From the classical equations of motion to Relativistic Quantum Molecular Dynamics

Helmholtz International Center

Rudy Marty
January 31‘ 2013
in collaboration with:
J. Aichelin, E. Bratkovskaya
(arXiv:1210.3476 [hep-ph])

Outline

Outline

(1) Introduction
(2) A problem of phase space
(3) Examples for 2/3 particles

4 Results
(5) Conclusion

Outline

(1) Introduction

(2) A problem of phase space
(3) Examples for 2/3 particles
4) Results
(5) Conclusion

Classical Dynamics

Let's begin simply. The classical dynamics for classical particles starts with the Liouville equation

$$
\frac{\mathrm{d} A}{\mathrm{~d} t}(\mathbf{q}, \mathbf{p}, t)=\frac{\partial A}{\partial t}+\frac{\partial A}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial t}+\frac{\partial A}{\partial \mathbf{p}} \frac{\partial \mathbf{p}}{\partial t} .
$$

Knowing Hamilton's equations we can write a compact form.

Classical Dynamics

Let's begin simply. The classical dynamics for classical particles starts with the Liouville equation

$$
\frac{\mathrm{d} A}{\mathrm{~d} t}(\mathbf{q}, \mathbf{p}, t)=\frac{\partial A}{\partial t}+\frac{\partial A}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial t}+\frac{\partial A}{\partial \mathbf{p}} \frac{\partial \mathbf{p}}{\partial t}
$$

Knowing Hamilton's equations we can write a compact form.

$$
\begin{aligned}
& \text { Liouville equation } \\
& \qquad \frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{\partial A}{\partial t}+\{A, \mathcal{H}\}
\end{aligned}
$$

$$
\text { with }\left\{\begin{array}{l}
\frac{\mathrm{dq}}{\mathrm{q}}=\frac{\partial \mathcal{H}}{\partial \mathbf{p}} \\
\frac{\mathrm{d} \mathbf{p}}{\mathrm{~d} t}=-\frac{\partial \mathcal{H}}{\partial \mathbf{q}}
\end{array}\right.
$$

Quantum Dynamics

The probabilistic aspect of particles can be considered by the Wigner density of a Gaussian wave function

$$
\begin{aligned}
f_{W}\left(\mathbf{q}_{i}, \mathbf{p}_{i}, t\right) & \propto \exp \left(-\frac{\left(\mathbf{q}_{i}-\mathbf{q}_{i}^{0}(t)\right)^{2}}{L}\right) \\
& \cdot \exp \left(-\left(\mathbf{p}_{i}-\mathbf{p}_{i}^{0}(t)\right)^{2} L\right)
\end{aligned}
$$

Using the time dependent version of the Ritz variational principle we find

$$
\frac{\mathrm{d} f_{W}}{\mathrm{~d} t}=\left\{f_{W}, \mathcal{H}\right\}
$$

(Aichelin, Phys. Rep., 202:233 (1991))

Toward Relativistic Dynamics

To extend the classical dynamics to the relativistic one, let's try a simple example

$$
\mathcal{H}=E=\sqrt{\mathbf{p}^{2}+m^{2}-V(\mathbf{q})}
$$

From this Hamiltonian we find the well-known equations of motion

$$
\begin{aligned}
& \frac{\mathrm{d} \mathbf{q}}{\mathrm{~d} t}=\{\mathbf{q}, \mathcal{H}\}=\frac{\partial \mathcal{H}}{\partial \mathbf{p}}=\frac{\mathbf{p}}{E} \\
& \frac{\mathrm{~d} \mathbf{p}}{\mathrm{~d} t}=\{\mathbf{p}, \mathcal{H}\}=-\frac{\partial \mathcal{H}}{\partial \mathbf{q}}=\frac{1}{2 E} \frac{\partial V}{\partial \mathbf{q}}
\end{aligned}
$$

Toward Relativistic Dynamics

Then the problems are that :

- the energy E is not Lorentz invariant (energy conservation ?),
- we can't use an absolute time t (causality ?).

That is why people worked around these problems creating the Quantum Field Theory. Nevertheless it must be possible to formulate a relativistic dynamics to follow the trajectories of particles.

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a system with a speed close to the speed of light.

Assumptions :

- Invariant world-lines (respect of Poincaré's algebra),
- $8 N$ independent degrees of freedom $\left(q^{\mu}, p^{\mu}\right)$,
- Space-time dissociation (clusterization).

