A Closer Look on the Gunion-Bertsch Approximation

Jan Uphoff Oliver Fochler

Institut für Theoretische Physik

Goethe-Universität Frankfurt

Transport Meeting
 22 November 2012

The Context - Partonic Transport Model BAMPS

BAMPS = Boltzmann Approach to Multiple Particle Scattering ${ }^{1}$
Microscopic transport simulations with full dynamics
Attack various problems within one model. (elliptic flow, $R_{A A}$, thermalization, ...)

Solve Boltzmann equation for $2 \rightarrow 2$ and $2 \leftrightarrow 3$ processes based on LO pQCD matrix elements.

$$
p^{\mu} \partial_{\mu} f(x, p)=\mathcal{C}_{2 \rightarrow 2}(x, p)+\mathcal{C}_{2 \leftrightarrow 3}(x, p)
$$

[^0]
The Context - Partonic Transport Model BAMPS

BAMPS = Boltzmann Approach to Multiple Particle Scattering ${ }^{1}$

Microscopic transport simulations with full dynamics

Attack various problems within one model. (elliptic flow, $R_{A A}$, thermalization, ...)

Visualization by Jan Uphoff
Visualization framework courtesy MADAI collaboration
funded by the NSF under grant NSF-PHY-09-41373

[^1]
The Context－Partonic Transport Model BAMPS

Monte Carlo sampling of interactions

－Boltzmann particles
－Massless for gluons and light quarks
－Massive for heavy quarks
－Discretize：
－Spatial cells ΔV

－Time steps Δt
－Use testparticle method for sufficient statistics

$$
N \rightarrow N \cdot N_{\text {test }}
$$

－Sampling of interaction probabilities from x－sections

$$
P_{2 N}=V_{\text {rel }} \sigma_{2 N} \frac{1}{N_{\text {test }}} \frac{\Delta t}{\Delta V} \quad P_{32}=\frac{1}{8 E_{A} E_{B} E_{C}} I_{32} \frac{1}{N_{\text {test }}^{2}} \frac{\Delta t}{(\Delta V)^{2}}
$$

The Context - Partonic Transport Model BAMPS

Monte Carlo sampling of interactions

- Sampling of interaction probabilities from LO pQCD
$2 \rightarrow 2$ Small angle cross sections
$2 \leftrightarrow 3$ Gunion-Bertsch matrix element
- Cross sections screened with dynamically computed Debye mass $m_{D}^{2}=d_{G} \pi \alpha_{s} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{p}\left(N_{c} f_{g}+N_{f} f_{q}\right)$
- α_{s} either fixed (most of this talk) or running (heavy quarks)
$g g \rightarrow g g$ cross section

$$
\frac{d \sigma_{g g \rightarrow g g}}{d q_{\perp}^{2}} \simeq \frac{9 \pi \alpha_{s}^{2}}{2\left(\mathbf{q}_{\perp}^{2}+m_{D}^{2}\right)^{2}}
$$

Gunion-Bertsch matrix element

$$
\left|\mathcal{M}_{g g \rightarrow g g g}\right|^{2}=\frac{72 \pi^{2} \alpha_{S}^{2} s^{2}}{\left(\mathbf{q}_{\perp}^{2}+m_{D}^{2}\right)^{2}} \frac{48 \pi \alpha_{s} \mathbf{q}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2}\left[\left(\mathbf{k}_{\perp}-\mathbf{q}_{\perp}\right)^{2}+m_{D}^{2}\right]}
$$

Approximation vs. Exact Radiation Amplitude

Gunion and Bertsch approximated the LO radiation amplitude

Phys.Rev.,D25 (1982)

$$
\left|\mathcal{M}_{G B}\right|^{2}=\frac{72 \pi^{2} \alpha_{S}^{2} s^{2}}{\mathbf{q}_{\perp}^{2}} \frac{48 \pi \alpha_{S}}{\mathbf{k}_{\perp}^{2}\left(\mathbf{k}_{\perp}-\mathbf{q}_{\perp}\right)^{2}}
$$

