Status of viscous hydrodynamic code development

Yuriy KARPENKO

Transport group meeting, Jan 17, 2013

Introduction: heavy ion collision in pictures ${ }^{1}$

- Initial state, hard scatterings
- Thermalization
- Hydrodynamic expansion
- Quark-gluon plasma
- Phase transition
- Hadron Gas
- Chemical freeze-out
- Kinetic stage

Typical size $10 \mathrm{fm} \propto$ $10^{-14} \mathrm{~m}$

Typical lifetime $10 \mathrm{fm} / \mathrm{c} \propto$ $10^{-23} \mathrm{~s}$

- (kinetic) freeze-out

Relativistic viscous hydrodynamics

$$
\begin{gathered}
\left\{\begin{array}{l}
\partial_{\mu} T^{\mu v}=0 \\
\partial_{\mu} N^{\mu}=0
\end{array}\right. \\
T^{\mu v}=\varepsilon u^{\mu} u^{v}-(p+\Pi) \Delta^{\mu v}+q^{\mu} u^{v}+q^{v} u^{\mu}+\pi^{\mu v} \\
N^{\mu}=n \cdot u^{\mu}+v^{\mu}
\end{gathered} \begin{gathered}
\text { +equation of state (EoS) } p=p(\varepsilon, n)
\end{gathered}
$$

where $\Delta^{\mu v}=g^{\mu v}-u^{\mu} u^{v}$ is the projector orthogonal to u^{μ}, (in the fluid rest frame where $u^{\mu}=(1,0,0,0) \Rightarrow \quad \Delta^{\mu \nu}=\operatorname{diag}(0,-1,-1,-1)$) q^{μ} is the heat flux
$\pi^{\mu \nu}$ and Π are the shear stress tensor and bulk pressure
v^{μ} is a (baryon, etc) charge diffusion
$q^{\mu}=\pi^{\mu v}=\Pi=v^{\mu}=0 \Rightarrow$ ideal fluid.

Definition of u^{μ}

Since in general case there is no common direction for energy-momentum flow and particle flow,

1. Landau definition (flow of energy):

$$
u_{L}^{u}=\frac{T_{v}^{\mu} u_{L}^{v}}{\sqrt{u_{L}^{\alpha} T_{\alpha}^{\beta} T_{\beta \gamma} u_{L}^{\gamma}}} \quad \Rightarrow q^{\mu}=0
$$

2. Eckart definition (flow of conserved charge)

$$
u_{E}^{\mu}=\frac{N^{\mu}}{\sqrt{N_{v} N^{v}}} \quad \Rightarrow v^{\mu}=0
$$

! we adopt Landau definition (Eckart frame is undefined when $n=0$)

Relativistic Navier-Stokes

from the second law of thermodynamics

In ideal hydrodynamics:

$$
\left\{\begin{array}{l}
\partial_{\mu} T^{\mu v}=0 \\
\partial_{\mu} N^{\mu}=0
\end{array} \quad \Rightarrow \partial_{\mu} S^{\mu}=\partial_{\mu}\left(s u^{\mu}\right)=0\right.
$$

In viscous hydrodynamics:

$$
\begin{gathered}
\partial_{\mu} S^{\mu}>0 \\
T \partial_{\mu} S^{\mu}=\ldots=-u_{v} \partial_{\mu} \delta T^{\mu v}=\ldots=\pi^{\mu v} \cdot<\Delta^{\mu \lambda} \partial_{\lambda} u^{v}>-\Pi \cdot \partial_{\mu} u^{\mu}
\end{gathered}
$$

Then, $\partial_{\mu} S^{\mu}>0$ if

$$
\left\{\begin{array}{l}
\pi^{\mu v}=2 \eta<\Delta^{\mu \lambda} \partial_{\lambda} u^{v}> \\
\Pi=-\zeta \partial_{\mu} u^{\mu}
\end{array}\right.
$$

These constitutive equations correspond to relativistic generalization of Navier-Stokes equations.