(Currie, Rev. Mod. Phys. 35 (1963))

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a system with a speed close to the speed of light.

Assumptions :

- Invariant world-lines (respect of Poincaré's algebra),
- $8 N$ independent degrees of freedom $\left(q^{\mu}, p^{\mu}\right)$,
- Space-time dissociation (clusterization).

(Currie, Rev. Mod. Phys. 35 (1963))

A problem of phase space

Outline

(1) Introduction

(2) A problem of phase space

(3) Examples for 2/3 particles
4) Results
(5) Conclusion

Equations of motion

Classical equations of motion

$$
\begin{aligned}
& \frac{\partial \mathbf{q}_{i}}{\partial t}=\left\{\mathbf{q}_{i}, \mathcal{H}\right\} \\
& \frac{\partial \mathbf{p}_{i}}{E_{i}} \\
& \frac{\partial \mathbf{p}_{i}}{\partial t}=\left\{\mathbf{p}_{i}, \mathcal{H}\right\}
\end{aligned}=\sum_{k} \frac{1}{2 E_{k}} \frac{\partial V_{k}}{\partial \mathbf{q}_{i}}+\langle\text { coll. }\rangle,
$$

Classical dynamics is fine to describe particles with low energy in the classical phase space (\mathbf{q}, \mathbf{p}) but for relativistic particles we need to go to the Minkowski phase space (q^{μ}, p^{μ}).

Equations of motion

Relativistic equations of motion

$$
\begin{aligned}
\frac{\partial q_{i}^{\mu}}{\partial \tau} & =\left\{q_{i}^{\mu}, \mathcal{Z}\right\}=2 \lambda_{i} p_{i}^{\mu} \\
\frac{\partial p_{i}^{\mu}}{\partial \tau} & =\left\{p_{i}^{\mu}, \mathcal{Z}\right\}=\sum_{k} \lambda_{k} \frac{\partial V_{k}}{\partial q_{i}^{\mu}}+\langle\text { coll. }\rangle
\end{aligned}
$$

Here we have a new definition of equations of motion which are defined in a constrained phase space where λ plays the role of a factor which depends on the reference frame.

Relativistic Hamiltonian

\mathcal{Z} is not a classical Hamiltonian!

It is just a combination of the constraints:

$$
\mathcal{H}=E \quad \rightarrow \quad \mathcal{Z}=\sum_{k} \lambda_{k} \phi_{k}=0
$$

with relativistic factors λ_{k}, and constraints $\phi_{k}=0$.
As well as \mathcal{H}, \mathcal{Z} is a quantity related to a time evolution parameter : τ. In the classical case:

$$
t=q_{1}^{0}=q_{2}^{0}=\ldots
$$

whereas in the relativistic case:

$$
\tau=t \neq q_{1}^{0} \neq q_{2}^{0} \neq \ldots
$$

Constrained dynamics

We choose $2 N$ constraints ϕ_{k} to fix the times and the energies of the N particles.

Relativistic constraints :

On-shell mass constraint for energy (conservation):

$$
K_{i}=p_{i}^{\mu} p_{i \mu}-m_{i}^{2}+V_{i}=0
$$

and for the time fixation (causality):
$\chi_{i}=\sum_{j \neq i} q_{i j}^{\mu} U_{\mu}=0 \quad$ and $\quad \chi_{N}=\frac{\sum_{j} q_{j}^{\mu}}{N} U_{\mu}-\tau=0 \quad U_{\mu} \stackrel{\text { ref }}{=}(1, \overrightarrow{0})$
U_{μ} is the projector for the reference frame with time τ.

Constrained dynamics

We choose $2 N$ constraints ϕ_{k} to fix the times and the energies of the N particles.

Relativistic constraints:

On-shell mass constraint for energy (conservation):

$$
\frac{\partial E}{\partial \tau}=0
$$

and for the time fixation (causality):

$$
\Delta q^{0}=0 \quad \text { and } \quad\left\langle q^{0}\right\rangle-\tau=0
$$

U_{μ} is the projector for the reference frame with time τ.

