Anisotropic dissipative fluid dynamics – theory and applications in heavy-ion physics

Dirk H. Rischke

Institut für Theoretische Physik

thanks to: Etele Molnár, Harri Niemi based on: PRD 93 (2016) 11, 114025; arXiv:1606.09019 [nucl-th]

Microscopic foundations of ideal fluid dynamics

Boltzmann equation:

$$k^\mu \partial_\mu f_{
m k} = C[f]$$

 \implies 0th and 1st moment of the Boltzmann equation:

$$egin{aligned} \partial_\mu N^\mu &= \mathcal{C} \ \partial_\mu T^{\mu
u} &= \mathcal{C}^
u \end{aligned}$$

- where: $N^{\mu} \equiv \int_{k} k^{\mu} f_{k}$ particle no. 4-current, $T^{\mu\nu} \equiv \int_{k} k^{\mu} k^{\nu} f_{k}$ energy-momentum tensor, $\int_{k} \equiv g \int \frac{d^{3}k}{(2\pi)^{3}k_{0}}$, g: internal quantum no. degeneracy of momentum state
- Note: $C \equiv \int_k C[f] = 0$ and $C^{\nu} \equiv \int_k k^{\nu} C[f] \equiv 0$ for binary elastic collisions (particle no. and 4-momenta are microscopic collisional invariants) \implies macroscopic conservation of particle no., energy, and momentum! Ideal fluid dynamics: fluid is in local thermodynamical equilibrium
- \implies single-particle distribution function:

$$f_{0\mathrm{k}} = \left[\exp\left(-lpha + eta E_{\mathrm{k}u}
ight) + a
ight]^{-1}$$

where: $\beta = 1/T$, T temperature, $\alpha = \beta \mu$, μ chemical potential, $E_{ku} = k^{\mu}u_{\mu}$, with k^{μ} particle 4-momentum, $u^{\mu} = \gamma(1, \vec{v})$ fluid 4-velocity, $u^{\mu}u_{\mu} = 1$ $a = \pm 1,0$ for fermions/bosons, Boltzmann particles

 \implies set $f_{\rm k}\equiv f_{0{\rm k}}$ (Note: $f_{0{\rm k}}$ is not a solution of the Boltzmann equation!)

 \implies equations of motion closed – 5 eqs., 5 unknowns: $lpha,\,eta,\,u^{\mu}$ (3)

Microscopic foundations of dissipative fluid dynamics (I)

general tensor decomposition with respect to u^{μ} in Landau frame: (where u^{μ} is 4-velocity of energy flow) $N^{\mu} = nu^{\mu} + n^{\mu}$

$$egin{aligned} N^\mu &= n u^\mu + n^\mu \ T^{\mu
u} &= \epsilon \, u^\mu u^
u - (p+\Pi) \Delta^{\mu
u} + \pi^{\mu
u} \end{aligned}$$

where: $n\equiv N^{\mu}u_{\mu}$ particle density (1) $\epsilon \equiv T^{\mu
u} u_{\mu} u_{
u}$ energy density (1) pressure in a fictitious local-equilibrium state with given $\epsilon,\,n$ $p(\epsilon, n)$ $\Pi \equiv -\frac{1}{3}T^{\mu\nu}\Delta_{\mu\nu} - p$ bulk viscous pressure (1) $n^{\mu} \equiv \Delta^{\mu
u} N_{
u}$ particle diffusion current (3) $\pi^{\mu
u} \equiv \Delta^{\mu
u}_{\alpha\beta} T^{\alpha\beta}$ shear-stress tensor (5) $\Delta^{\mu
u}\equiv g^{\mu
u}-u^{\mu}u^{
u}$ 3-space projector onto direction orthogonal to u^{μ} with: $\Delta^{\mu
u}_{lphaeta}\equiv rac{1}{2}\left(\Delta^{\mu}_{lpha}\Delta^{
u}_{eta}+\Delta^{\mu}_{eta}\Delta^{
u}_{lpha}
ight)-rac{1}{3}\Delta^{\mu
u}\Delta_{lphaeta}$ \implies equations of motion no longer closed: $\overline{\dot{n}+n\, heta}+\partial\cdot n=0$ $egin{array}{lll} \partial_\mu N^\mu &= 0 \ \partial_\mu T^{\mu
u} &= 0 \end{array} & \iff & egin{array}{lll} \dot{\epsilon} + (\epsilon + p + \Pi)\, heta - \pi^{\mu
u}\,\partial_\mu u_
u = 0 \ (\epsilon + p)\dot{u}^\mu &=
abla^\mu(p + \Pi) - \Pi\dot{u}^\mu - \Delta^{\mu
u}\,\partial^\lambda\pi_{
u\lambda} \end{array}$ where: $\dot{A}\equiv u^{\mu}\partial_{\mu}A$ comoving derivative $heta \equiv \partial_\mu u^\mu$ expansion scalar $\nabla^{\mu} \equiv \Delta^{\mu
u} \partial_{\mu}$ 3-space gradient orthogonal to u^{μ} \implies need 9 additional equations of motion for $\Pi, n^{\mu}, \pi^{\mu\nu}!$

Microscopic foundations of dissipative fluid dynamics (II)

