Dilepton production from coarse grained UrQMD with a CMF equation of state

Olen Savchuk

Bogolyubov Institute for Theoretical Physics GSI Helmholtzzentrum für Schwerionenforschung Frankfurt Institute For Advanced Studies

April 14, 2022

In collaboration with T.Galatyuk, J.Steinheimer, A.Motornenko, M.Gorenstein, H.Stoecker

Outline

Introduction

Ø Dileptons and an equation of state at SIS18 energies

- Coarse Graining
- Pions' fugacity
- Spectra
- Dileptons and different EoSs
- Onclusions

QCD phase diagram

[Anton Motornenko, Jan Steinheimer, Horst Stoecker: arXiv:2105.12475]

- In the vicinity of the hypothetical phase transition
- Cosmic matter in the laboratory, access to vector and axial interactions important for neutron matter
- Exotic states of matter: phase transition in delta matter, pion interactions

Nuclear matter

Consists of nucleons: protons and neutrons. Its ground state (P = 0, T = 0) parameters estimated from properties of nuclei:

• Normal nuclear density: $\rho_0 = 0.16 \text{ fm}^{-3}$

• Binding energy E/A = -16 MeV from extrapolation of energy of finite nuclei Evidence for nuclear liquid-gas transition found experimentally [ALADIN@GSI (1995)]

R. V. Poberezhnyuk, V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, arXiv:1708.05605 [nucl-th]

Nuclear matter model parameters are commonly constrained to ground state properties. The phase diagram, e.g. the critical point location, are predicted.

Dileptons in heavy ions

- 'Primordial' $q\bar{q}$ annihilations: $NN \rightarrow ee^+X$
- Thermal radiation from QGP and hadrons:qq̄ → ee⁺, π⁺π⁻ → ee⁺;
- Short lived states, ρ, chiral symmetry
- Multi-meson reactions " 4π "

• $\frac{d^{8}N}{d^{4}xd^{4}k} = -\frac{\alpha^{2}}{\pi^{3}M^{2}}f^{BE}(k_{0},T)\frac{1}{3}g^{\mu\nu}\mathbf{Im}\Pi^{\mu\nu}_{EM}(M,k,\mu_{B},T)$ • $\mathbf{Im}\Pi^{vac}_{EM}(M) = -\frac{M^{2}}{12\pi}\left[1 + \frac{\alpha_{s}(M)}{\pi} + \cdots\right]N_{c}\sum_{k}e_{q}^{2}$

Ultrarelativistic Quantum Molecular Dynamics

M. O. Kuttan, A. Motornenko, J. Steinheimer, H. Stoecker, Y. Nara, and M. Bleicher, A chiral mean-field equation-of-state in urqmd: effects on the heavy ion compression stage, 2022

Coarse Graining

- In order to extract medium properties we apply coarse graining procedure.(see e.g. S. Endres, H. van Hees, J. Weil, and M. Bleicher, "Dilepton production and reaction dynamics in heavy-ion collisions at sis energies from coarse-grained transport simulations", Physical Review C 92, 014911 (2015), S. Endres, H. van Hees, and M. Bleicher, "Photon and dilepton production at the facility for antiproton and ion research and beam-energy scan at the relativistic heavy-ion collider using coarse-grained microscopic transport simulations", Phys. Rev. C 93, 054901 (2016))
- Space-time is separated into cubes of size $dx^i = .5$ fm.
- For each cube its four velocity is being computed from the T^{μν} relations in the cubes' rest and laboratory frames of reference.

•
$$T^{\mu\nu} = (e+P)u^{\mu}u^{\nu} - Pg^{\mu\nu};$$

•
$$T^{0\nu} = (e_{c.m.}, \vec{p}_{c.m.});$$

•
$$n_{c.m.}^{\mu} = nu^{\mu};$$

Coarse Graining

- AuAu collisions at $E_{kin} = 1.23, 2, 4, 6, 10 \ AGeV$ considered.
- impact parameter b = 0 2fm.
 - 50000 events generated in each case.

Equations of State

M. O. Kuttan, A. Motornenko, J. Steinheimer, H. Stoecker, Y. Nara, and M. Bleicher, A chiral mean-field equation-of-state in urqmd: effects on the heavy ion compression stage, 2022

- Three equations of state are being considered
- Hard Skyrme reproduces proton flow data and many other observables however doesnt include phenomenology beyond nuclear saturation density
- CMF includes most of the known QCD phenomenology including high density region. The equations is expected to soften at higher density.

First Order Phase Transition

- Phase Transition from Equation of State at T=0
 - FOPT at HADES energy (PT 1) and at the energy 2*AGeV* (PT 2)
- Isentropic cooling/reheating
- Softening of the equation of state occurs

Density in xy plane

Results 00000000000 Conclusions 0

Temperature in the xy plane

Results 00000000000 Conclusions 0

Phase Transition 1.23 AGeV

Pion excess

- The number of π 's is way above thermal model n(T) predictions
- UrQMD has about 40% more pions than observed in the experiment
- $\mu_{\pi} pprox \mathcal{T} pprox \textit{m}_{\pi}$ pion condensation and interaction can be important

Conclusions 0

Cumulative production of dileptons

Emission starts around the time of nuclei overlapping and continues for some time. FOPT increases firebals' lifetime.

Dilepton spectra

- Fugacity changes dilepton yield by roughly a factor of 2;
- The slope is not sensitive to fugacity factor;

Effects of FOPT

- After the FOPT temperature of the spectra increases $R \approx \exp[M(1/T_{CMF} 1/T_{FOPT})];$
- Low *M* suggest temperature decrease but fugacity increases, volume is roughly the same $R \approx \frac{(\lambda_{\pi}^{1.3}VT^{3/2})_{FOPT}}{(\lambda_{\pi}^{1.3}VT^{3/2})_{CMF}} \approx \frac{(\lambda_{\pi}^{1.3})_{FOPT}}{(\lambda_{\pi}^{1.3})_{CMF}};$

Effects of FOPT

• After the FOPT temperature of the spectra increases $R \approx \exp[M(1/T_{CMF} - 1/T_{FOPT})];$

• Low *M* suggest temperature decrease but fugacity increases $R \approx \frac{\left(\lambda_{\pi}^{1.3} V T^{3/2}\right)_{FOPT}}{\left(\lambda_{\pi}^{1.3} V T^{3/2}\right)_{CMF}} \approx \frac{\left(\lambda_{\pi}^{1.3}\right)_{FOPT}}{\left(\lambda_{\pi}^{1.3}\right)_{CMF}};$

Results 00000000000000 Conclusions 0

Temperature vs emission time

Low M cells temperature falls as system life-time increased and with more contribution from colder cells.

Results 00000000000000 Conclusions

Temperature vs emission time

FOPT slightly increases temperature at the high E_{lab}

Results 00000000000 Conclusions 0

Excitation function from dileptons

The integrated yield of dileptons divided by multiplicity of charged pions in one unit of rapidity

Conclusions

- Dileptons are important observables sensetive to the EoS of QCD matter at high density.
- Invatiant mass spectra for different equations of state was obtained.
- UrQMD simulation performed. In order to extract temperature and density coarse graining procedure is being used.

Conclusions

- Dileptons are important observables sensetive to the EoS of QCD matter at high density.
- Invatiant mass spectra for different equations of state was obtained.
- UrQMD simulation performed. In order to extract temperature and density coarse graining procedure is being used.

Thank you for attention!