

From the classical equations of motion to Relativistic Quantum Molecular Dynamics

Rudy Marty

January 31° 2013

in collaboration with:

J. Aichelin, E. Bratkovskaya

(arXiv:1210.3476 [hep-ph])

Outline

- Introduction
- 2 A problem of phase space
- 3 Examples for 2/3 particles
- 4 Results
- Conclusion

Outline

- Introduction
- A problem of phase space
- **3** Examples for 2/3 particles
- Results
- Conclusion

Classical Dynamics

Let's begin simply. The classical dynamics for classical particles starts with the **Liouville equation**

$$\frac{\mathrm{d}A}{\mathrm{d}t}(\mathbf{q},\mathbf{p},t) = \frac{\partial A}{\partial t} + \frac{\partial A}{\partial \mathbf{q}}\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial A}{\partial \mathbf{p}}\frac{\partial \mathbf{p}}{\partial t}.$$

Knowing Hamilton's equations we can write a compact form.

Classical Dynamics

Let's begin simply. The classical dynamics for classical particles starts with the **Liouville equation**

$$\frac{\mathrm{d}A}{\mathrm{d}t}(\mathbf{q},\mathbf{p},t) = \frac{\partial A}{\partial t} + \frac{\partial A}{\partial \mathbf{q}}\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial A}{\partial \mathbf{p}}\frac{\partial \mathbf{p}}{\partial t}.$$

Knowing Hamilton's equations we can write a compact form.

$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\partial A}{\partial t} + \{A, \mathcal{H}\}$

with
$$\begin{cases} \frac{\mathrm{d}\mathbf{q}}{\mathrm{d}t} = & \frac{\partial \mathcal{H}}{\partial \mathbf{p}} \\ \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}} \end{cases}$$

Quantum Dynamics

The probabilistic aspect of particles can be considered by the **Wigner density** of a Gaussian wave function

$$f_W(\mathbf{q}_i, \mathbf{p}_i, t) \propto \exp\left(-\frac{(\mathbf{q}_i - \mathbf{q}_i^0(t))^2}{L}\right)$$

 $\cdot \exp\left(-(\mathbf{p}_i - \mathbf{p}_i^0(t))^2L\right)$

Using the time dependent version of the Ritz variational principle we find

$$\frac{\mathrm{d}f_W}{\mathrm{d}t} = \{f_W, \mathcal{H}\}$$

(Aichelin, Phys. Rep., 202:233 (1991))

Toward Relativistic Dynamics

To extend the classical dynamics to the relativistic one, let's try a simple example

$$\mathcal{H} = E = \sqrt{\mathbf{p}^2 + m^2 - V(\mathbf{q})}$$

From this Hamiltonian we find the well-known equations of motion

$$\frac{\mathrm{d}\mathbf{q}}{\mathrm{d}t} = \{\mathbf{q}, \mathcal{H}\} = \frac{\partial \mathcal{H}}{\partial \mathbf{p}} = \frac{\mathbf{p}}{E}$$
$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \{\mathbf{p}, \mathcal{H}\} = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}} = \frac{1}{2E} \frac{\partial V}{\partial \mathbf{q}}$$

Toward Relativistic Dynamics

Then the problems are that :

- the energy E is not Lorentz invariant (energy conservation ?),
- we can't use an absolute time t (causality ?).

That is why people worked around these problems creating the **Quantum Field Theory**. Nevertheless it must be possible to formulate a relativistic dynamics to follow the **trajectories of particles**.

No Interaction Theorem

No Interaction Theorem: we cannot admit any interaction for a system with a speed close to the speed of light.

Assumptions:

- Invariant world-lines (respect of Poincaré's algebra),
- 8N independent degrees of freedom (q^{μ}, p^{μ}) ,
- Space-time dissociation (clusterization).

(Currie, Rev. Mod. Phys. 35 (1963))

No Interaction Theorem

No Interaction Theorem: we cannot admit any interaction for a system with a speed close to the speed of light.

Assumptions:

- Invariant world-lines (respect of Poincaré's algebra),
- 8N independent degrees of freedom (q^{μ}, p^{μ}) ,
- Space-time dissociation (clusterization).

(Currie, Rev. Mod. Phys. 35 (1963))

Outline

- Introduction
- 2 A problem of phase space
- Examples for 2/3 particles
- Results
- Conclusion

Equations of motion

Classical equations of motion

$$\begin{split} \frac{\partial \mathbf{q}_{i}}{\partial t} &= \{\mathbf{q}_{i}, \mathcal{H}\} = \frac{\mathbf{p}_{i}}{E_{i}} \\ \frac{\partial \mathbf{p}_{i}}{\partial t} &= \{\mathbf{p}_{i}, \mathcal{H}\} = \sum_{k} \frac{1}{2E_{k}} \frac{\partial V_{k}}{\partial \mathbf{q}_{i}} + \langle \text{ coll. } \rangle \end{split}$$

Classical dynamics is fine to describe particles with **low energy** in the **classical phase space** (\mathbf{q}, \mathbf{p}) but for relativistic particles we need to go to the **Minkowski phase space** (q^{μ}, p^{μ}) .