Consider small deviations from local thermodynamical equilibrium:

$$f_{
m k}=f_{0
m k}+\delta f_{
m k} \qquad |\delta f_{
m k}|\ll |f_{0
m k}|$$

 \implies irreducible moments of $\delta f_{\rm k}$:

$$ho_r^{\mu_1 \cdots \mu_\ell} \equiv \int_k E^r_{\mathrm{k} u} \; k^{\langle \mu_1} \cdots k^{\mu_\ell
angle} \; \delta f_\mathrm{k}$$

where: $A^{\langle \mu_1 \cdots \mu_\ell
angle} \equiv \Delta^{\mu_1 \cdots \mu_\ell}_{
u_1 \cdots
u_\ell} A^{
u_1 \cdots
u_\ell} \; ,$

 $\Delta^{\mu_1 \cdots \mu_\ell}_{\nu_1 \cdots \nu_\ell}$ projectors onto subspaces orthogonal to u^{μ} , formed from $\Delta^{\mu \nu}$, symmetric in μ_i, ν_j , traceless,

Note: $-\frac{m^2}{3} \rho_0 \equiv \Pi$, $\rho_0^{\mu} \equiv n^{\mu}$, $\rho_0^{\mu\nu} \equiv \pi^{\mu\nu}$,

matching conditions in Landau frame: $ho_1=
ho_2=
ho_1^\mu=0$

 \implies derive equations of motion for irreducible moments:

$$\dot{
ho}_r^{\langle \mu_1 \cdots \mu_\ell
angle} \equiv \Delta^{\mu_1 \cdots \mu_\ell}_{
u_1 \cdots
u_\ell} \ u^lpha \partial_lpha \int_k E^r_{\mathrm{k} u} \ k^{\langle
u_1} \cdots k^{
u_\ell
angle} \delta f_{\mathrm{k}}$$

 \implies use Boltzmann equation:

$$\delta \dot{f_{
m k}} = - \dot{f_{0
m k}} - rac{1}{E_{
m ku}} \left\{ k^{\mu}
abla_{\mu} \left(f_{0
m k} + \delta f_{
m k}
ight) - oldsymbol{C}[oldsymbol{f}]
ight\}$$

 \implies system of infinitely many coupled equations for irreducible moments $\rho_r^{\mu_1 \cdots \mu_\ell}$, completely equivalent to Boltzmann equation \implies truncation required!

Microscopic foundations of dissipative fluid dynamics (III)

systematic power counting:

 $egin{aligned} & \mathrm{Kn} \equiv rac{\ell_{\mathrm{mfp}}}{L_{fluid}} \sim \ell_{\mathrm{mfp}} \, \partial_{\mu} & \mathrm{Knudsen \ number} \ & \mathrm{Re}^{-1} \equiv rac{\Pi}{p} \sim rac{n^{\mu}}{n} \sim rac{\pi^{\mu
u}}{p} & \mathrm{inverse \ Reynolds \ number} \end{aligned}$

with pressure p, particle density n

$$\implies ext{ for } \ell \geq 3:
ho_r^{\mu_1 \cdots \mu_\ell} \sim O(\operatorname{Kn}^2, \operatorname{Kn}\operatorname{Re}^{-1}) \implies ext{ will be neglected (work to } O_2)$$

 $\implies \text{ linearize collision integral: } \int_k E_{\mathrm{k}u}^{r-1} \, k^{\langle \mu_1} \cdots k^{\mu_\ell \rangle} \, C[f] = - \sum_{n=0}^{N_\ell} \mathcal{A}_{nn}^{(\ell)} \, \rho_n^{\mu_1 \cdots \mu_\ell} + O(\delta f_{\mathrm{k}}^2)$

 $\implies \text{linearized equations of motion} \\ \text{for irreducible moments:}$

$$\begin{aligned} \dot{\vec{\rho}} + \mathcal{A}^{(0)} \vec{\rho} &= \vec{\alpha}^{(0)} \theta + O(\rho \times \mathrm{Kn}) \\ \dot{\vec{\rho}}^{\langle \mu \rangle} + \mathcal{A}^{(1)} \vec{\rho}^{\,\mu} &= \vec{\alpha}^{(1)} \nabla^{\mu} \alpha + O(\rho \times \mathrm{Kn}) \\ \dot{\vec{\rho}}^{\langle \mu \nu \rangle} + \mathcal{A}^{(2)} \vec{\rho}^{\,\mu \nu} &= 2 \vec{\alpha}^{(2)} \sigma^{\mu \nu} + O(\rho \times \mathrm{Kn}) \end{aligned}$$

 $\implies \text{diagonalize collision matrix:} \quad (\Omega^{-1})^{(\ell)} \mathcal{A}^{(\ell)} \Omega^{(\ell)} = \text{diag}(\chi_0^{(\ell)}, \dots, \chi_i^{(\ell)}, \dots) \equiv \chi^{(\ell)}$

 \implies equations of motion for eigenmodes $\vec{X}^{\mu_1\cdots\mu_\ell} = (\Omega^{-1})^{(\ell)} \vec{\rho}^{\mu_1\cdots\mu_\ell}$ decouple:

$$\dot{ec{X}} + \boldsymbol{\chi}^{(0)} ec{X} = ec{eta}^{(0)} heta + O(X imes \mathrm{Kn})$$

