

Transport coefficients in the hadron gas Jean-Bernard Rose

with A. Schäfer, D. Oliinychenko, J.M. Torres-Rincon, J. Hammelmann, H. Elfner, M. Greif, G. Denicol, J. Fotakis, C. Greiner

CRC Transport Meeting, Frankfurt, Germany, December 12th, 2019

Three talks for the price of one!

1. Shear Viscosity

2. Cross-Conductivity

3. Bulk Viscosity

Three talks for the price of one!

1. Shear Viscosity

2. Cross-Conductivity

3. Bulk Viscosity

Viscosity in heavy ion collisions

 Investigating deconfinement requires a good knowledge of transport coefficients

Viscosity in heavy ion collisions

- Investigating deconfinement requires a good knowledge of transport coefficients
- Hydrodynamics relatively successful at explaining this with small η /s above the transition

Luzum & Romatschke 10.1103/Phys. Rev. C 78.034915

Viscosity in heavy ion collisions

- Investigating deconfinement requires a good knowledge of transport coefficients
- Hydrodynamics relatively successful at explaining this with small η /s above the transition
- Still not clear what the behavior of η/s is at low energies (FAIR, late stage RHIC/LHC)

-Bernhard, Moreland, Bass, Liu & Heinz Phys. Rev. C94 no. 2 (2016) 024907 -Paquet, QM2019 talk

Previous HG viscosity calculations

12/12/2019

Previous HG viscosity calculations

12/12/2019

12/12/2019

- SMASH is a semi-classical transport approach for the hadron gas
- Geometric collision criterion:

$$d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}}$$

Spectral functions of resonances are described by relativistic Breit-Wigner functions, with resonance lifetime

$$\tau_{\rm res} = \frac{1}{\Gamma(m)}$$

- Elastic scatterings parameterized for NN; many other elastic scatterings assumed to go through resonances
- All other elastic scatterings go through Additive Quark Model Inelastic scatterings, currently include
 - NN \leftrightarrow NR, NN $\leftrightarrow \Delta$ R
 - $KN \leftrightarrow KN, KN \leftrightarrow \pi H$
 - +antiparticles
- Strings (turned off for detailed balance)

Green-Kubo formalism: Shear

The shear viscosity is calculated from

$$\eta = \frac{V}{T} \int_0^\infty C^{xy}(t) dt$$

where

$$C^{xy}(t) \equiv \left\langle (T^{xy}(0) - \left\langle T^{xy} \right\rangle_{eq}) \cdot (T^{xy}(t) - \left\langle T^{xy} \right\rangle_{eq}) \right\rangle$$

In the dilute case, exponential ansatz

$$C^{xy}(t) = C^{x}y(0) \ e^{-\frac{t}{\tau_{\eta}}}$$
$$\eta = \frac{C^{xy}(0) \ V \ \tau_{\eta}}{T}$$

where τ_{η} is the shear relaxation time

12/12/2019

Green-Kubo formalism: Cross-Conductivity

We can extend the previous formalism:

$$\eta = \frac{V}{T} \int_{0}^{\infty} \langle \pi^{xy}(0), \pi^{xy}(t) \rangle_{eq} dt$$
$$\zeta = \frac{V}{T} \int_{0}^{\infty} \langle p(0), p(t) \rangle_{eq} dt$$
$$\sigma_{QQ,QB,QS} = \frac{V}{T} \int_{0}^{\infty} \langle j_{Q,B,S}^{x}(0), j_{Q}^{x}(t) \rangle_{eq} dt$$

where

$$\langle A(t), B(t') \rangle_{eq} \equiv \langle (A(t) - \langle A \rangle_{eq}) \cdot (B(t') - \langle B \rangle_{eq}) \rangle_{eq}$$

We can extend the previous formalism:

$$\eta = \frac{V}{T} \int_{0}^{\infty} \langle \pi^{xy}(0), \pi^{xy}(t) \rangle_{eq} dt$$
$$\zeta = \frac{V}{T} \int_{0}^{\infty} \langle p(0), p(t) \rangle_{eq} dt$$
$$\sigma_{QQ,QB,QS} = \frac{V}{T} \int_{0}^{\infty} \langle j_{Q,B,S}^{x}(0), j_{Q}^{x}(t) \rangle_{eq} dt$$

where

$$\langle A(t), B(t') \rangle_{eq} \equiv \langle (A(t) - \langle A \rangle_{eq}) \cdot (B(t') - \langle B \rangle_{eq}) \rangle_{eq}$$