Equations of motion

Relativistic equations of motion

$$\begin{split} \frac{\partial q_i^{\mu}}{\partial \tau} &= \{q_i^{\mu}, \mathcal{Z}\} = 2\lambda_i p_i^{\mu} \\ \frac{\partial p_i^{\mu}}{\partial \tau} &= \{p_i^{\mu}, \mathcal{Z}\} = \sum_k \lambda_k \frac{\partial V_k}{\partial q_i^{\mu}} + \langle \text{ coll. } \rangle \end{split}$$

Here we have a new definition of equations of motion which are defined in a **constrained phase space** where λ plays the role of a factor which depends on the **reference frame**.

Relativistic Hamiltonian

 ${\cal Z}$ is not a classical Hamiltonian ! It is just a combination of the constraints:

$$\mathcal{H} = E \quad \rightarrow \quad \mathcal{Z} = \sum_{k} \lambda_{k} \phi_{k} = 0$$

with relativistic factors λ_k , and constraints $\phi_k = 0$. As well as \mathcal{H} , \mathcal{Z} is a quantity related to a **time** evolution parameter : τ . In the classical case:

$$t = q_1^0 = q_2^0 = \dots$$

whereas in the relativistic case:

$$\tau = t \neq q_1^0 \neq q_2^0 \neq \dots$$

Constrained dynamics

We choose 2N constraints ϕ_k to fix the times and the energies of the N particles.

Relativistic constraints:

On-shell mass constraint for energy (conservation):

$$K_i = p_i^{\ \mu} p_{i\,\mu} - m_i^{\ 2} + V_i = 0$$

and for the time fixation (causality):

$$\chi_i = \sum_{j
eq i} q_{ij}^\mu \ U_\mu = 0 \qquad ext{and} \qquad \chi_{\mathcal{N}} = rac{\sum_j q_j^\mu}{\mathcal{N}} \ U_\mu - au = 0 \qquad U_\mu \stackrel{\mathit{ref}}{=} (1, \vec{0})$$

 U_{μ} is the projector for the **reference frame** with time τ .

Constrained dynamics

We choose 2N constraints ϕ_k to fix the times and the energies of the N particles.

Relativistic constraints:

On-shell mass constraint for energy (conservation):

$$\frac{\partial E}{\partial \tau} = 0$$

and for the time fixation (causality):

$$\Delta q^0 = 0$$
 and $\langle q^0
angle - au = 0$

 U_{μ} is the projector for the **reference frame** with time τ .

Constrained dynamics

We still need the calculation of λ_k . The **conservation of constraints** gives us :

$$\begin{split} \frac{\mathrm{d}\phi_i}{\mathrm{d}\tau} &= \frac{\partial\phi_i}{\partial\tau} + \{\phi_i, \mathcal{Z}\} = 0 \\ &= \frac{\partial\phi_i}{\partial\tau} + \sum_{k}^{2N} \lambda_k C_{ik}^{-1} = 0. \end{split}$$

with $C_{ik}^{-1} = \{\phi_i, \phi_k\}$ and finally :

$$\lambda_k = -C_{k2N} \frac{\partial \phi_N}{\partial \tau} = C_{k2N}.$$

A complex problem

We immediately see that λ_k are very important quantities, and therefore the constraints ϕ_k have to be chosen carefully. Indeed, we want to **avoid to invert** this matrix of constraints C_{ik}^{-1} .

Matrix of constraints
$$C_{ik}^{-1} = \{\phi_i, \phi_k\} = \begin{pmatrix} \{K_i, K_k\} & \{K_i, \chi_k\} \\ \{\chi_i, K_k\} & \{\chi_i, \chi_k\} \end{pmatrix}$$

We need some **additional conditions** on the constraints in order to find consistent equations of motion

A complex problem

$$\frac{\mathrm{d}q_{i}^{\mu}}{\mathrm{d}\tau} = \sum_{k=1}^{N} \lambda_{k} \frac{\partial K_{k}}{\partial p_{i\mu}} + \sum_{k=N+1}^{2N} \lambda_{k} \frac{\partial \chi_{k}}{\partial p_{i\mu}}$$

$$\frac{\mathrm{d}p_{i}^{\mu}}{\mathrm{d}\tau} = -\sum_{k=1}^{N} \lambda_{k} \frac{\partial K_{k}}{\partial q_{i\mu}} - \sum_{k=N+1}^{2N} \lambda_{k} \frac{\partial \chi_{k}}{\partial q_{i\mu}}$$

If $\{K_i, K_k\} \neq 0 \rightarrow \lambda_k \neq 0 \ (N+1 < k < 2N)$ and time constraints χ_k appear in the equations of motion.