 $\dot{ec{X}}^{\langle \mu
angle} + \boldsymbol{\chi}^{(1)} ec{X}^{\mu} = ec{eta}^{(1)}
abla^{\mu} lpha + O(X imes \mathrm{Kn})$
 $\dot{ec{X}}^{\langle \mu
u
angle} + \boldsymbol{\chi}^{(2)} ec{X}^{\mu
u} = ec{eta}^{(2)} \sigma^{\mu
u} + O(X imes \mathrm{Kn})$

where $ec{eta}^{(\ell)} = \left(\Omega^{-1}
ight)^{(\ell)}ec{lpha}^{(\ell)}$

where $\sigma^{\mu
u} \equiv \nabla^{\langle\mu} u^{\nu\rangle}$

Microscopic foundations of dissipative fluid dynamics (IV)

 $\implies \text{slowest eigenmodes } (\text{w/o r.o.g. } X_0, X_0^{\mu}, X_0^{\mu\nu}) \text{ remain dynamical,} \\ \text{faster ones } (i \neq 0) \text{ are replaced} \\ \text{by their asymptotic values:} \qquad X_i \simeq \frac{\beta_i^{(0)}}{\chi_i^{(0)}} \theta , \ X_i^{\mu} \simeq \frac{\beta_i^{(1)}}{\chi_i^{(1)}} \nabla^{\mu} \alpha , \ X_i^{\mu\nu} \simeq \frac{\beta_i^{(2)}}{\chi_i^{(2)}} \sigma^{\mu\nu} \\ \text{Note: systematic improvement possible by making faster eigenmodes dynamical} \\ \text{G.S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu, DHR, C. Greiner, PRD 89 (2014) 7, 074005} \\ \end{cases}$

$$\implies \text{ since } \vec{\rho}^{\,\mu_1\cdots\mu_\ell} = \Omega^{(\ell)} \, \vec{X}^{\mu_1\cdots\mu_\ell} \colon \quad \rho_i \simeq \Omega_{i0}^{(0)} X_0 + \sum_{j=3}^{N_0} \Omega_{ij}^{(0)} \, \frac{\beta_j^{(0)}}{\chi_j^{(0)}} \, \theta$$
$$\rho_i^{\mu} \simeq \Omega_{i0}^{(1)} X_0^{\mu} + \sum_{j=2}^{N_1} \Omega_{ij}^{(1)} \, \frac{\beta_j^{(1)}}{\chi_j^{(1)}} \, \nabla^{\mu} \alpha$$
$$\rho_i^{\mu\nu} \simeq \Omega_{i0}^{(2)} X_0^{\mu\nu} + \sum_{j=1}^{N_2} \Omega_{ij}^{(2)} \, \frac{\beta_i^{(2)}}{\chi_j^{(2)}} \, \sigma^{\mu\nu}$$

 $\implies \text{ for } i = 0 \text{: express } X_0, X_0^{\mu}, X_0^{\mu\nu} \text{ in terms of } \Pi, n^{\mu}, \pi^{\mu\nu} \text{ as well as } \theta, \nabla^{\mu}\alpha, \sigma^{\mu\nu} \\ \implies \text{ reinsert back, express } \rho_i, \rho_i^{\mu}, \rho_i^{\mu\nu} \text{ in terms of } \Pi, n^{\mu}, \pi^{\mu\nu} \text{ as well as } \theta, \nabla^{\mu}\alpha, \sigma^{\mu\nu} \text{:}$

$$\begin{split} \frac{\frac{m^2}{3}\rho_i \simeq -\Omega_{i0}^{(0)}\Pi + \left(\zeta_i - \Omega_{i0}^{(0)}\zeta_0\right)\theta}{\rho_i^{\mu} \simeq \Omega_{i0}^{(1)}n^{\mu} + \left(\kappa_i - \Omega_{i0}^{(1)}\kappa_0\right)\nabla^{\mu}\alpha}{\rho_i^{\mu\nu} \simeq \Omega_{i0}^{(2)}\pi^{\mu\nu} + 2\left(\eta_i - \Omega_{i0}^{(2)}\eta_0\right)\sigma^{\mu\nu}} \end{split}$$

where $\zeta_i = \frac{m^2}{3}\sum_{r=0,\neq 1,2}^{N_0} \tau_{ir}^{(0)}\alpha_r^{(0)}, \ \kappa_i = \sum_{r=0,\neq 1}^{N_1} \tau_{ir}^{(1)}\alpha_r^{(1)}, \ \eta_i = \sum_{r=0}^{N_2} \tau_{ir}^{(2)}\alpha_r^{(2)}, \ \tau^{(\ell)} = \Omega^{(\ell)}(\chi^{-1})^{(\ell)}(\Omega^{-1})^{(\ell)}$

Microscopic foundations of dissipative fluid dynamics (V)