Relativistic Navier-Stokes

Causality problems:

For small perturbations around uniform flow:

$$
\partial_{t} \delta u^{y}-\frac{\eta}{\varepsilon+p} \partial_{x}^{2} \delta u^{y}=0
$$

Diffusion speed for wavemode k :

$$
v_{T}(k)=2 k \frac{\eta}{\varepsilon+p} \rightarrow \infty, \quad k \gg 1
$$

Such paradox is a consequence of an insufficient description of the thermodynamical state in nonequilibrium (Müller, 1968)

Acausality \rightarrow instabilities (Hiscock, Lindblom '1985)

Second-order theory: Israel-Stewart formalism

Entropy current

$$
S^{\mu}=s u^{\mu}=s_{\mathrm{eq}} u^{\mu}-\left(\beta_{0} \Pi^{2}+\beta^{2} \pi^{\alpha \beta} \pi_{\alpha \beta}\right) \frac{u^{\mu}}{2 T}
$$

Then, the requirement $\partial_{\mu} S^{\mu}>0$ leads to

$$
\begin{aligned}
<D \pi^{\mu v}> & =-\frac{\pi^{\mu v}-\pi_{N S}^{\mu v}}{\tau_{\pi}}-\frac{1}{2} \pi^{\mu v}\left(\partial_{\lambda} u^{\lambda}+D \ln \frac{\beta_{0}}{T}\right) \\
D \Pi & =-\frac{\Pi-\Pi_{N S}}{\tau_{\Pi}}-\frac{1}{2} \Pi\left(\partial_{\lambda} u^{\lambda}+D \ln \frac{\beta_{2}}{T}\right)
\end{aligned}
$$

where $D \equiv u^{\mu} \partial_{\mu}, \tau_{\pi}=2 \eta \beta_{2}, \tau_{\Pi}=\zeta \beta_{0}$, and Navier-Stokes values for the viscous components:

$$
\begin{aligned}
\pi_{\mathrm{NS}}^{\mu v} & =2 \eta \sigma^{\mu v}=\eta\left(\Delta^{\mu \lambda} \partial_{\lambda} u^{v}+\Delta v \lambda \partial_{\lambda} u^{\mu}\right)-\frac{2}{3} \eta \Delta^{\mu v} \partial_{\lambda} u^{\lambda} \\
\Pi_{\mathrm{NS}} & =-\zeta \partial_{\lambda} u^{\lambda}
\end{aligned}
$$

The solutions are stable, provided that τ_{π}, τ_{Π} are big enough (for example, $\tau_{\Pi}>\frac{3}{2} \frac{\zeta}{s T}$ from stability condition around hydrostatic state*) $)_{\underline{\underline{\underline{1}}}}$

The scheme

Coordinate transformations

Milne coordinates

The coordinate system is defined as follows:

$$
\text { 0) } \tau=\sqrt{t^{2}-z^{2}} \quad g^{\mu v}=\operatorname{diag}\left(1,-1,-1,-1 / \tau^{2}\right)
$$

1) $x=x$
2) $y=y$
3) $\eta=\frac{1}{2} \ln \frac{t+z}{t-z}$

Nonzero Christoffel symbols are:

$$
\Gamma_{\tau \eta}^{\eta}=\Gamma_{\eta \tau}^{\eta}=1 / \tau, \quad \Gamma_{\eta \eta}^{\tau}=\tau
$$

$$
T^{\mu v}=(\varepsilon+p) u^{\mu} u^{v}-p \cdot g^{\mu v}, \text { where }
$$

$u^{\mu}=\left\{\cosh \left(\eta_{f}-\eta\right) \cosh \eta_{T}, \sinh \eta_{T} \cos \phi, \sinh \eta_{T} \sin \phi, \frac{1}{\tau} \sinh \left(\eta_{f}-\eta\right) \cosh \eta_{T}\right\}$ (cf. $u_{\text {Cart }}^{i}=\left\{\cosh \left(\eta_{f}\right) \cosh \eta_{T}, \sinh \eta_{T} \cos \phi, \sinh \eta_{T} \sin \phi, \sinh \left(\eta_{f}\right) \cosh \eta_{T}\right\}$)