Green-Kubo formalism: Bulk

Method: Equilibrium in SMASH

- Box calculations simulating infinite matter to apply the Green-Kubo procedure
- MUST have thermal & chemical equilibrium = detailed balance
- Baryon/antibaryon annihilation implemented to conserve detailed balance via an average decay to 5π

Method: Equilibrium in SMASH

- Box calculations simulating infinite matter to apply the Green-Kubo procedure
- MUST have **thermal** & chemical equilibrium = detailed balance
- Baryon/antibaryon annihilation implemented to conserve detailed balance via an average decay to 5π

J. Torres-Rincon, PhD dissertation (2012), Hadronic Transport Coefficients from Effective Field Theories

Test case #1: π with constant σ

Test case #2: m-p gas

does not coincide Enskog

Resonance lifetimes

Ν	Δ	Λ	Σ	Ŧ	Ω		Strange			
N ₉₃₈	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉	E ₁₃₂₁	Ω - ₁₆₇₂	Π ₁₃₈	f _{0 980}	f _{2 1275}	Π _{2 1670}	K ₄₉₄
N ₁₄₄₀	Δ ₁₆₂₀	Λ ₁₄₀₅	Σ ₁₃₈₅	E ₁₅₃₀	Ω - ₂₂₅₀	π ₁₃₀₀	f _{0 1370}	f ₂ ' ₁₅₂₅		K* ₈₉₂
N ₁₅₂₀	Δ ₁₇₀₀	Λ ₁₅₂₀	Σ ₁₆₆₀	王 1690		Π₁₈₀₀	f _{0 1500}	f _{2 1950}	ρ _{3 1690}	K _{1 1270}
N ₁₅₃₅	Δ ₁₉₀₅	Λ ₁₆₀₀	Σ ₁₆₇₀	E ₁₈₂₀			f _{0 1710}	f _{2 2010}		K _{1 1400}
N ₁₆₅₀	Δ ₁₉₁₀	Λ ₁₆₇₀	Σ ₁₇₅₀	王 ₁₉₅₀		<u>η₅₄₈</u>		f _{2 2300}	Φ _{3 1850}	K* ₁₄₁₀
N ₁₆₇₅	Δ ₁₉₂₀	Λ ₁₆₉₀	Σ ₁₇₇₅	E ₂₀₃₀		η' ₉₅₈	a _{0 980}	f _{2 2340}		K ₀ * ₁₄₃₀
N ₁₆₈₀	Δ ₁₉₃₀	Λ ₁₈₀₀	Σ ₁₉₁₅			η ₁₂₉₅	a _{0 1450}		a _{4 2040}	K ₂ * ₁₄₃₀
N ₁₇₀₀	Δ ₁₉₅₀	Λ ₁₈₁₀	Σ ₁₉₄₀			η ₁₄₀₅		f _{1 1285}	C	K* ₁₆₈₀
N ₁₇₁₀		Λ ₁₈₂₀	Σ ₂₀₃₀			η ₁₄₇₅	Φ1019	f _{1 1420}	T _{4 2050}	K _{2 1770}
N ₁₇₂₀		Λ ₁₈₃₀	Σ ₂₂₅₀				$\mathbf{\phi}_{1680}$			K ₃ * ₁₇₈₀
N ₁₈₇₅		Λ ₁₈₉₀				σ_{800}		a _{2 1320}		K _{2 1820}
N ₁₉₀₀		Λ ₂₁₀₀					h _{1 1170}			K ₄ * ₂₀₄₅
N ₁₉₉₀		Λ ₂₁₁₀				ρ ₇₇₆	L	Π _{1 1400}		
N ₂₀₈₀		Λ ₂₃₅₀				ρ ₁₄₅₀	D _{1 1235}	Π _{1 1600}		
N ₂₁₉₀						ρ ₁₇₀₀				
N ₂₂₂₀							a _{1 1260}	η _{2 1645}		
N ₂₂₅₀			• + ar	nti-partic	les	ω ₇₈₃				
			• Isos	pin ['] symn	netry	ω_{1420}		ω _{3 1670}		
						ω_{1650}			lean	-Bernard Rose

12/12/2019

Full hadron gas: Degrees of freedom

SMASH v1.6, smash-transport.github.io, DOI:10.5281/zenodo.3485108

Hadron Gas: T and μ_B dependence

HG: Viscosity Comparison

High temperature η/s : Resonance lifetimes

12/12/2019

High temperature η/s : Resonance lifetimes

High temperature η/s : Resonance lifetimes

12/12/2019

π-p: Zero lifetimes vs relaxation time

Large part of the difference explained from eliminating lifetimes

Effect of many non-resonant interactions

Three talks for the price of one!