 \implies equations of motion for $\Pi, \, n^{\mu}, \, \pi^{\mu
u}$:

$$egin{aligned} & au_\Pi \, \dot{\Pi} \, + \, \Pi \, = \, -\zeta_0 heta \, + \, \mathcal{K} \, + \, \mathcal{J} \, + \, \mathcal{R} \ & au_n \, \dot{n}^{<\mu>} \, + \, n^\mu \, = \, \kappa_0
abla^\mu lpha \, + \, \mathcal{K}^\mu \, + \, \mathcal{J}^\mu \, + \, \mathcal{R}^\mu \ & au_\pi \, \dot{\pi}^{<\mu
u>} \, + \, \pi^{\mu
u} \, = \, 2 \, \eta_0 \, \sigma^{\mu
u} \, + \, \mathcal{K}^{\mu
u} \, + \, \mathcal{J}^{\mu
u} \, + \, \mathcal{R}^{\mu
u} \end{aligned}$$

$$\begin{split} &\mathsf{Kn}^{2}: \qquad \mathbf{\mathcal{K}} = \bar{\zeta}_{1} \,\omega_{\mu\nu} \,\omega^{\mu\nu} + \bar{\zeta}_{2} \,\sigma^{\mu\nu} \,\sigma_{\mu\nu} + \bar{\zeta}_{3} \,\theta^{2} \,+ \bar{\zeta}_{4} \,(\nabla\alpha)^{2} + \bar{\zeta}_{5} \,(\nabla p)^{2} + \bar{\zeta}_{6} \,\nabla_{\mu} \alpha \nabla^{\mu} p + \bar{\zeta}_{7} \,\nabla^{2} \alpha + \bar{\zeta}_{8} \,\nabla^{2} p \;, \\ & \mathbf{\mathcal{K}}^{\mu} = \bar{\kappa}_{1} \,\sigma^{\mu\nu} \,\nabla_{\nu} \alpha + \bar{\kappa}_{2} \,\sigma^{\mu\nu} \,\nabla_{\nu} p + \bar{\kappa}_{3} \,\theta \,\nabla^{\mu} \alpha + \bar{\kappa}_{4} \,\theta \,\nabla^{\mu} p + \bar{\kappa}_{5} \,\omega^{\mu\nu} \,\nabla_{\nu} \alpha + \bar{\kappa}_{6} \,\Delta^{\mu\lambda} \partial^{\nu} \sigma_{\lambda\nu} + \bar{\kappa}_{7} \,\nabla^{\mu} \theta \;, \\ & \mathbf{\mathcal{K}}^{\mu\nu} = \bar{\eta}_{1} \,\omega_{\lambda}^{\langle\mu} \,\omega^{\nu\rangle\lambda} + \bar{\eta}_{2} \,\theta \,\sigma^{\mu\nu} + \bar{\eta}_{3} \,\sigma_{\lambda}^{\langle\mu} \,\sigma^{\nu\rangle\lambda} + \bar{\eta}_{4} \,\sigma_{\lambda}^{\langle\mu} \,\omega^{\nu\rangle\lambda} + \bar{\eta}_{5} \,\nabla^{\langle\mu} \alpha \,\nabla^{\nu} \alpha \\ & + \bar{\eta}_{6} \,\nabla^{\langle\mu} p \,\nabla^{\nu\rangle} p + \bar{\eta}_{7} \,\nabla^{\langle\mu} \alpha \,\nabla^{\nu} p + \bar{\eta}_{8} \,\nabla^{\langle\mu} \nabla^{\nu\rangle \alpha} + \bar{\eta}_{9} \,\nabla^{\langle\mu} \nabla^{\nu\rangle} p \\ \mathrm{Re}^{-1} \mathrm{Kn}: \quad \mathcal{J} = -\ell_{\Pi n} \,\nabla_{\mu} n^{\mu} - \tau_{\Pi n} \,n^{\mu} \nabla_{\mu} p - \delta_{\Pi\Pi} \,\theta \,\Pi - \lambda_{\Pi n} \,n^{\mu} \nabla_{\mu} \alpha + \lambda_{\Pi \pi} \,\pi^{\mu\nu} \,\sigma_{\mu\nu} \\ & \mathcal{J}^{\mu} = \tau_{n} \,\omega^{\mu\nu} \,n_{\nu} - \delta_{nn} \,\theta \,n^{\mu} - \ell_{n\Pi} \,\nabla^{\mu} \Pi + \ell_{n\pi} \Delta^{\mu\nu} \,\nabla^{\lambda} \pi_{\nu\lambda} + \tau_{n\Pi} \,\Pi \,\nabla^{\mu} p - \tau_{n\pi} \,\pi^{\mu\nu} \,\nabla_{\nu} p - \lambda_{nn} \,\sigma^{\mu\nu} \,n_{\nu} \\ & + \lambda_{n\Pi} \,\Pi \,\nabla^{\mu} \alpha - \lambda_{n\pi} \,\pi^{\mu\nu} \,\nabla_{\nu} \alpha \\ & \mathcal{J}^{\mu\nu} = 2 \,\tau_{\pi} \,\pi_{\lambda}^{\langle\mu} \,\omega^{\nu\rangle\lambda} - \delta_{\pi\pi} \,\theta \,\pi^{\mu\nu} - \tau_{\pi\pi} \,\pi_{\lambda}^{\langle\mu} \,\sigma^{\nu\rangle\lambda} + \lambda_{\pi\Pi} \,\Pi \,\sigma^{\mu\nu} - \tau_{\pi n} \,n^{\langle\mu} \,\nabla^{\nu\rangle} p + \ell_{\pi n} \,\nabla^{\langle\mu} n^{\nu\rangle} \\ & + \lambda_{\pi n} \,n^{\langle\mu} \nabla^{\nu\rangle} \alpha \qquad \text{where} \,\omega^{\mu\nu} \equiv (\nabla^{\mu} u^{\nu} - \nabla^{\nu} u^{\mu}) / 2 \\ \mathrm{Re}^{-2}: \quad \mathcal{R} = \varphi_{1} \,\Pi^{2} + \varphi_{2} \,n_{\mu} n^{\mu} + \varphi_{3} \,\pi^{\mu\nu} \pi_{\mu\nu} \\ \mathcal{R}^{\mu} = \varphi_{4} \,\pi^{\mu\nu} \,n_{\nu} + \varphi_{5} \,\Pi \,n^{\mu} \qquad \mathrm{PRD} \,85 \,(2012) \,114047, \\ \mathcal{R}^{\mu\nu} = \varphi_{6} \,\Pi \,\pi^{\mu\nu} + \varphi_{7} \,\pi_{\lambda}^{\langle\mu} \,\pi^{\nu\rangle\lambda} + \varphi_{8} \,n^{\langle\mu} \,n^{\nu\rangle} \qquad \mathrm{Erratum} \,\mathrm{PRD} \,91 \,(2015) \,3, \,039902 \end{aligned}$$

