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Why Dileptons...?

Dileptons represent a clean and penetrating probe of hot and
dense nuclear matter

Reflect the whole dynamics of a collision

Once produced they do not interact with the surrounding
matter (no strong interactions)

Aim of studies
In-medium modification of vector meson properties
Chiral symmetry restoration
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Ultra-relativistic Quantum Molecular Dynamics

Hadronic non-equilibrium transport
approach

Includes all baryons and mesons with
masses up to 2.2 GeV

Two processes for resonance
production in UrQMD (at low
energies)

Collisions (e.g. ππ → ρ)
Higher resonance decays (e.g.
N∗ → N + ρ)

Resonances either decay after a certain
time or are absorbed in another
collision (e.g. ρ+ N → N∗1520)

No explicit in-medium
modifications!
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Dilepton sources in UrQMD

Dalitz Decays
⇒ π0, η, η′, ω,∆
P → γ + e+e−

V → P +e+e−

Direct Decays
⇒ ρ0, ω, φ

Dalitz decays are decomposed into the corresponding decays
into a virtual photon and the subsequent decay of the photon
via electromagnetic conversion

Form factors for the Dalitz decays are obtained from the
vector-meson dominance model

Assumption: Resonance can continuously emit dileptons over
its whole lifetime (Time Integration Method / “Shining”)
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The Resonance ”Mess”

Which resonances do I have to include?
Which resonance is produced with which probability?
What is the actual branching ratio (e.g. to the ρ)?

→ Many parameters one can ”play” with, as they are not fixed...
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N*/∆* → Nρ Branching Ratios
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Example: Exclusive Resonance Cross-Sections
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Transport Results

p+p Results look quite nice after adjusting resonance
production and branching ratio
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Transport Results

We see an excess in heavy-ion collisions (e.g. Ar+KCl @ 1.76
AGeV) not yet described by the model
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Transport Results

At low energies around Ekin = 1 GeV, a pure transport
description becomes difficult as well
Processes like NN and πN bremsstrahlung become dominant,
especially for p+n interactions (How avoid double counting?)
∆ form factor? Which / how to dertermine?
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The Transport Status Quo

There has been a lot of
improvement, especially concerning
the exact comparison and adjustment
of the many parameters,
cross-sections, branching ratios
(compare GiBUU results by Janus)

However, this is a hard job and one
has to be careful

Still the models show big differences in
some details
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Challenges

Cross-sections not implemented explicitly but intermediate
baryonic resonances are used

Some cross-sections are even unmeasured or unmeasurable
(especially for ρ and ∆ lack of data)

General difficulties of the transport approach at high density:

Off-shell effects
Multi-particle collisions

⇒ How can we avoid these problems?
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Coarse Graining

We take an ensemble of UrQMD events and span a grid of
small space time cells.

For those cells we determine baryon and energy density and
use Eckart’s definition to determine the rest frame properties
→ use EoS to calculate T and µB

For the Rapp Spectral function, we also extract pion and kaon
chemical potential via simple Boltzmann approximation

At SIS, an equation of state for a free hadron gas without
any phase transition is used [D. Zschiesche et al., Phys. Lett. B547, 7 (2002)]

A Chiral EoS is used for the NA60 calculation (including
chiral symmetry restoration and phase transition)
[J. Steinheimer et al., J. Phys. G38 (2011)]
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Dilepton Rates

Lepton pair emission is calculated for each cell of 4-dim. grid,
using thermal equilibrium rates per four-volume and
four-momentum from a bath at T and µB .
The ρ dilepton emission (similar for ω, φ) of each cell is
accordingly calculated using the expression
[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

d8Nρ→ll

d4xd4q
= −

α2m4
ρ

π3g2
ρ

L(M2)

M2
fB(q0; T)ImDρ(M, q; T, µB)

The 4π lepton pair production can be determined from the
electromagnetic spectral function extracted in e+e−

annihilation [Z. Huang, Phys. Lett. B361, 131 (1995)]

d8N4π→ll

d4xd4q
=

4α2

(2π)2
e−q0/T M2

16π3α2
σ(e+e− → 4π)

QGP contribution is evaluated according to Cleymans et al.
[J. Cleymans et al., Phys. Rev. D35, 2153 (1987)]
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Eletsky Spectral Function

In-medium self energies of the ρ

Σρ = Σ0 + Σρπ + ΣρN

were calculated using empirical scattering
amplitudes from resonance dominance
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

For ρN scattering N∗ and ∆∗ resonances
from Manley and Saleski

Additional inclusion of the ∆1232 and the
N1520 subthreshold resonances
⇒ Important, as they significantly
contribute!
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Rapp Spectral Function

Includes finite temperature propagators of
ω, ρ and φ meson
[R. Rapp, J. Wambach, Eur.Phys.J. A6, 415-420 (1999)]