EM conservation equations are

$$
\partial_{i v} T^{\mu v}=0
$$

or

$$
\begin{array}{ll}
\mu=0: & \partial_{v} T^{\tau v}+\tau T^{\eta \eta}+\frac{1}{\tau} T^{\tau \tau}=0 \\
\mu=1: & \partial_{\nu} T^{x v}+\frac{1}{\tau} T^{x \tau}=0 \\
\mu=2: & \partial_{\nu} T^{y v}+\frac{1}{\tau} T^{y \tau}=0 \\
\mu=3: & \partial_{\nu} T^{\eta v}+\frac{3}{\tau} T^{\eta \tau}=0
\end{array}
$$

Additional transformations:

EM conservation equations are

$$
\partial_{i v} T^{\mu v}=0
$$

or

$$
\begin{array}{ll}
\mu=0: & \partial_{\nu} T^{\tau v}+\tau T^{\eta \eta}+\frac{1}{\tau} T^{\tau \tau}=0 \\
\mu=1: & \partial_{\nu} T^{x v}+\frac{1}{\tau} T^{x \tau}=0 \\
\mu=2: & \partial_{\nu} T^{y v}+\frac{1}{\tau} T^{y \tau}=0 \\
\mu=3: & \partial_{\nu} T^{\eta v}+\frac{3}{\tau} T^{\eta \tau}=0
\end{array}
$$

$$
\begin{align*}
T^{\mu \eta} & \rightarrow T^{\mu \eta} / \tau, \mu \neq \eta, \\
T^{\eta \eta} & \rightarrow T^{\eta \eta} / \tau^{2}
\end{align*}
$$

$$
\begin{aligned}
& \partial_{v}\left(\tau T^{\tau v}\right)+\frac{1}{\tau}\left(\tau T^{\eta \eta}\right)=0 \\
& \partial_{v}\left(\tau T^{x v}\right)=0 \\
& \partial_{v}\left(\tau T^{y v}\right)=0 \\
& \partial_{v}\left(\tau T^{\eta v}\right)+\frac{1}{\tau} \tau T^{\eta \tau}=0
\end{aligned}
$$

Conservative variables are $Q^{\mu}=\tau \cdot T^{\tau \mu}$

The exact expressions for evolutionary equations for viscous corrections:

$$
\begin{align*}
\gamma\left(\partial_{t}+v_{i} \partial_{i}\right) \pi^{\mu v} & =-\frac{\pi^{\mu v}-\pi_{\mathrm{NS}}^{\mu v}}{\tau_{\pi}}+I_{\pi} \tag{1}\\
\gamma\left(\partial_{t}+v_{i} \partial_{i}\right) \Pi & =-\frac{\Pi-\Pi_{\mathrm{NS}}}{\tau_{\Pi}}+I_{\Pi} \tag{2}
\end{align*}
$$

where the extra source-terms are:

$$
\begin{align*}
& I_{\pi}=-\overbrace{\frac{4}{3} \pi^{\mu v} \partial_{; \gamma} u^{\gamma}}^{\text {extra IS terms }} \overbrace{\left[u^{v} \pi^{\mu \beta}+u^{\mu} \pi^{\nu \beta}\right] u^{\lambda} \partial_{; \lambda} u_{\beta}}^{<D \pi^{\mu v}>=\ldots \text { geom }(\pi)} \tag{3}\\
& I_{\Pi}=-\frac{4}{3} \Pi \partial_{; \gamma} u^{\gamma}+I_{\Pi, \text { geom }}(\Pi) \tag{4}
\end{align*}
$$

and $\partial_{; \mu} u^{v}=\partial_{\mu} u^{v}+\Gamma_{\mu \lambda}^{v} u^{\lambda}$ is covariant derivative.