Microscopic foundations of dissipative fluid dynamics (VI)

Single-particle distribution function:

$$f_{
m k}=f_{0
m k}\left[1+(1-af_{0
m k})\sum\limits_{\ell=0}^{\infty}\sum\limits_{n=0}^{N_\ell}\mathcal{H}_{{
m k}n}^{(\ell)}\,
ho_n^{\mu_1\cdots\mu_\ell}\,k_{\langle\mu_1}\cdots k_{\mu_\ell
angle}
ight]$$

 $\begin{array}{lll} \text{where} \quad \mathcal{H}_{\text{kn}}^{(\ell)} = \frac{W^{(\ell)}}{\ell!} \sum_{m=n}^{N_{\ell}} a_{mn}^{(\ell)} P_{\text{km}}^{(\ell)} \,, \, \text{with} \quad P_{\text{kn}}^{(\ell)} = \sum_{r=0}^{n} a_{nr}^{(\ell)} E_{\text{ku}}^{r} \quad \text{polynomials of order } n \text{ in } E_{\text{ku}} \,, \\ \text{with coefficients } a_{nr}^{(\ell)} \text{ determined such that} \quad & \frac{W^{(\ell)}}{(2\ell+1)!!} \int_{k} \left(\Delta^{\alpha\beta} k_{\alpha} k_{\beta} \right)^{\ell} P_{\text{kn}}^{(\ell)} P_{\text{km}}^{(\ell)} f_{0\text{k}} \left(1 - a f_{0\text{k}} \right) = \delta_{mn} \\ \implies & \text{explicitly for } \ell \leq 2 : \\ & \delta f_{\text{k}} = f_{0\text{k}} \left(1 - a f_{0\text{k}} \right) \left(-\frac{3}{m^{2}} \left\{ \mathcal{H}_{\text{k0}}^{(0)} \Pi + \sum_{n=3}^{N_{0}} \mathcal{H}_{\text{kn}}^{(0)} \left[-\Omega_{n0}^{(0)} \Pi + \left(\zeta_{n} - \Omega_{n0}^{(0)} \zeta_{0} \right) \theta \right] \right\} \\ & + \mathcal{H}_{\text{k0}}^{(1)} n^{\mu} k_{\mu} + \sum_{n=2}^{N_{1}} \mathcal{H}_{\text{kn}}^{(1)} \left[\Omega_{n0}^{(1)} n^{\mu} + \left(\kappa_{n} - \Omega_{n0}^{(1)} \kappa_{0} \right) \nabla^{\mu} \alpha \right] k_{\mu} \\ & + \mathcal{H}_{\text{k0}}^{(2)} \pi^{\mu\nu} k_{\mu} k_{\nu} + \sum_{n=1}^{N_{2}} \mathcal{H}_{\text{kn}}^{(2)} \left[\Omega_{n0}^{(2)} \pi^{\mu\nu} + 2 \left(\eta_{n} - \Omega_{n0}^{(2)} \eta_{0} \right) \sigma^{\mu\nu} \right] k_{\mu} k_{\nu} \right) \\ & \mathcal{H}_{\text{k0}}^{(2)} = \frac{1}{2 J_{42}} \left(1 + \sum_{m=1}^{N_{2}} \sum_{r=0}^{m} a_{m0}^{(2)} a_{mr}^{(2)} E_{\text{ku}}^{r} \right) \end{array}$

usually: $\delta f_{
m k} = f_{0
m k} \left(1-af_{0
m k}
ight) rac{1}{2T^2(\epsilon+p)} \pi^{\mu
u} k_\mu k_
u$ with energy density ϵ

Anisotropic fluid dynamics

Initial gradients in heavy-ion collisions are large

- \implies deviations from local thermodynamical equilibrium are large!
- \implies may invalidate dissipative fluid dynamics

Idea: "resum" dissipative corrections into single-particle distribution function,

e.g.: W. Florkowski, PLB 668 (2008) 32; M. Martinez, M. Strickland, PRC 81 (2010) 024906

$$\hat{f}_{0\mathrm{k}} = \left[\exp\left(- \hat{lpha} + \hat{eta}_{u} \sqrt{E_{\mathrm{k}u}^2 + oldsymbol{\xi} \, E_{\mathrm{k}l}^2}
ight) + a
ight]^{-1}$$

