)2 + (r − R)2(r + R)γ)
γ − 2

+
r2((r − R)−γ − (r + R)−γ)

γ
+

R2(−(r − R)−γ + (r + R)−γ)
γ

]n(R|t)dR
r2 (11)
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Self-consistent force field - Evaluation

Outer whole shells contribution:

Fr(r|t) = 2πφaa6
∫

(r−R)<a

[ (R2 − r2)−γ(−(R − r)γ(r + R)2 + (r − R)2(r + R)γ)
γ − 2

+
r2((R − r)−γ − (r + R)−γ)

γ
+

R2(−(R − r)−γ + (r + R)−γ)
γ

]n(R|t)dR
r2 (12)

Cut-out shells contribution:

Fr(r|t) = 2πφaa6
[ ∫
|r−R|≤a[

− 2aγ(r + R)(R + r(γ − 1)) + (r − R)(r + R)1+γ(γ − 2) + a2γ(r + R)γ
]

×
3R
r2

(a(r + R))−γ

(γ − 2)γ
n(R|t)dR

]
(13)
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Self-consistent force field - Evaluation

The radial component of the self-consistent force field obtained for γ = 6:

Fr[n(r, t)] = 2πφaa6
[ ∫
|r−R|>a

4(3r3R2 + 5rR4)n(R, t)
(R − r)5(R + r)5 dR

+

∫
|r−R|≤a

R
4r2

(
3
a4 +

2(R − r)(R + r)
a6 −

5r + R
(R + r)5

)
n(R, t)dR

]
(14)
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Collision process
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Validation - Fluid surface tension
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Figure: Validation case study I: Pressure difference at the liquid-vapor interface, ∆P, versus
the reciprocal of the droplet radius, 1/R, for different temperatures.
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Validation - Droplet critical radius
According to the classical nucleation theory (CNT), the critical radius, R∗, is given
by:

R∗ =
2γ

n`kBT ln S
(15)

where n` is the equilibrium liquid number density at the temperature T , and
S = p(T, nv)/p(T ).
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Figure: Dimensionless critical radius, R∗/a, versus the supersaturation ratio S for different
values of the temperatures.
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Phase diagram
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Phase diagram. Solid symbols represent the initial conditions of the simulation
campaign carry out to evaluate the growth rate of droplets and bubbles.
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Growth of liquid droplets in metastable vapor
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Figure: (a) Typical growth curves for T0/Tc = 0.729 and a series of supercooling ratios S ,
with the corresponding best linear fit lines. (b) Average droplet growth rate Ṙ with respect to
the supercooling ratio S = p(T, nv)/p(T ) for T/Tc = 0.663; 0.729; 0.795; 0.861.
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Growth of bubbles in superheated liquid - growth rate
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Figure: (a) Typical growth curves for T0/Tc = 0.663 and a series of liquid pressures p` with
the corresponding best linear fit lines. (b) Average bubble growth rate Ṙ with respect to the
surrounding liquid pressure p`/|p`s|, normalised to the value of the pressure on the spinodal
line p`s.
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Growth of bubbles in superheated liquid - radial velocity
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Analytic prediction

Radial macroscopic velocity profiles during bubble growth at T0/Tc = 0.729 and
p` = −0.1098. The dashed analytic curves obtained following the model proposed

by Vincent and Marmottant9:

u(r) =
n` − nv

(n` − x3nv)
x2

1 − x3 Ṙ
[
R2

w

r2 −
r

Rw

]
(16)

where x = R/Rw.
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Growth of bubbles in superheated liquid - Temperature
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Temperature profiles during bubble growth at T0/Tc = {0.663, 0.729, 0.861} and
Ṙ ≈ 0.3. R0 is the position of the interface.
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Conclusions10

The EV equation is solved for the first time in spherical geometry using a
weighted particle scheme. The collision dynamics between weighted
particles has been derived accounting for the non-locality of the Enskog
collision term, and a compact expression of the Vlasov mean force field has
been determined using the shell theorem.

An extensive simulation campaign was then carried out to investigate the
growth of droplets and bubbles in metastable vapor and superheated liquid,
respectively.

The scheme is to be used to study the distribution function of evaporated
molecules with respect to the radius of the droplet
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Thank you for your attention
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