The Monte Carlo mode

Results

Summary 0

Dirty details of an elastic energy loss Monte Carlo model

J. Auvinen

Frankfurt Institute for Advanced Studies

January 31, 2013

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 1 / 32

The Monte Carlo model

Results

Summary O

Outline

Introduction

The Monte Carlo model

Results

Summary

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 2 / 32

Results

Summary 0

Suppression of high-energy hadrons

Nuclear modification factor:

J. Auvinen (FIAS, Frankfurt)

Introduction ○●○

Results

Summary O

Energy loss mechanisms

Elastic: No coherence effects (formation time $\tau_f \approx 0$). All scatterings independent \rightarrow Easy to implement in Monte Carlo.

Radiative: Nonzero formation time $(\tau_f \sim \frac{\omega}{k_T^2})$. Successive scatterings not necessarily independent \rightarrow Complicates MC implementation.

Introduction ○○●

Results

Summary O

Heavy flavor suppression

PHYSICAL REVIEW C 84, 044905 (2011)

- Radiative energy loss of heavy flavor with mass M suppressed in the "dead cone" $\theta < \frac{M}{E}$.
- Heavy flavors still strongly suppressed ⇒ collisional energy loss stronger than expected?

PHENIX open heavy-flavor electron R_{AA} .

Results

Summary 0

The Monte Carlo elastic energy loss model

Propagate the high-energy parton through the medium in small time steps Δt . At each step, calculate the probability to collide with a particle from the medium.

Poisson probability:

 $P(\mathbf{1} \text{ or more collisions in } \Delta t) = 1 - e^{-\Gamma \Delta t}$

where $\Gamma = \Gamma(E_1, T)$ is the scattering rate for the hard parton.

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo model

Results

Summary O

Random sampling

Rejection method:

Source: Wikipedia.

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 7 / 32

The Monte Carlo model

Results

Summary 0

Random sampling

The integral function method:

H(x) = the integral function of probablity distribution p(x) of the variable x.

```
Pick a random number r from
the interval [H(x_{min}), H(x_{max})]. The
sampled value x_0 of the
random variable is found by
solving the equation
H(x_0) - r = 0.
```


Advantage over simple rejection method: No random numbers wasted. Disadvantage: Calculation of H(x) possibly challenging.

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo simulation: Initialization

Sample the hard parton i with transverse momentum $p_{T}% \left(\boldsymbol{x}_{i}\right) = 0$ and rapidity y from

$$\frac{d\sigma^{pp \to i+X}}{dp_T^2 dy} = \int dy_1 dy_2 \sum_{(lm)} \frac{d\sigma^{pp \to lm+X}}{dp_T^2 dy_1 dy_2} \cdot \left[\delta_{li}\delta(y-y_1) + \delta_{mi}\delta(y-y_2)\right] \frac{1}{1+\delta_{lm}},$$

with
$$\frac{d\sigma^{pp \to lm + X}}{dp_T^2 dy_1 dy_2} = \sum_{ab} x_1 f_a(x_1, Q^2) x_2 f_b(x_2, Q^2) \frac{d\sigma^{ab \to lm}}{d\hat{t}}.$$

• CTEQ6L1¹ parton distribution functions used, nuclear effects ignored

Integral function of $\frac{d\sigma^{pp \to i+X}}{dp_T^2 dy}$ is calculated over $p_{Tmin} \leq p_T \leq p_{Tmax}$, with p_{Tmax} increasing in 1 GeV steps up to the limit value $\frac{\hat{s}}{2}$. The corresponding p_T in each momentum bin is taken to be $p_{Tmax} - 0.5$.

J. Auvinen (FIAS, Frankfurt)

¹D. Stump et al., JHEP 0310, 046 (2003).