 ${
m where} \quad E_{{
m k}l}\equiv -l^\mu k_\mu \ , \ {
m with} \ l^\mu \ {
m direction} \ {
m of} \ {
m anisotropy}, \ l^\mu l_\mu = -1 \ , \ \ l^\mu u_\mu = 0 \ ,$ usually: $l^{\mu} = \gamma_z(v_z, 0, 0, 1) \,, \; \gamma_z = (1 - v_z^2)^{-1/2} \,,$ $\boldsymbol{\xi}$ anisotropy parameter \Rightarrow in LR frame of fluid: $\xi < 0$ $\boldsymbol{\xi} > 0$ 5 conservation equations determine $\hat{\alpha}, \, \hat{\beta}_u, \, u^{\mu} \, (3)$

need additional equation to determine $\xi!$

Microscopic foundations of anisotropic dissipative fluid dynamics (I)

$$f_{
m k}=f_{0
m k}+\delta f_{
m k}\equiv \hat{f}_{0
m k}+\delta \hat{f}_{
m k}$$

If $\delta f_{
m k} \sim f_{0
m k}$, choose $\hat{f}_{0
m k}$ such that $|\delta \hat{f}_{
m k}| \ll |\hat{f}_{0
m k}|$

 \implies improved convergence properties of expansion around $f_{0k}!$

- D. Bazow, U.W. Heinz, M. Strickland, PRC 90 (2014) 5, 054910
- E. Molnár, H. Niemi, DHR, PRD 93 (2016) 11, 114025
- \implies irreducible moments of $\delta \hat{f}_k$:

$$\hat{
ho}_{rs}^{\mu_1\cdots\mu_\ell}\equiv\int_k E^r_{\mathrm{k}u}\; oldsymbol{E}^s_{\mathrm{k}oldsymbol{l}}\; k^{\{\mu_1}\cdots k^{\mu_\ell\}}\; \delta \hat{f}_{\mathrm{k}}$$

where: $A^{\{\mu_1\cdots\mu_\ell\}} \equiv \Xi^{\mu_1\cdots\mu_\ell}_{\nu_1\cdots\nu_\ell} A^{\nu_1\cdots\nu_\ell}$, $\Xi^{\mu_1\cdots\mu_\ell}_{\nu_1\cdots\nu_\ell}$ projectors onto subspaces orthogonal to both u^{μ} and l^{μ} , formed from $\Xi^{\mu\nu}$, symmetric in μ_i , ν_j , traceless,

 $\Xi^{\mu\nu} \equiv g^{\mu\nu} - u^{\mu}u^{\nu} + l^{\mu}l^{\nu}$ 2-space projector onto direction orthogonal to both u^{μ} and l^{μ} \implies derive equations of motion for irreducible moments:

$$\dot{\hat{
ho}}_{rs}^{\{\mu_1\cdots\mu_\ell\}}\equiv \Xi^{\mu_1\cdots\mu_\ell}_{
u_1\cdots
u_\ell}\; u^lpha\partial_lpha\int_k E^r_{\mathrm{k}u}\; E^s_{\mathrm{k}l}\; k^{\{
u_1}\cdots k^{
u_\ell\}}\delta \hat{f}_{\mathrm{k}}$$

 \implies use Boltzmann equation:

$$\dot{\delta f_{ ext{k}}} = -\dot{\hat{f}}_{0 ext{k}} - rac{1}{E_{ ext{k}u}} ig\{ -E_{ ext{k}l} D_l \left(\hat{f}_{0 ext{k}} + \delta \hat{f}_{ ext{k}}
ight) + k^\mu ilde{
abla}_\mu \left(\hat{f}_{0 ext{k}} + \delta \hat{f}_{ ext{k}}
ight) - oldsymbol{C}[oldsymbol{f}] ig\}$$

where: $D_l \equiv -l^\mu \partial_\mu \;,\;\; ilde{
abla}^\mu \equiv \Xi^{\mu
u} \partial_
u$

Microscopic foundations of anisotropic dissipative fluid dynamics (II)

Truncation: so far, no eigenmode analysis, only 14-moment approximation

Define

$$\hat{I}_{nrq}(\hat{lpha},\hat{eta}_u,oldsymbol{\xi})\equivrac{1}{(2q)!!}\int_k E_{\mathrm{k}u}^n\;E_{\mathrm{k}l}^r\;(-\Xi^{lphaeta}k_lpha k_eta)^q\;\hat{f}_{0\mathrm{k}}$$