Komar-Todorov condition

$$\{K_i, K_j\} = 2p_{ij}^{\mu} \frac{\partial V_i}{\partial q_i^{\mu}} + \{V_i, V_j\} \neq 0$$

(Currie, Rev. Mod. Phys. 35 (1963))

Reference frame

Among all these constraints and conditions, there is an important concept to introduce: the choice of **reference frame**. From this choice depends:

- the **projector** $U_{\mu} \stackrel{\text{ref}}{=} (1, \vec{0})$, from which the time τ is correlated,
- and the **potential** *V* from the mass-shell constraint, from which the Komar-Todorov condition can be fulfilled (or not ...).

We can instinctively define two different frames:

- the center of mass system (cms) for 2 particles,
- and the laboratory (lab) where the full system is at rest $(\sum \vec{p} = \vec{0})$.

Reference frame

Consequently we define two different projectors:

$$u_{ij}^{\mu} = \frac{p_{ij}^{\mu}}{\sqrt{p_{ij}^{2}}} \stackrel{\text{cms}}{=} (1, 0, 0, 0)$$
 $U^{\mu} = \frac{P^{\mu}}{\sqrt{P_{ij}^{2}}} \stackrel{\text{lab}}{=} (1, 0, 0, 0)$

where $p_{ij}^{\mu} = p_i^{\mu} + p_j^{\mu}$ and $P^{\mu} = \sum_i p_i^{\mu}$. In the case of a system of 2 particles, these projectors are equal. We can use these projectors in the time constraint, and for the potential V in order to have an **invariant distance** (here for U^{μ}):

$$q_{T_{ij}}^{\mu}=q_{ij}^{\mu}-(q_{ij,\sigma}U^{\sigma})U^{\mu}$$

Outline

- Introduction
- A problem of phase space
- 3 Examples for 2/3 particles
- Results
- Conclusion

Using a potential $V = V(q_T)$, we find that the Komar-Todorov condition is fulfilled for the 2 particles case. Then

$$\frac{\partial q_{i}^{\mu}}{\partial \tau} = 2\lambda_{i} p_{i}^{\mu}$$

$$\frac{\partial p_{i}^{\mu}}{\partial \tau} = \sum_{k} \lambda_{k} \frac{\partial V_{k}}{\partial q_{i}^{\mu}}$$

with $\lambda_k = S_{kN}$ and $S_{ij}^{-1} = {\chi_i, K_j}$. Constraints are:

$$K_1 = p_1^2 - m_1^2 + V = 0 K_2 = p_2^2 - m_2^2 + V = 0$$
 and
$$\chi_1 = q_{12}^{\mu} \ u_{12\mu} = 0 \chi_2 = \frac{1}{2} (q_1 + q_2)^{\mu} u_{12\mu} - \tau = 0$$

Then we calculate the matrix of constraints:

$$S_{ij}^{-1} = \begin{pmatrix} 2 p_1^{\mu} u_{12}^{\mu} & -2 p_2^{\mu} u_{12\mu} \\ p_1^{\mu} u_{12}^{\mu} & p_2^{\mu} u_{12\mu} \end{pmatrix}$$

which we inverse:

$$S_{ij} = \begin{pmatrix} (4 \ p_1^{\mu} u_{12\mu})^{-1} & (2 \ p_1^{\mu} u_{12\mu})^{-1} \\ (4 \ p_2^{\mu} u_{12\mu})^{-1} & (2 \ p_2^{\mu} u_{12\mu})^{-1} \end{pmatrix}$$

and we find for 2 particles:

$$\lambda_1 = (2 p_1^{\mu} u_{12\mu})^{-1} = \frac{1}{2E_1}$$
$$\lambda_2 = (2 p_2^{\mu} u_{12\mu})^{-1} = \frac{1}{2E_2}$$

The equations of motion become:

$$\frac{\partial q_i^{\mu}}{\partial \tau} = \frac{p_i^{\mu}}{E_i}$$

$$\frac{\partial p_i^{\mu}}{\partial \tau} = -\sum_{k=1}^{2} \frac{1}{2E_k} \frac{\partial V}{\partial q_{i\mu}}$$

We use these equations in **6 dimensions**, not in 8 because we have constrained proper times and energies for each particle (4 equations).

The case of 3 particles is the case of N. The third particle always acts on the 2 first particles as an **external field**.

Moreover for 3 particles, the Komar-Todorov condition can't be fulfilled. Both projectors give problems and we should work on a better definition of **relativistic potential**.