Constrained dynamics

We still need the calculation of λ_{k}.
The conservation of constraints gives us :

$$
\begin{aligned}
\frac{\mathrm{d} \phi_{i}}{\mathrm{~d} \tau} & =\frac{\partial \phi_{i}}{\partial \tau}+\left\{\phi_{i}, \mathcal{Z}\right\}=0 \\
& =\frac{\partial \phi_{i}}{\partial \tau}+\sum_{k}^{2 N} \lambda_{k} C_{i k}^{-1}=0
\end{aligned}
$$

with $C_{i k}^{-1}=\left\{\phi_{i}, \phi_{k}\right\}$ and finally:

$$
\lambda_{k}=-C_{k 2 N} \frac{\partial \phi_{N}}{\partial \tau}=C_{k 2 N}
$$

A complex problem

We immediately see that λ_{k} are very important quantities, and therefore the constraints ϕ_{k} have to be chosen carefully. Indeed, we want to avoid to invert this matrix of constraints $C_{i k}^{-1}$.

Matrix of constraints

$$
C_{i k}^{-1}=\left\{\phi_{i}, \phi_{k}\right\}=\left(\begin{array}{ll}
\left\{K_{i}, K_{k}\right\} & \left\{K_{i}, \chi_{k}\right\} \\
\left\{\chi_{i}, K_{k}\right\} & \left\{\chi_{i}, \chi_{k}\right\}
\end{array}\right)
$$

We need some additional conditions on the constraints in order to find consistent equations of motion

A complex problem

$$
\begin{aligned}
\frac{\mathrm{d} q_{i}^{\mu}}{\mathrm{d} \tau} & =\sum_{k=1}^{N} \lambda_{k} \frac{\partial K_{k}}{\partial p_{i \mu}}+\sum_{k=N+1}^{2 N} \lambda_{k} \frac{\partial \chi_{k}}{\partial p_{i \mu}} \\
\frac{\mathrm{~d} p_{i}^{\mu}}{\mathrm{d} \tau} & =-\sum_{k=1}^{N} \lambda_{k} \frac{\partial K_{k}}{\partial q_{i \mu}}-\sum_{k=N+1}^{2 N} \lambda_{k} \frac{\partial \chi_{k}}{\partial q_{i \mu}}
\end{aligned}
$$

If $\left\{K_{i}, K_{k}\right\} \neq 0 \rightarrow \lambda_{k} \neq 0(N+1<k<2 N)$ and time constraints χ_{k} appear in the equations of motion.

Komar-Todorov condition

$$
\left\{K_{i}, K_{j}\right\}=2 p_{i j}^{\mu} \frac{\partial V_{i}}{\partial q_{j}^{\mu}}+\left\{V_{i}, V_{j}\right\} \neq 0
$$

(Currie, Rev. Mod. Phys. 35 (1963))

Reference frame

Among all these constraints and conditions, there is an important concept to introduce: the choice of reference frame. From this choice depends:

- the projector $U_{\mu} \stackrel{\text { ref }}{=}(1, \overrightarrow{0})$, from which the time τ is correlated,
- and the potential V from the mass-shell constraint, from which the Komar-Todorov condition can be fulfilled (or not ...).

We can instinctively define two different frames:

- the center of mass system (cms) for 2 particles,
- and the laboratory (lab) where the full system is at rest $\left(\sum \vec{p}=\overrightarrow{0}\right)$.

Reference frame

Consequently we define two different projectors:

$$
\begin{aligned}
& u_{i j}^{\mu}=\frac{p_{i j}^{\mu}}{\sqrt{p_{i j}^{2}}} \stackrel{\text { cms }}{=}(1,0,0,0) \\
& U^{\mu}=\frac{P^{\mu}}{\sqrt{P^{2}}} \stackrel{\text { lab }}{=}(1,0,0,0)
\end{aligned}
$$

where $p_{i j}^{\mu}=p_{i}^{\mu}+p_{j}^{\mu}$ and $P^{\mu}=\sum_{i} p_{i}^{\mu}$. In the case of a system of 2 particles, these projectors are equal. We can use these projectors in the time constraint, and for the potential V in order to have an invariant distance (here for U^{μ}):

$$
q T_{i j}^{\mu}=q_{i j}^{\mu}-\left(q_{i j, \sigma} U^{\sigma}\right) U^{\mu}
$$