 \implies the 14 moments are: $n\equiv \hat{n}=\hat{I}_{100} \Longleftrightarrow \hat{
ho}_{10}=0 ~~(1^{
m st} {
m~Landau~matching~cond.})$ particle density $n_l \equiv \hat{n}_l + \hat{
ho}_{01} = \hat{I}_{110} + \hat{
ho}_{01}$ particle diffusion in l^{μ} -direction $e\equiv \hat{e}=\hat{I}_{200} \Longleftrightarrow \hat{
ho}_{20}=0 ~~(2^{
m nd} {
m~Landau~matching~cond.})$ energy density $M \equiv \hat{M} + \hat{\rho}_{11} = \hat{I}_{210} + \hat{\rho}_{11}$ heat flow in l^{μ} -direction $P_l \equiv \hat{P}_l = \hat{I}_{220} \iff \hat{
ho}_{02} = 0 \; (3^{
m rd} \; {
m Landau} \; {
m matching \; cond.})$ pressure in l^{μ} -direction $P_{\perp} \equiv \hat{P}_{\perp} + rac{3}{2}\Pi = \hat{I}_{201} - rac{m_0^2}{2}\hat{
ho}_{00}$ transverse pressure particle diffusion in transverse direction $V^{\mu}_{\perp} \equiv \hat{\rho}^{\mu}_{nn}$ $W^{\mu}_{\perp\mu}\equiv\hat{
ho}^{\mu}_{10}$ heat flow in transverse direction $W^{\mu}_{\perp l} \equiv \hat{\rho}^{\mu}_{01}$ shear-stress current in l^{μ} -direction shear-stress tensor in transverse direction $\pi^{\mu\nu}_{\perp} \equiv \hat{\rho}^{\mu\nu}_{00}$ $\implies ext{Landau frame:} \ M = W^{\mu}_{\perp u} = 0 \ \iff \hat{
ho}_{11} = -\hat{M} \ , \ \hat{
ho}^{\mu}_{10} = 0$

 $\implies \text{ eliminate all other moments by linear relation:} \\ \hat{\rho}_{ij}^{\mu_1\cdots\mu_\ell} = (-1)^\ell \ell! \sum_{n=0}^{N_\ell} \sum_{m=0}^{N_\ell-n} \hat{\rho}_{nm}^{\mu_1\cdots\mu_\ell} \gamma_{injm}^{(\ell)} \quad \text{where } \gamma_{injm}^{(\ell)} \text{ function of } \hat{\alpha}, \, \hat{\beta}_u, \, \boldsymbol{\xi} \\ \text{ Note: for } \hat{f}_{0k}(\boldsymbol{\xi}) : \quad \hat{n}_l = \hat{M} \equiv 0! \end{aligned}$

Microscopic foundations of anisotropic dissipative fluid dynamics (III)

\implies 5 conservation equations:

$$\begin{split} 0 &= \dot{\hat{n}} + \hat{n} \left(l_{\mu} D_{l} u^{\mu} + \tilde{\theta} \right) - D_{l} n_{l} + n_{l} \left(\tilde{\theta}_{l} - l_{\mu} \dot{u}^{\mu} \right) - V_{\perp}^{\mu} \left(\dot{u}_{\mu} + D_{l} l_{\mu} \right) + \tilde{\nabla}_{\mu} V_{\perp}^{\mu} \\ 0 &= \dot{\hat{e}} + \left(\hat{e} + \hat{P}_{l} \right) l_{\mu} D_{l} u^{\mu} + \left(\hat{e} + \hat{P}_{\perp} + \frac{3}{2} \Pi \right) \tilde{\theta} + W_{\perp l}^{\mu} \left(D_{l} u_{\mu} - l_{\nu} \tilde{\nabla}_{\mu} u^{\nu} \right) - \pi_{\perp}^{\mu \nu} \tilde{\sigma}_{\mu \nu} \\ 0 &= \left(\hat{e} + \hat{P}_{l} \right) l_{\mu} \dot{u}^{\mu} + D_{l} \hat{P}_{l} + \left(\hat{P}_{\perp} - \hat{P}_{l} + \frac{3}{2} \Pi \right) \tilde{\theta}_{l} + W_{\perp l}^{\mu} \left(\dot{u}_{\mu} + 2 D_{l} l_{\mu} + l_{\nu} \tilde{\nabla}_{\mu} u^{\nu} \right) - \tilde{\nabla}_{\mu} W_{\perp l}^{\mu} - \pi_{\perp}^{\mu \nu} \tilde{\sigma}_{l, \mu \nu} \\ 0 &= \left(\hat{e} + \hat{P}_{\perp} + \frac{3}{2} \Pi \right) \Xi_{\nu}^{\alpha} \dot{u}^{\nu} - \tilde{\nabla}^{\alpha} \left(\hat{P}_{\perp} + \frac{3}{2} \Pi \right) + \left(\hat{P}_{\perp} - \hat{P}_{l} + \frac{3}{2} \Pi \right) \Xi_{\nu}^{\alpha} D_{l} l^{\nu} - \Xi_{\nu}^{\alpha} D_{l} W_{\perp l}^{\nu} + W_{\perp l}^{\alpha} \left(\frac{3}{2} \tilde{\theta}_{l} - l_{\mu} \dot{u}^{\mu} \right) \\ + W_{\perp l, \nu} \left(\tilde{\sigma}_{l}^{\alpha \nu} - \tilde{\omega}_{l}^{\alpha \nu} \right) - \pi_{\perp}^{\mu \alpha} \left(\dot{u}_{\mu} + D_{l} l_{\mu} \right) + \Xi_{\nu}^{\alpha} \tilde{\nabla}_{\mu} \pi_{\perp}^{\mu \nu} \end{split}$$

where $ilde{ heta} \equiv ilde{
abla}_{\mu} u^{\mu} \,, \; ilde{ heta}_{l} \equiv ilde{
abla}_{\mu} l^{\mu} \,, \; ilde{\sigma}^{\mu
u} \equiv \partial^{\{\mu} u^{
u\}} \,, \; ilde{\sigma}^{\mu
u}_{l} \equiv \partial^{\{\mu} l^{
u\}} \,, \; ilde{\omega}^{\mu
u}_{l} \equiv rac{1}{2} \Xi^{\mu\alpha} \Xi^{
u\beta} (\partial_{\alpha} l_{\beta} - \partial_{\beta} l_{\alpha})$