The Monte Carlo model

Results

Summary 0

Initial position of the hard parton

Nuclear overlap function $T_{AA}(\mathbf{b})$:

$$T_{AA}(\mathbf{b}) = \int d^2 \mathbf{s} \, T_A(\mathbf{s}) T_A(\mathbf{b} + \mathbf{s}),$$
$$T_A(\mathbf{s}) = \int_{-\infty}^{\infty} dz \, n_A(\sqrt{\mathbf{s}^2 + z^2}).$$

Nuclear density is given by Woods-Saxon distribution

$$n_A(r) = n_0(1 + e^{\frac{r-R_A}{d}})^{-1}.$$

Starting position (x_0, y_0) is sampled using the rejection method with tabulated values of $T_A(\mathbf{s})T_A(\mathbf{b} + \mathbf{s})$ on a fine grid with spacing $\sim O(0.01)$ fm.

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo model

Results

Summary O

Scattering rate

• Scattering rate for a process $ij \rightarrow kl$ in the local rest frame of the fluid:

$$\Gamma_{ij\to kl}(E_1,T) = \frac{1}{16\pi^2 E_1^2} \int_{\frac{m^2}{2E_1}}^{\infty} dE_2 f_j(E_2,T) \int_{2m^2}^{4E_1E_2} d\hat{s}[\hat{s}\sigma_{ij\to kl}(\hat{s})].$$

- The regularisation of the cross section: $\sigma_{ij\rightarrow kl}(\hat{s}) = \frac{1}{16\pi\hat{s}^2} \int_{-\hat{s}+m^2}^{-m^2} d\hat{t} |M|_{ij\rightarrow kl}^2, \quad m = s_m g_s T = s_m \sqrt{4\pi\alpha_s} T.$
- Kinematic limits (massless particles!): $\hat{s} \ge 2m^2$, $|\cos \theta_{12}| = |1 - \frac{\hat{s}}{2E_1E_2}| \le 1$.
- Temperature T obtained from the hydrodynamical model.

Free parameters of the model: α_s, s_m .

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 11 / 32

The Monte Carlo model

Results

Summary O

Scattering rates of gluon and light quark

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 12 / 32

The Monte Carlo model

Results

Summary 0

Producing the thermal particle

The energy E_2 of the plasma particle is sampled using rejection method from Γ , rewritten as:

$$\Gamma_X \sim \int_{\frac{m^2}{2E_1}}^{\infty} dE_2 f(E_2, T) (H(\frac{4E_1E_2}{m^2}) - H(2)),$$

H(x) = the integral function of $\sigma_X(\hat{s})$, $x = \frac{\hat{s}}{m^2} = \frac{2E_1}{m^2}E_2(1 - \cos\theta_{12})$. When E_2 is known, $\cos\theta_{12} = 1 - \frac{x_0m^2}{2E_1E_2}$ can be found using the integral function method.

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo model

Results

Summary 0

Scattering angle sampling

The cross section of the process determines the distribution of scattering angle θ_{13} .

- The scattering angle is determined in the CMS frame of the collision.
- The method is very similar to one used with finding the collision angle. The integral function is now $\Sigma_X(\hat{t}) = \int d\hat{t} |M|_X^2$ and $\cos \theta_{13} = \frac{2\hat{t}_0}{\hat{s}} + 1.$

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 14 / 32

The Monte Carlo model

Results

Summary O

The Monte Carlo simulation

- The simulation ends when the temperature of the medium is low enough ($\approx 160~{\rm MeV}).$
- Repeat the simulation for several partons, convolute the resulting medium-modified distribution of hard partons with the fragmentation functions²:

$$\frac{dN^{AA\to h+X}}{dP_T dy} = \sum_i \int dp_T dy \frac{dN^{AA\to i+X}}{dp_T dy} \int_0^1 dz D_{i\to h}(z, \mu_F^2) \delta(P_T - zp_T).$$

J. Auvinen (FIAS, Frankfurt)

²B. A. Kniehl, G. Kramer and B. Potter, Nucl. Phys. B 582, (2000) 514.

The Monte Carlo model

Results

Summary 0

Averages versus random sampling

50 GeV quark traveling through a constant-temperature gluon plasma J. Auvinen and T. Renk, Phys. Rev. C 85, 037901

Having same parameter values in all collisions produces Gaussian probabilities.