Medium modifications of the ρ propegator

Dρ ∝
1

M2 −m2
ρ − Σρππ − ΣρM − ΣρB

include interactions with pion cloud with
hadrons (Σρππ) and direct scatterings off
mesons and baryons (ΣρM , ΣρB)

Pion cloud modification approximated by
using effective nucleon density
ρeff = ρN + ρN̄ + 0.5(ρB∗+B̄∗)
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Previous Calculations

Previous calculations were done with a fireball model
[H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008)]

The zone of hot and dense matter is described by an
isentropic expanding cylindrical volume

VFB(t) = π

(
r⊥,0 +

1

2
a⊥t

2

)2 (
z0 + vz,0t +

1

2
az t

2

)
Problem: How to choose parameters? Is it a plausible
description or a too simple picture?

⇒ Make calculations with better constrained input...
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UrQMD Energy and Baryon Density as Input...
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The UrQMD input we use gives a more and realistic and
nuanced picture of the collision evolution

Energy and baryon density are by no means homogeneous in
the whole fireball ⇒ Different expansion dynamics might lead
to significantly differing dilepton spectra
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Temperature and Chemical Potential from Coarse Graining
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For a central cell in an Au+Au collision @ 1.25 AGeV we get
very high µB up to 1000 MeV and a maximum temperature of
≈ 100 MeV

For In+In at NA60 energy, the baryon density decreases very
fast after the start of the collision, the temperature reaches a
maximum of 230 MeV
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Au+Au @ 3.5 AGeV

The UrQMD ρ contri-
bution as well as the
coarse-graining results
for the vacuum and
in-medium spectral
functions are shown

In-medium ρ “melts”
away at the pole mass
while it becomes
dominant at lower
masses
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Ar + KCl @ 1.76 AGeV
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Comparison of Eletsky spectral funktion to existing HADES
data shows that the in-medium ρ is dominated by the ∆1232

contribution

Still below the data for intermediate mass region
22 / 32



Introduction Transport Calculations & Their Difficulties Coarse Graining Approach First Results Outlook

Au + Au @ 1.25 AGeV
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Eletsky and Rapp spectral function agree quite well here
The Dalitz-ω from the Rapp spectral function lies on the
UrQMD result, while we don’t see a significant (direct-)ω
peak in the coarse-grained result
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Looking at NA60 - Eletsky Spectral Function
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In-medium ρ contribution
(blue) to dimuon excess
was calculated with the
Eletsky spectral function
for a chiral EoS

4π (orange) and QGP
(green) contribution are
included as well, they are
negligible mostly at low
masses, but dominate
above 1 GeV

⇒ Eletsky spectral function gives a good overall agreement, but
can not describe the low-mass tail of the excess dimuons
completely
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Rapp Spectral Function for NA60
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Calcuation for Rapp spectral function (with ρ, ω and φ
included) and additional QGP and 4π contribution
Fits the data quite well at the ρ pole mass, but is too low in
the low mass tail 25 / 32
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Comparison of EoS
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With the Hadron Gas EoS we get a better agreement at low
masses

The lack of QGP lowers the result at high masses
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Dependence on Baryon Density
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An increase in baryon density (take ρeff = ρB + ρB̄) leads
to a better description
→ Baryons crucial for description of low mass tail
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Time evolution (t<2.5fm)

M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

/d
y)

 [2
0 

M
eV

ch
/d

M
dy

)/(
dN

2 µµ
(d

N

-1010

-910

-810

-710

-610

-5
10 ρ

ω
φ
QGP
4-Pion

Sum

In+In @ 158 AGeV

-EoSχ
t=0-2.5fm

π + QGP + 4φ/ω/ρIn-medium 
 > 0 GeV

T
/dy>=120, pch<dN

The broadening is large at the beginning of the evolution, no
peak at the ρ pole mass
Same order of magnitude for QGP and in-medium ρ
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Time evolution (t<5fm)
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Later the ρ dominates, shape of the spectrum is flatter, peak
at pole mass evolves
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Dileptons at RHIC
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Comparison between pure transport and transport +
in-medium ρ from coarse-graining
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Outlook

Coarse-graining to be done at other energies and compared to
further NA60, CERES, RHIC, LHC data

[Rapp, Hees] [CERES Collab.] [STAR Collab.]

Investigation of diffent equations of state

Further dilepton calculations with hybrid model (transport +
hydro)

Using different input from transport (e.g. from GiBUU)
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Summary

New approach to combine realistic transport caluclations with
in-medium modified spectral functions for vector mesons

Non-equilibrium treatment highly non-trivial ⇒ Use
equilibrium rates for a coarse-grained transport dynamics

First calculations show that we get a good description of the
invariant mass spectrum, the coarse-graining is applicable for
all energy regimes

Explanation of dilepton measurements is still a challenge for
theory ⇒ Need for more experimental input!

Waiting for HADES Au+Au data and for the pion beam!

Further work in progress...!
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