The exact result is also known
Berends et al., PLB 103 (1981); Ellis and Sexton, Nucl.Phys.,B269 (1986)

$$
\begin{aligned}
&\left|M_{\text {exact }}\right|^{2}= \frac{g^{6}}{2}\left[N^{3} /\left(N^{2}-1\right)\right][(12345)+(12354)+(12435)+(12453)+(12534) \\
&+(12543)+(13245)+(13254)+(13425)+(13524)+(14235)+(14325)] \\
& \times \frac{\left[\left(p_{1} p_{2}\right)^{4}+\left(p_{1} p_{3}\right)^{4}+\left(p_{1} p_{4}\right)^{4}+\left(p_{1} p_{5}\right)^{4}+\left(p_{2} p_{3}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)} \\
&+\frac{\left[\left(p_{2} p_{4}\right)^{4}+\left(p_{2} p_{5}\right)^{4}+\left(p_{3} p_{4}\right)^{4}+\left(p_{3} p_{5}\right)^{4}+\left(p_{4} p_{5}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)}
\end{aligned}
$$

- GB has been widely used for e.g. rate equations due to its simplicity

Approximation vs. Exact Radiation Amplitude

Gunion and Bertsch approximated the LO radiation amplitude

Phys.Rev.,D25 (1982)

$$
\left|\mathcal{M}_{G B}\right|^{2}=\frac{72 \pi^{2} \alpha_{S}^{2} s^{2}}{\mathbf{q}_{\perp}^{2}} \frac{48 \pi \alpha_{S}}{\mathbf{k}_{\perp}^{2}\left(\mathbf{k}_{\perp}-\mathbf{q}_{\perp}\right)^{2}}
$$

The exact result is also known
Berends et al., PLB 103 (1981); Ellis and Sexton, Nucl.Phys.,B269 (1986)

$$
\begin{aligned}
&\left|M_{\text {exact }}\right|^{2}= \frac{g^{6}}{2}\left[N^{3} /\left(N^{2}-1\right)\right][(12345)+(12354)+(12435)+(12453)+(12534) \\
&+(12543)+(13245)+(13254)+(13425)+(13524)+(14235)+(14325)] \\
& \times \frac{\left[\left(p_{1} p_{2}\right)^{4}+\left(p_{1} p_{3}\right)^{4}+\left(p_{1} p_{4}\right)^{4}+\left(p_{1} p_{5}\right)^{4}+\left(p_{2} p_{3}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)} \\
&+\frac{\left[\left(p_{2} p_{4}\right)^{4}+\left(p_{2} p_{5}\right)^{4}+\left(p_{3} p_{4}\right)^{4}+\left(p_{3} p_{5}\right)^{4}+\left(p_{4} p_{5}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)}
\end{aligned}
$$

- GB has been widely used for e.g. rate equations due to its simplicity
- How good is this approximation?

A Recently Revived Debate

- J.-W. Chen, J. Deng, H. Dong, Q. Wang claim:

BAMPS results are off by a factor 6 due to miscounting of symmetry factors arXiv:1107:0522

- B. Zhang analyzes GB vs. exact and finds differences up to 50\% arXiv:1208.1224

GB - good, ok, really bad? Did we miscount symmetry factors?

- Extensive numerical comparisons between Gunion-Bertsch and exact matrix elements
- Analytically re-visit the derivation of the Gunion-Bertsch result

A Recently Revived Debate

- J.-W. Chen, J. Deng, H. Dong, Q. Wang claim:

BAMPS results are off by a factor 6 due to miscounting of symmetry factors arXiv:1107:0522

- B. Zhang analyzes GB vs. exact and finds differences up to 50\% arXiv:1208.1224

GB - good, ok, really bad? Did we miscount symmetry factors?

- Extensive numerical comparisons between Gunion-Bertsch and exact matrix elements
- Analytically re-visit the derivation of the Gunion-Bertsch result

A Recently Revived Debate

The short version

- Yes, there is a discrepancy between Gunion-Bertsch and the exact matrix element in some regions of the phase space
- It is not caused by symmetry factors but lies deeper within the approximations
- The findings of Chen et al. are coincidental
- Their reasoning does not hold
- In BAMPS the discrepancy is probably at most a factor 3 as restrictions on the elastic part are already included
- Screening has an influence on the quality of the approximation (cf. Chen et al vs. Zhang), more later

Beware: Work in progress!