Examples for $2 / 3$ particles

Outline

(1) Introduction
(2) A problem of phase space
(3) Examples for $2 / 3$ particles

4 Results
(5) Conclusion

Case of 2 particles

Using a potential $V=V\left(q_{T}\right)$, we find that the Komar-Todorov condition is fulfilled for the 2 particles case. Then

$$
\begin{aligned}
\frac{\partial q_{i}^{\mu}}{\partial \tau} & =2 \lambda_{i} p_{i}^{\mu} \\
\frac{\partial p_{i}^{\mu}}{\partial \tau} & =\sum_{k} \lambda_{k} \frac{\partial V_{k}}{\partial q_{i}^{\mu}}
\end{aligned}
$$

with $\lambda_{k}=S_{k N}$ and $S_{i j}^{-1}=\left\{\chi_{i}, K_{j}\right\}$. Constraints are:

$$
\begin{aligned}
& K_{1}=p_{1}^{2}-m_{1}^{2}+V=0 \\
& K_{2}=p_{2}^{2}-m_{2}^{2}+V=0
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \chi_{1}=q_{12}^{\mu} u_{12 \mu}=0 \\
& \chi_{2}=\frac{1}{2}\left(q_{1}+q_{2}\right)^{\mu} u_{12 \mu}-\tau=0
\end{aligned}
$$

Case of 2 particles

Then we calculate the matrix of constraints:

$$
S_{i j}^{-1}=\left(\begin{array}{cc}
2 p_{1}^{\mu} u_{12}^{\mu} & -2 p_{2}^{\mu} u_{12 \mu} \\
p_{1}^{\mu} u_{12}^{\mu} & p_{2}^{\mu} u_{12 \mu}
\end{array}\right)
$$

which we inverse:

$$
S_{i j}=\left(\begin{array}{ll}
\left(4 p_{1}^{\mu} u_{12 \mu}\right)^{-1} & \left(2 p_{1}^{\mu} u_{12 \mu}\right)^{-1} \\
\left(4 p_{2}^{\mu} u_{12 \mu}\right)^{-1} & \left(2 p_{2}^{\mu} u_{12 \mu}\right)^{-1}
\end{array}\right)
$$

and we find for 2 particles:

$$
\begin{aligned}
& \lambda_{1}=\left(2 p_{1}^{\mu} u_{12 \mu}\right)^{-1}=\frac{1}{2 E_{1}} \\
& \lambda_{2}=\left(2 p_{2}^{\mu} u_{12 \mu}\right)^{-1}=\frac{1}{2 E_{2}}
\end{aligned}
$$

Case of 2 particles

The equations of motion become:

$$
\begin{aligned}
\frac{\partial q_{i}^{\mu}}{\partial \tau} & =\frac{p_{i}^{\mu}}{E_{i}} \\
\frac{\partial p_{i}^{\mu}}{\partial \tau} & =-\sum_{k=1}^{2} \frac{1}{2 E_{k}} \frac{\partial V}{\partial q_{i_{\mu}}}
\end{aligned}
$$

We use these equations in 6 dimensions, not in 8 because we have constrained proper times and energies for each particle (4 equations).

Case of 3 particles

The case of 3 particles is the case of N. The third particle always acts on the 2 first particles as an external field.

Moreover for 3 particles, the Komar-Todorov condition can't be fulfilled. Both projectors give problems and we should work on a better definition of relativistic potential.

Nevertheless, assuming that the KT condition remains fulfilled, we can test the effect of the projector on the time constraint.

For this example we simply take $V=0$.

Case of 3 particles

We start with constraints for U^{μ} :

$$
\begin{gathered}
K_{1}=p_{1}^{2}-m_{1}^{2}=0 \\
K_{2}=p_{2}^{2}-m_{2}^{2}=0 \\
K_{3}=p_{3}^{2}-m_{3}^{2}=0 \\
\text { and } \\
\chi_{1}=\left(q_{12}+q_{13}\right)^{\mu} U_{\mu}=0 \\
\chi_{2}=\left(q_{21}+q_{23}\right)^{\mu} U_{\mu}=0 \\
\chi_{3}=\left(q_{1}+q_{2}+q_{3}\right)^{\mu} U_{\mu} / 3-\tau=0
\end{gathered}
$$