Nevertheless, assuming that the KT condition remains fulfilled, we can test the **effect of the projector** on the time constraint. For this example we simply take V=0.

We start with constraints for U^{μ} :

$$K_1 = p_1^2 - m_1^2 = 0$$

 $K_2 = p_2^2 - m_2^2 = 0$
 $K_3 = p_3^2 - m_3^2 = 0$

and

$$\chi_1 = (q_{12} + q_{13})^{\mu} U_{\mu} = 0$$
 $\chi_2 = (q_{21} + q_{23})^{\mu} U_{\mu} = 0$
 $\chi_3 = (q_1 + q_2 + q_3)^{\mu} U_{\mu}/3 - \tau = 0$

In this case the matrix of constraints is

$$S_{ij}^{-1} = \begin{pmatrix} 4 p_1^{\mu} U_{\mu} & -2 p_2^{\mu} U_{\mu} & -2 p_3^{\mu} U_{\mu} \\ -2 p_1^{\mu} U_{\mu} & 4 p_2^{\mu} U_{\mu} & -2 p_3^{\mu} U_{\mu} \\ 2/3 p_1^{\mu} U_{\mu} & 2/3 p_2^{\mu} U_{\mu} & 2/3 p_3^{\mu} U_{\mu} \end{pmatrix}$$

and the inverse:

$$S_{ij} = \begin{pmatrix} (6 \ p_1^{\mu} U_{\mu})^{-1} & 0 & (2 \ p_1^{\mu} U_{\mu})^{-1} \\ 0 & (6 \ p_2^{\mu} U_{\mu})^{-1} & (2 \ p_2^{\mu} U_{\mu})^{-1} \\ -(6 \ p_3^{\mu} U_{\mu})^{-1} & -(6 \ p_3^{\mu} U_{\mu})^{-1} & (2 \ p_3^{\mu} U_{\mu})^{-1} \end{pmatrix}$$

As for the 2 particles case we find:

$$\lambda_k = \frac{1}{2E_k}$$

If we take the other projector u^{μ}_{ij} :

$$\chi_1 = q_{12}^{\mu} u_{12\mu} + q_{13}^{\mu} u_{13\mu} = 0$$

$$\chi_2 = q_{21}^{\mu} u_{21\mu} + q_{23}^{\mu} u_{23\mu} = 0$$

and then:

$$S_{ij}^{-1} = \begin{pmatrix} 4 \ p_1^{\mu} (u_{12} + u_{13})_{\mu} & -2 \ p_2^{\mu} u_{12\mu} & -2 \ p_3^{\mu} u_{13\mu} \\ -2 \ p_1^{\mu} u_{12\mu} & 4 \ p_2^{\mu} (u_{21} + u_{23})_{\mu} & -2 \ p_3^{\mu} u_{23\mu} \\ 2/3 \ p_1^{\mu} U_{\mu} & 2/3 \ p_2^{\mu} U_{\mu} & 2/3 \ p_3^{\mu} U_{\mu} \end{pmatrix}$$

whose inverse is highly non trivial.

Finally if we keep the full system projector U^{μ} we find the same equations of motion than the 2 particles case, which is also the same as "classical" relativistic equations.

The other choice u_{ij}^{μ} , which was chosen in Sorge's paper for the RQMD code gives **unphysical trajectories** with velocities which can be above the speed of light.

(Sorge, Ann. Phys. 192:266 (1989))

Outline

- Introduction
- A problem of phase space
- Examples for 2/3 particles
- 4 Results
- Conclusion

We already know how the case of 2 particles is treated

We already know how the case of 2 particles is treated

but what happens if we add an observing particle?

We already know how the case of 2 particles is treated

but what happens if we add an observing particle?

$$m=10$$
 MeV, $\mathbf{p}=1000$ MeV, $b=0.1$ fm, $L=1$ fm

Heavy Ion Collision

Outline

- Introduction
- A problem of phase space
- **3** Examples for 2/3 particles
- Results
- **5** Conclusion

Conclusion

What is the solution which works for relativistic dynamics?

$$\begin{split} \frac{\mathrm{d}q_{i}^{\mu}}{\mathrm{d}\tau} &= \frac{p_{i}^{\mu}}{E_{i}} \\ \frac{\mathrm{d}p_{i}^{\mu}}{\mathrm{d}\tau} &= -\sum_{k=1}^{N} \frac{1}{2E_{k}} \frac{\partial V_{k}(q_{T})}{\partial q_{i\mu}} + \langle \mathsf{coll.} \rangle \end{split}$$

using the U^{μ} projector for $V(q_T)$. This is basically what is **already done** by all transport codes.

What do we still have to investigate?

We must work on a **definition of relativistic potential** which fulfills the Komar-Todorov condition for few-body dynamics.

Thanks for your attention