Gunion-Bertsch Basics

Diagrams:

plus radiation from lower lines ...

- $k=$ momentum of radiated gluon,
$q=$ exchanged momentum
- Gunion-Bertsch: $A^{+}=0$ gauge lower lines do not contribute (much)
- Scalar QCD to simplify calculations

Gunion-Bertsch Basics

Diagrams:

Rapidity of emitted gluon

$$
y=\frac{1}{2} \ln \frac{k^{+}}{k^{-}}=\ln \frac{x \sqrt{s}}{k_{\perp}}
$$

Kinematics: (light-cone coordinates)

$$
\begin{aligned}
p_{A} & =(\sqrt{s}, 0,0,0) & p_{B} & =(0, \sqrt{s}, 0,0) \\
k & =\left(x \sqrt{s}, \frac{k_{\perp}^{2}}{x \sqrt{s}}, \mathbf{k}_{\perp}\right) & q & =\left(q^{+}, q^{-}, \mathbf{q}_{\perp}\right)
\end{aligned}
$$

Momentum conservation gives

$$
p_{1}=p_{A}+q-k \quad p_{2}=p_{B}-q
$$

- $k=$ momentum of radiated gluon, $q=$ exchanged momentum
- Gunion-Bertsch: $A^{+}=0$ gauge, lower lines do not contribute (much)
- Scalar QCD to simplify calculations

The Problems with Gunion-Bertsch

Gunion and Bertsch explicitly state the following approximations: $k_{\perp} \ll \sqrt{s}, q_{\perp} \ll \sqrt{s}, x q_{\perp} \ll k_{\perp}$

So where are the problems?

- A missing $(1-x)^{2}$ term
x is the fraction of forward-momentum carried by the radiated gluon, $x=\frac{k_{\perp}}{\sqrt{s}} e^{y}$

The Problems with Gunion-Bertsch

Gunion and Bertsch explicitly state the following approximations: $k_{\perp} \ll \sqrt{s}, q_{\perp} \ll \sqrt{s}, x q_{\perp} \ll k_{\perp}$

So where are the problems?

- A missing $(1-x)^{2}$ term

$$
\left|\mathcal{M}_{G B}\right|^{2} \sim(1-x)^{2} \frac{s^{2}}{\mathbf{q}_{\perp}^{2}} \frac{1}{\mathbf{k}_{\perp}^{2}\left(\mathbf{k}_{\perp}-\mathbf{q}_{\perp}\right)^{2}}
$$

x is the fraction of forward-momentum carried by the radiated gluon, $x=\frac{k_{\perp}}{\sqrt{s}} e^{y}$

- When not at midrapidity, $y=0 \equiv x=\frac{k_{\perp}}{\sqrt{s}}$, constraints are needed
to arrive at the GB result that break the symmetry and make it only valid for forward emission

The Problems with Gunion-Bertsch

Gunion and Bertsch explicitly state the following approximations: $k_{\perp} \ll \sqrt{s}, q_{\perp} \ll \sqrt{s}, x q_{\perp} \ll k_{\perp}$
So where are the problems?

- A missing $(1-x)^{2}$ term

$$
\left|\mathcal{M}_{G B}\right|^{2} \sim(1-x)^{2} \frac{s^{2}}{\mathbf{q}_{\perp}^{2}} \frac{1}{\mathbf{k}_{\perp}^{2}\left(\mathbf{k}_{\perp}-\mathbf{q}_{\perp}\right)^{2}}
$$

x is the fraction of forward-momentum carried by the radiated gluon, $x=\frac{k_{1}}{\sqrt{s}} e^{y}$

- When not at midrapidity, $y=0 \equiv x=\frac{k_{\perp}}{\sqrt{s}}$, constraints are needed to arrive at the GB result that break the symmetry and make it only valid for forward emission

$$
k_{\perp}^{2} \ll x^{2} s \equiv k^{+} \gg k^{-} \equiv y \gg 0
$$

Using $x=\frac{k_{\perp}}{\sqrt{s}} e^{|y|}$ takes this into account.