Collisions using only average values

Averages versus random sampling

50 GeV quark traveling through a constant-temperature gluon plasma

J. Auvinen and T. Renk, Phys. Rev. C 85, 037901

The average values do not give accurate description of the energy loss probability.

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 17 / 32

The Monte Carlo model

Results

Summary O

Comparing with other models

50-GeV gluon in gluon medium: Qualitative agreement with $BAMPS^3$, but energy loss about factor 2 stronger.

³O. Fochler, Zhe Xu, C. Greiner, Phys. Rev. C 82, 024907 (2010).

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo model

Results

Summary 0

Comparing with other models

Zapp et al.⁴: A different choice of regularisation scheme can produce a factor 1.5-2 difference!

Case I:

$$\begin{split} \sigma &= \int_0^{\hat{t}_{max}} d|\hat{t}| \, \frac{\pi \alpha_s(|\hat{t}| + \mu_D^2)}{\hat{s}^2} C_R \frac{\hat{s}^2 + (\hat{s} - |\hat{t}|)^2}{(|\hat{t}| + \mu_D^2)^2} \\ \text{Case II:} \end{split}$$

$$\sigma = \int_{\mu_D^2}^{\hat{t}_{max}} d|\hat{t}| \, \frac{\pi \alpha_s(|\hat{t}|)}{\hat{s}^2} C_R \frac{\hat{s}^2 + (\hat{s} - |\hat{t}|)^2}{|\hat{t}|^2}$$

Figure 4. The average parton energy loss dE/dx of a quark of energy E, undergoing multiple elastic collisions over a path length L = 1fm in a thermal medium of temperature T. Elastic collisions are described by the infra-red regulated partonic cross sections of equation (13) (case I) and equation (14) (case II).

⁴K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U. A. Wiedemann, Eur. Phys. J. C 60, 617 (2009).

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 19 / 32

The Monte Carlo model

Results

Summary 0

Comparing with other models

10-GeV quark in quark-gluon plasma: Results quite similar with Schenke *et al.*⁵; anomalous 9.75-10.00 GeV bin (ignorance of soft scatterings).

 5 B. Schenke, C. Gale, G.-Y. Qin, Phys. Rev. C 79, 054908 (2009).

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo mode

Results

Summary 0

Central collisions: Estimating the elastic contribution to energy loss Hydrodynamical background ⁶:

- Initial conditions from the EKRT model Eskola, Kajantie, Ruuskanen and Tuominen, Nucl. Phys. B570 (2000) 379-389.
- Longitudinal boost-invariance, azimuthal symmetry ⇒ (1+1)-dimensional evolution equations.
- Bag model equation of state.

⁶K. J. Eskola, H. Honkanen, H. Niemi, P. V. Ruuskanen and S. S. Rasanen, Phys. Rev. C 72, 044904 (2005).

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 21 / 32

Introduction

Results

Summary 0

Mixed phase (Central collisions, (1+1)-D hydro)

- In the mixed phase, temperature stays constant $(T = T_C)$ while energy density ϵ keeps decreasing.
- The scattering rate Γ depends on T but not $\epsilon \to$ How to implement the effect of mixed phase?
- Effective temperature $T_{eff}(R,\tau) = \frac{30}{g_Q\pi^2}(\epsilon(R,\tau)-B)^{1/4}$ with bag constant $B = (239 \text{ MeV})^4$.
- The simulation ends when the boundary of mixed phase and hadron gas phase is reached (i.e. when $T < T_{C}$).

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo mode

Results

Summary 0

Central collisions

The nuclear modification factor R_{AA} for π^0 :

PHENIX data from A. Adare *et al.* [PHENIX Collaboration], Phys. Rev. Lett. 101, 232301 (2008).