Closer to numerics:

$$
\begin{gathered}
\partial_{\mu}\left(T_{\text {id }}^{\mu v}+\delta T^{\mu v}\right)=S^{v}, \quad \text { S=geometrical source terms } \\
\partial_{\tau} \underbrace{\left(T_{\mathrm{id}}^{\tau i}+\delta T^{\tau i}\right)}_{Q_{i}}+\partial_{j} \underbrace{\left(T^{j i}\right)}_{\text {id.flux }}+\partial_{j} \underbrace{\left(\delta T^{j i}\right)}_{\text {visc.flux }}=\underbrace{S_{i d}^{v}+\delta S^{v}}_{\text {source terms }}
\end{gathered}
$$

Finite-volume realization:

$$
\frac{1}{\Delta \tau}\left(Q_{\mathrm{id}}^{n+1}+\delta Q^{n+1}-Q_{\mathrm{id}}^{n}-\delta Q^{n}\right)+\frac{1}{\Delta x}\left(\Delta F_{\mathrm{id}}^{n+1 / 2}+\Delta \delta F^{n+1 / 2}\right)=S_{\mathrm{id}}^{n+1 / 2}+\delta S^{n+1 / 2}
$$

Closer to numerics:

$$
\begin{gathered}
\partial_{\mu}\left(T_{\mathrm{id}}^{\mu \nu}+\delta T^{\mu \nu}\right)=S^{\nu}, \quad \text { S=geometrical source terms } \\
\partial_{\tau} \underbrace{\left(T_{\mathrm{id}}^{\tau i}+\delta T^{\tau i}\right)}_{Q_{i}}+\partial_{j} \underbrace{\left(T^{j i}\right)}_{\text {id.flux }}+\partial_{j} \underbrace{\left(\delta T^{j i}\right)}_{\text {visc.flux }}=\underbrace{S_{i d}^{v}+\delta S^{v}}_{\text {source terms }}
\end{gathered}
$$

Finite-volume realization:

$$
\frac{1}{\Delta \tau}\left(Q_{i d}^{n+1}+\delta Q^{n+1}-Q_{i d}^{n}-\delta Q^{n}\right)+\frac{1}{\Delta x}\left(\Delta F_{i d}^{n+1 / 2}+\Delta \delta F^{n+1 / 2}\right)=S_{i d}^{n+1 / 2}+\delta S^{n+1 / 2}
$$ now, a small trick:

$$
\frac{1}{\Delta \tau}(Q_{i d}^{n+1}+\delta Q^{n+1} \underbrace{-Q_{\mathrm{id}}^{* n+1}+Q_{i d}^{* n+1}}_{=0}-Q_{i d}^{n}-\delta Q^{n})+\frac{1}{\Delta x}\left(\Delta F_{\mathrm{id}}+\Delta \delta F\right)=S_{\mathrm{id}}+\delta S
$$

Then,split the equation into two parts ${ }^{2}$:

$$
\begin{align*}
& \frac{1}{\Delta t}\left(Q_{\mathrm{id}}^{* n+1}-Q_{\mathrm{id}}^{n}\right)+\frac{1}{\Delta x} \Delta F_{\mathrm{id}}=S_{\mathrm{id}} \tag{5}\\
& \frac{1}{\Delta t}\left(Q_{\mathrm{id}}^{n+1}+\delta Q^{n+1}-Q_{\mathrm{id}}^{* n+1}-\delta Q^{n}\right)+\frac{1}{\Delta x} \Delta \delta F=\delta S \tag{6}
\end{align*}
$$

[^0]
The solution then proceeds in two stages:

1a) $Q_{i d}^{* n+1}$ is obtained by evolving only the ideal part (5) of energy-momentum tensor over the full timestep Δt, which is done accurately using Godunov method: rHLLE flux + MUSCL

$$
\Rightarrow \begin{aligned}
& \partial_{\tau} u^{v} \simeq \frac{u^{*(n+1), v}-u^{n, v}}{\Delta \tau} \\
& \partial_{X} u^{v} \simeq \frac{u_{k+1}^{*(n+1), v}-u_{k-1}^{*(n+1), v}}{2 \Delta x}
\end{aligned}
$$ + predictor-corrector schemes