The Differential $q q \rightarrow q q g$ Cross Section

- Infrared screening for both GB and exact: Θ (cut) $=\Theta\left(p_{i} p_{j}-\lambda\right)$
- Integration both in GB coordinates and in standard phase space with numeric δ-functions

The Differential $q q \rightarrow q q g$ Cross Section

- Infrared screening for both GB and exact: Θ (cut) $=\Theta\left(p_{i} p_{j}-\lambda\right)$
- Integration both in GB coordinates and in standard phase space with numeric δ-functions

The Differential $q q \rightarrow q q g$ Cross Section

- Infrared screening for both GB and exact: Θ (cut) $=\Theta\left(p_{i} p_{j}-\lambda\right)$
- Integration both in GB coordinates and in standard phase space with numeric δ-functions

The Differential $q q \rightarrow q q g$ Cross Section

- Infrared screening for both GB and exact: Θ (cut) $=\Theta\left(p_{i} p_{j}-\lambda\right)$
- Integration both in GB coordinates and in standard phase space with numeric δ-functions

The Differential Heavy Quark Cross Section

Extending Gunion-Bertsch to finite masses including the corrections and comparing to the known exact results Kunszt, Pietarinen, Reya, PRD (1980)

- Gunion-Bertsch approximations including the corrections also work for heavy quarks!
- Asymmetry due to dead cone effect nicely visible

Comparing the Approximation to the Exact Results

- Gunion-Bertsch was never intended to be used for obtaining total cross sections
- GB only looked at the emission spectra at midrapidity, there the approximations are ok
- When including $(1-x)$ and correcting the symmetry, GB is very good for all processes!
- Corrections for the total cross section and the kinematic sampling

Comparing the Approximation to the Exact Results

- Gunion-Bertsch was never intended to be used for obtaining total cross sections
- GB only looked at the emission spectra at midrapidity, there the approximations are ok
- When including $(1-x)$ and correcting the symmetry, GB is very good for all processes!
- Corrections for the total cross section and the kinematic sampling

Comparing the Approximation to the Exact Results

- Gunion-Bertsch was never intended to be used for obtaining total cross sections
- GB only looked at the emission spectra at midrapidity, there the approximations are ok
- When including $(1-x)$ and correcting the symmetry, GB is very good for all processes!
- Corrections for the total cross section and the kinematic sampling

Impact of Screening

Remember: Exact ME for $g g \rightarrow g g g$

$$
\begin{aligned}
&\left|M_{\text {exact }}\right|^{2}= \frac{g^{6}}{2}\left[N^{3} /\left(N^{2}-1\right)\right][(12345)+(12354)+(12435)+(12453)+(12534) \\
&+(12543)+(13245)+(13254)+(13425)+(13524)+(14235)+(14325)] \\
& \times \frac{\left[\left(p_{1} p_{2}\right)^{4}+\left(p_{1} p_{3}\right)^{4}+\left(p_{1} p_{4}\right)^{4}+\left(p_{1} p_{5}\right)^{4}+\left(p_{2} p_{3}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)} \\
&+\frac{\left[\left(p_{2} p_{4}\right)^{4}+\left(p_{2} p_{5}\right)^{4}+\left(p_{3} p_{4}\right)^{4}+\left(p_{3} p_{5}\right)^{4}+\left(p_{4} p_{5}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)}
\end{aligned}
$$

Needs to be infrared regulated / screened. We use

$\Theta($ cut $)=\Theta\left(p_{1} p_{2}-\lambda\right) \Theta\left(p_{1} p_{3}-\lambda\right) \Theta\left(p_{1} p_{4}-\lambda\right) \Theta\left(p_{1} p_{5}-\lambda\right) \Theta\left(p_{2} p_{3}-\lambda\right) \Theta\left(p_{2} p_{4}-\lambda\right) \Theta\left(p_{2} p_{5}-\right.$ $\lambda) \Theta\left(p_{3} p_{4}-\lambda\right) \Theta\left(p_{3} p_{5}-\lambda\right) \Theta\left(p_{4} p_{5}-\lambda\right)$