J. Auvinen, K. J. Eskola and T. Renk, Phys. Rev. C 82, 024906 (2010).

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 23 / 32

The Monte Carlo mode

Results

Summary 0

Central collisions

Sensitivity to the parameter values:

J. Auvinen, K. J. Eskola and T. Renk, Phys. Rev. C 82, 024906 (2010).

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 24 / 32

The Monte Carlo mode

Results

Summary 0

Central collisions

Stronger suppression leads to surface bias:

J. Auvinen, K. J. Eskola and T. Renk, Phys. Rev. C 82, 024906 (2010).

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo mode

Results

Summary O

From RHIC to LHC

Running coupling needed?

J. Auvinen, K. J. Eskola, H. Holopainen and T. Renk, J. Phys. G 38, 124160 (2011).

(2+1)-d hydro with eBC profile by H. Holopainen, see Phys. Rev. C 84, 014906 (2011).

RHIC data from A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 101, 232301 (2008).

LHC data from S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 72, 1945 (2012).

J. Auvinen (FIAS, Frankfurt) Elastic energy loss MC model January 31, 2013 26 / 32

Non-central collisions: The pathlength dependence of energy loss

The π^0 nuclear modification as a function of the reaction plane angle $\Delta\phi_{RP}$:

- More matter in out-of-plane direction than in-plane
- R_{AA} varies with reaction plane angle ϕ ?

The Monte Carlo mode

Results

Summary O

Non-central collisions

Hydrodynamical background ⁷:

- The smooth sWN profile⁸ is used as an initial state.
- Assuming longitudinal boost-invariance reduces the hydrodynamical evolution equations into (2+1) dimensions.
- Equation of state by Laine and Schröder⁹ (no separate QGP and mixed phases).
- Centrality classes defined using the optical Glauber model.

J. Auvinen (FIAS, Frankfurt)

⁷H. Holopainen, H. Niemi and K. J. Eskola, Phys. Rev. C 83, 034901 (2011).

⁸P. F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola and K. Tuominen, Nucl. Phys. A 696, 197 (2001).

⁹Phys. Rev. D 73, 085009 (2006).

The Monte Carlo mode

Results ○○○○○○○○●○○ Summary 0

Non-central collisions

The π^0 nuclear modification as a function of the reaction plane angle $\Delta\phi_{RP}$:

J. Auvinen, K. J. Eskola, H. Holopainen and T. Renk, Phys. Rev. C 82, 051901 (2010). $R_{AA}(\phi_{RP})$ data from S. Afanasiev *et al.* [PHENIX Collaboration], Phys. Rev. C 80, 054907 (2009).

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo mode

Results

Summary 0

The effect of initial state density fluctuations

Event-by-event hydro calculations with fluctuating initial state: H. Holopainen, H. Niemi and K. J. Eskola,

Phys. Rev. C 83, 034901 (2011).

- The eBC profile is used as an initial state.
- Centrality classes defined using the Monte Carlo Glauber.

J. Auvinen (FIAS, Frankfurt)

Elastic energy loss MC model

January 31, 2013 30 / 32

The Monte Carlo mode

Results

Summary

Initial state fluctuations

 R_{AA} at $p_T = 10$ GeV as a function of the angle of outgoing partons with the event plane ϕ :

- The initial state fluctuations average out in central collisions, no re-tuning of α_s required.
- In non-central collisions, the average over fluctuations gives slightly less suppression compared to smooth hydro.

T. Renk, H. Holopainen, J. Auvinen and K. J. Eskola, Phys. Rev. C 85, 044915 (2012).

J. Auvinen (FIAS, Frankfurt)

The Monte Carlo mode

Results

Summary

Conclusions & Outlook

Conclusions:

- The Monte Carlo model presented here agrees qualitatively with other similar models, differences due to regularisation \Rightarrow Supports \hat{t} -channel dominance assumption.
- The measured dependencies of R_{AA} on the reaction plane angle, centrality or collision energy are not matched with the same parameter values \Rightarrow Large elastic component of parton energy loss ruled out?
- The initial state fluctuations average out in central collisions; small effect on the nuclear modification in non-central case.

Currently under investigation: Running coupling, heavy quarks.

To be implemented: In-medium jets, dihadron correlations, coherence effects & radiative energy loss.

J. Auvinen (FIAS, Frankfurt)