 $+~9~{
m relaxation~equations~for}~\Pi\,,~n_l\,,~\hat{P}_l\,,~V_{\perp}^{\mu}\,,~W_{\perp l}^{\mu}\,,~ ilde{\pi}^{\mu
u}$

for details, see E. Molnár, H. Niemi, DHR, PRD 93 (2016) 11, 114025

Application to heavy-ion collisions (I)

Bjorken flow:

J.D. Bjorken, PRD 27 (1983) 140

"Pure" anisotropic fluid dynamics $(\delta \hat{f}_k \equiv 0 \iff \text{all } \hat{\rho}_{rs}^{\mu_1 \cdots \mu_\ell} \equiv 0)$ eqs. of motion for irreducible moments become eqs. of motion for moments \hat{I}_{nrq} : \hat{I}_{nrq} :

$$\left[\partial_{ au} \hat{I}_{i+j,j,0} + rac{(j+1)I_{i+j,j,0} + (i-1)I_{i+j,j+2,0}}{ au} = \hat{\mathcal{C}}_{i-1,j}
ight]$$

$$\Rightarrow \begin{array}{l} \text{conservation equations:} \\ i = 1, j = 0: \quad \partial_{\tau} \hat{n} + \frac{\hat{n}}{\tau} = 0 \\ i = 2, j = 0: \quad \partial_{\tau} \hat{\epsilon} + \frac{\hat{\epsilon} + \hat{P}_l}{\tau} = 0 \\ \Rightarrow \begin{array}{l} 2 \text{ eqs., 3 unknowns: } \hat{\alpha}, \ \hat{\beta}_u, \ \boldsymbol{\xi} \\ \Rightarrow \begin{array}{l} \text{need add. eq. to close eqs. of motion!} \end{array}$$

- \implies in principle, eq. of motion for any moment $\hat{I}_{i+j,j,0}$ suffices
- ⇒ but which one is the best choice?
 E. Molnár, H. Niemi, DHR, arXiv:1606.09019 [nucl-th]

Application to heavy-ion collisions (II)

assume relaxation-time approximation for collision term: $\hat{\mathcal{C}}_{i-1,j} \equiv -\frac{\hat{I}_{i+j,j,0} - I_{i+j,j,0}}{\tau_{\text{eq}}}$ where $I_{i+j,j,0} = \lim_{\boldsymbol{\xi} \to 0} \hat{I}_{i+j,j,0}$

 $\Rightarrow \text{ study the following choices:}$ $(1) \ i = 0, \ j = 2: \ \partial_{\tau} \hat{P}_{l} + \frac{3\hat{P}_{l} - \hat{I}_{240}}{\tau} = -\frac{\hat{P}_{l} - I_{220}}{\tau_{eq}}$ $(2) \ i = 3, \ j = 0: \ \partial_{\tau} \hat{I}_{300} + \frac{\hat{I}_{300} - 2\hat{I}_{320}}{\tau} = -\frac{\hat{I}_{300} - I_{300}}{\tau_{eq}}$ $(3) \ i = 1, \ j = 2: \ \partial_{\tau} \hat{I}_{320} + \frac{3\hat{I}_{320}}{\tau} = -\frac{\hat{I}_{320} - I_{320}}{\tau_{eq}}$ $(4) \ i = 0, \ j = 0: \ \partial_{\tau} \hat{I}_{000} + \frac{\hat{I}_{000} - \hat{I}_{020}}{\tau} = -\frac{\hat{I}_{000} - I_{000}}{\tau_{eq}}$ $(5) \ i = 0, \ j = 4: \ \partial_{\tau} \hat{I}_{440} + \frac{5\hat{I}_{440} - \hat{I}_{460}}{\tau} = -\frac{\hat{I}_{440} - I_{440}}{\tau_{eq}}$ $(6) \ i = 1, \ j = 4: \ \partial_{\tau} \hat{I}_{540} + \frac{5\hat{I}_{540}}{\tau} = -\frac{\hat{I}_{540} - I_{540}}{\tau_{eq}}$

(7) in case particle no. is not conserved: i = 1, j = 0: $\partial_{\tau} \hat{n} + \frac{\hat{n}}{\tau} = -\frac{\hat{n} - I_{100}}{\tau_{eq}}$

Note: different moments probe \hat{f}_{0k} in different regions of momentum space!

particle no. conservation:

no particle no. conservation:

Conclusions and Outlook

1. Derivation of equations of motion of anisotropic dissipative fluid dynamics from Boltzmann equation

E. Molnár, H. Niemi, DHR, PRD 93 (2016) 11, 114025

 \implies still need to do eigenmode analysis!

- 2. Closure of equations of motion of "pure" anisotropic fluid dynamics \implies best agreement to solution of Boltzmann equation provided by \hat{P}_l but: not all moments agree with solution of Boltzmann equation E. Molnár, H. Niemi, DHR, arXiv:1606.09019 [nucl-th]
 - \implies need to improve \hat{f}_{0k} ?!