- With $\lambda=\epsilon m_{D}^{2}$
- Systematic comparison but artificial screening (non-physical cross
sections)

Impact of Screening

Remember: Exact ME for $g g \rightarrow g g g$

$$
\begin{gathered}
\left|M_{\text {exact }}\right|^{2}=\frac{g^{6}}{2}\left[N^{3} /\left(N^{2}-1\right)\right][(12345)+(12354)+(12435)+(12453)+(12534) \\
+(12543)+(13245)+(13254)+(13425)+(13524)+(14235)+(14325)] \\
\times \frac{\left[\left(p_{1} p_{2}\right)^{4}+\left(p_{1} p_{3}\right)^{4}+\left(p_{1} p_{4}\right)^{4}+\left(p_{1} p_{5}\right)^{4}+\left(p_{2} p_{3}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)} \\
+\frac{\left[\left(p_{2} p_{4}\right)^{4}+\left(p_{2} p_{5}\right)^{4}+\left(p_{3} p_{4}\right)^{4}+\left(p_{3} p_{5}\right)^{4}+\left(p_{4} p_{5}\right)^{4}\right]}{\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left(p_{1} p_{4}\right)\left(p_{1} p_{5}\right)\left(p_{2} p_{3}\right)\left(p_{2} p_{4}\right)\left(p_{2} p_{5}\right)\left(p_{3} p_{4}\right)\left(p_{3} p_{5}\right)\left(p_{4} p_{5}\right)}
\end{gathered}
$$

Needs to be infrared regulated / screened. We use

$\Theta($ cut $)=\Theta\left(p_{1} p_{2}-\lambda\right) \Theta\left(p_{1} p_{3}-\lambda\right) \Theta\left(p_{1} p_{4}-\lambda\right) \Theta\left(p_{1} p_{5}-\lambda\right) \Theta\left(p_{2} p_{3}-\lambda\right) \Theta\left(p_{2} p_{4}-\lambda\right) \Theta\left(p_{2} p_{5}-\right.$ $\lambda) \Theta\left(p_{3} p_{4}-\lambda\right) \Theta\left(p_{3} p_{5}-\lambda\right) \Theta\left(p_{4} p_{5}-\lambda\right)$

- With $\lambda=\epsilon m_{D}^{2}$
- So far: $\epsilon \ll 1$
- Systematic comparison but artificial screening (non-physical cross sections)

Quality of GB When Evolving the Infrared-Cutoff

The larger the cutoff, the worse the approximation. Large λ cut away the parts where GB is good. . .

Estimate the physical cutoff

(1) Compute $d \sigma / d y$ at $y=0$ with improved GB and standard Debye screening
(2) Vary ϵ to get the same $d \sigma / d y$ for improved GB with cutoff scheme

Quality of GB When Evolving the Infrared-Cutoff

The larger the cutoff, the worse the approximation. Large λ cut away the parts where GB is good...

Estimate the physical cutoff

(1) Compute $d \sigma / d y$ at $y=0$ with improved GB and standard Debye screening
(2) Vary ϵ to get the same $d \sigma / d y$ for improved GB with cutoff scheme

$$
\text { Yields } \epsilon_{\text {phys }} \approx 0.3 \Rightarrow \sigma_{G B} / \sigma_{\text {exact }} \approx 2-4
$$

Can this be cured? Not quite sure yet.

Summary

- Gunion-Bertsch needs to be improved when evaluating cross sections
- Improvements affect total cross section and momentum sampling
- In principle the improved GB approximates the exact results extremely well
- Physical screening might reduce the agreement

Implementation into BAMPS and investigation of effects on observables is underway. First results:

- Qualitatively good for high- p_{T}, cures peculiar energy loss features
- Implications stronger for high $-p_{T}$ than for medium particles

[^0]: ${ }^{1}$ Z. Xu, C. Greiner, Phys. Rev. C71 (2005)

[^1]: ${ }^{1}$ Z. Xu, C. Greiner, Phys. Rev. C71 (2005)