1b) Advection-type evolutionary equations for $\pi^{\mu v}, \Pi$ are solved with 1 st order upwind scheme. Velocity gradients for Navier-Stokes values of $\pi^{\mu \nu}, \Pi$ etc. are taken from above.
2) $Q_{\mathrm{id}, i}^{n+1}+\delta Q_{i}^{n+1}=Q_{\mathrm{full}}^{n+1}$ is obtained from Eq. (6) evolving over the full timestep Δt with viscous fluxes/sources ONLY.
The initial condition for stage 2 is $Q_{\mathrm{ini}}=Q_{\mathrm{id}}^{ n+1}+\delta Q^{n}$, the first term obtained from the solution of the stage 1 .

test \#0: 0+1D

comparison with known analytical solution with viscosity in Navier-Stokes limit

Energy conservation: $\partial_{\nu} T^{\tau v}+\tau T^{\eta \eta}+\frac{1}{\tau} T^{\tau \tau}=0$
$0+1 \mathrm{D}, u^{\mu}=1,0,0,0, T_{i d}^{\mu \nu}=\operatorname{diag}\left(\varepsilon, p, p, p / \tau^{2}\right)$, the only nonzero $\pi^{\mu v}$ is $\tau^{2} \pi^{\eta \eta}=-\frac{4}{3} \frac{\eta}{\tau}$

$$
\frac{\partial \varepsilon}{\partial \tau}+\frac{\varepsilon+p+\tau^{2} \pi^{\eta \eta}}{\tau}=0
$$

Assuming the EoS for relativistic maseless gas, $\varepsilon=\alpha T^{4}, s=\frac{4}{3} \frac{\varepsilon}{T}$, the solution is:

$$
T(\tau)=\left(\frac{\tau_{0}}{\tau}\right)^{1 / 3}\left[T\left(\tau_{0}\right)+\frac{2 \eta}{3 s \tau_{0}}\left(1-\left(\frac{\tau_{0}}{\tau}\right)^{2 / 3}\right)\right]
$$

The same solution exists for bulk viscosity

setup for test calculations ${ }^{3} \# 1$

- Glauber IC for energy density
- $\tau_{0}=0.6 \mathrm{fm} / \mathrm{c}$, longitudinal boost-invariance
- $p=\varepsilon / 3 \mathrm{EoS}$
- Navier-Stokes values for initial $\pi^{\mu \nu}$ (nonzero due to Bjorken longitudinal flow)
- $\eta / s=1 /(4 \pi), \zeta / s=0$ compared to ideal case

[^1]
test \#1: cooling rates for ideal/visc

test \#1: additional transverse push \& anizotropy suppression

Central and noncentral collisions:

 Glauber IC, $b=7 \mathrm{fm}$

test \#2

Comparison with vSHASTA by E. Molnar

- 3D Gaussian for $\varepsilon, \tau_{0}=1 \mathrm{fm} / \mathrm{c}$
- EoS $p=\varepsilon / 3$
- $\pi_{\text {ini }}^{\mu \nu}=0, \Pi_{\text {ini }}=0$
- no vacuum cells

Energy density/velocity proifles agree $\pi^{\mu \nu}$ plotted at: 1.4 (left),
2.2 (top right), $3.8 \mathrm{fm} / \mathrm{c}$ (bottom right)

Test \#3: Fluctuating ICs: (typical EPOS event)

Ideal hydro

$$
\eta / S=3 /(4 \pi)
$$

- Energy conservation checks has been made as well (trivial for $\eta / s=0$ in Cartesian coordinates, nontrivial otherwise)
- Some speed and memory usage optimization, cleanup of the code, improving the structure etc. needs to be done

Stay tuned!

Thanks for your attention!

[^0]: ${ }^{2}$ Makoto Takamoto, Shu-ichiro Inutsuka, J.Comput.Phys. 230 (2011),7002

[^1]: ${ }^{3}$ to compare with H. Song, PhD thesis, arXiv:0908.3656