Examples for 2 /3 particles

Case of 3 particles

In this case the matrix of constraints is

$$
\begin{gathered}
S_{i j}^{-1}=\left(\begin{array}{ccc}
4 p_{1}^{\mu} U_{\mu} & -2 p_{2}^{\mu} U_{\mu} & -2 p_{3}^{\mu} U_{\mu} \\
-2 p_{1}^{\mu} U_{\mu} & 4 p_{2}^{\mu} U_{\mu} & -2 p_{3}^{\mu} U_{\mu} \\
2 / 3 p_{1}^{\mu} U_{\mu} & 2 / 3 p_{2}^{\mu} U_{\mu} & 2 / 3 p_{3}^{\mu} U_{\mu}
\end{array}\right) \\
\text { and the inverse : } \\
S_{i j}=\left(\begin{array}{ccc}
\left(6 p_{1}^{\mu} U_{\mu}\right)^{-1} & 0 & \left(2 p_{1}^{\mu} U_{\mu}\right)^{-1} \\
0 & \left(6 p_{2}^{\mu} U_{\mu}\right)^{-1} & \left(2 p_{2}^{\mu} U_{\mu}\right)^{-1} \\
-\left(6 p_{3}^{\mu} U_{\mu}\right)^{-1} & -\left(6 p_{3}^{\mu} U_{\mu}\right)^{-1} & \left(2 p_{3}^{\mu} U_{\mu}\right)^{-1}
\end{array}\right)
\end{gathered}
$$

As for the 2 particles case we find:

$$
\lambda_{k}=\frac{1}{2 E_{k}}
$$

Examples for 2 /3 particles

Case of 3 particles

If we take the other projector $u_{i j}^{\mu}$:

$$
\begin{aligned}
& \chi_{1}=q_{12}^{\mu} u_{12 \mu}+q_{13}^{\mu} u_{13 \mu}=0 \\
& \chi_{2}=q_{21}^{\mu} u_{21 \mu}+q_{23}^{\mu} u_{23 \mu}=0
\end{aligned}
$$

and then :

$$
S_{i j}^{-1}=\left(\begin{array}{ccc}
4 p_{1}^{\mu}\left(u_{12}+u_{13}\right)_{\mu} & -2 p_{2}^{\mu} u_{12 \mu} & -2 p_{3}^{\mu} u_{13 \mu} \\
-2 p_{1}^{\mu} u_{12 \mu} & 4 p_{2}^{\mu}\left(u_{21}+u_{23}\right)_{\mu} & -2 p_{3}^{\mu} u_{23 \mu} \\
2 / 3 p_{1}^{\mu} U_{\mu} & 2 / 3 p_{2}^{\mu} U_{\mu} & 2 / 3 p_{3}^{\mu} U_{\mu}
\end{array}\right)
$$

whose inverse is highly non trivial.

Case of 3 particles

Finally if we keep the full system projector U^{μ} we find the same equations of motion than the 2 particles case, which is also the same as "classical" relativistic equations.

The other choice $u_{i j}^{\mu}$, which was chosen in Sorge's paper for the RQMD code gives unphysical trajectories with velocities which can be above the speed of light.
(Sorge, Ann. Phys. 192:266 (1989))

Results

Outline

(1) Introduction
(2) A problem of phase space
(3) Examples for 2/3 particles

4 Results
(5) Conclusion

Results

Time constraint test

We already know how the case of 2 particles is treated

Results

Time constraint test

We already know how the case of 2 particles is treated

but what happens if we add an observing particle ?

Results

Time constraint test

We already know how the case of 2 particles is treated

but what happens if we add an observing particle ?
$m=10 \mathrm{MeV}, \mathbf{p}=1000 \mathrm{MeV}, b=0.1 \mathrm{fm}, L=1 \mathrm{fm}$

Results

Time constraint test

Heavy Ion Collision

Outline

(1) Introduction

(2) A problem of phase space
(3) Examples for 2/3 particles
4) Results
(5) Conclusion

Conclusion

What is the solution which works for relativistic dynamics?

$$
\begin{aligned}
\frac{\mathrm{d} q_{i}^{\mu}}{\mathrm{d} \tau} & =\frac{p_{i}^{\mu}}{E_{i}} \\
\frac{\mathrm{~d} p_{i}^{\mu}}{\mathrm{d} \tau} & =-\sum_{k=1}^{N} \frac{1}{2 E_{k}} \frac{\partial V_{k}\left(q_{T}\right)}{\partial q_{i_{\mu}}}+\langle\text { coll. }\rangle
\end{aligned}
$$

using the U^{μ} projector for $V\left(q_{T}\right)$. This is basically what is already done by all transport codes.

What do we still have to investigate ?
We must work on a definition of relativistic potential which fulfills the Komar-Todorov condition for few-body dynamics.

Thanks for your attention