1. Shear Viscosity

2. Cross-Conductivity

3. Bulk Viscosity

Constraining hadronic active degrees of freedom

- Composed of hadrons
- Which ones are active degree

Jean-Bernard Rose

Constraining hadronic active degrees of freedom

- Composed of hadrons
- Which ones are active degrees of freedom, and do we know them all?
- How do we constrain this?

Jean-Bernard Rose

2018 030001, q ĥ. no. D98, vol. Rev. Phys. al. et M. Tanabasł

Constraining hadroni

- Composed of hadrons
- Which ones are active degrees of freedom, and do we know them all?
- How do we constrain this?

Constraining hadronic active degrees of freedom

- Composed of hadrons
- Which ones are active degrees of freedom, and do we know them all?
- How do we constrain this?
- Additional ways of constraining these properties are needed: these coefficients provide one such new path

Jean-Bernard Rose

• An electric field introduces an electric current:

$$\overrightarrow{j}_Q = \sigma_{QQ} \ \overrightarrow{E}_Q$$

Hadrons can have multiple charges: Q,
So the electric field also introduces otl currents:

$$\vec{j}_B = \sigma_{QB} \vec{E}_Q$$

$$\vec{j}_S = \sigma_{QS} \vec{E}_Q$$

Can be calculated both in effective models and on the lattice!

B, S Ier

An electric field introduces an electric \bullet current:

$$\overrightarrow{j}_Q = \sigma_{QQ} \ \overrightarrow{E}_Q$$

- Hadrons can have multiple charges: Q, B, S \bullet

$$\vec{j}_B = \sigma_{QB} \vec{E}_Q$$

$$\overrightarrow{j}_{S} = \sigma_{QS} \overrightarrow{E}_{Q}$$

• An electric field introduces an electric current:

$$\overrightarrow{j}_{Q} = \sigma_{QQ} \ \overrightarrow{E}_{Q}$$

- Hadrons can have multiple charges: Q, B, S
- So the electric field also introduces other currents:

$$\vec{j}_B = \sigma_{QB} \vec{E}_Q$$
$$\vec{j}_S = \sigma_{QS} \vec{E}_Q$$

Can be calculated both in effective models and on the lattice!

• An electric field introduces an electric current:

$$\overrightarrow{j}_{Q} = \sigma_{QQ} \ \overrightarrow{E}_{Q}$$

- Hadrons can have multiple charges: Q, B, S
- So the electric field also introduces other currents:

$$\vec{j}_B = \sigma_{QB} \vec{E}_Q$$
$$\vec{j}_S = \sigma_{QS} \vec{E}_Q$$

Can be calculated both in effective models and on the lattice!

• An electric field introduces an electric current:

$$\overrightarrow{j}_{Q} = \sigma_{QQ} \ \overrightarrow{E}_{Q}$$

- Hadrons can have multiple charges: Q, B, S
- So the electric field also introduces other currents:

$$\vec{j}_{B} = \sigma_{QB} \vec{E}_{Q}$$
$$\vec{j}_{S} = \sigma_{QS} \vec{E}_{Q}$$

Can be calculated both in effective models and on the lattice!

Green-Kubo formalism

The cross-conductivity is calculated from

$$\sigma_{Qi} = \frac{V}{T} \int_0^\infty C_{Qi} dt', \quad i = Q, B, S$$

where

$$C_{Qi}(t) \equiv \langle (j_Q^x(t) - \langle j_Q^x \rangle_{eq}) \cdot (j_i^x(t') - \langle j_i^x \rangle_{eq}) \rangle_{eq}$$

In the dilute case, exponential ansatz

$$C_{Qi}(t) = C_{Qi}(0) \ e^{-\frac{t}{\tau_{Qi}}}$$
$$\sigma_{Qi} = \frac{C_{Qi}(0) \ V \ \tau_{Qi}}{T}$$

where τ_{Qi} is the relaxation time

12/12/2019

Green-Kubo test case: π-K-N with 30 mb

The cross-conductivity is calculated from

$$\sigma_{Qi} = \frac{V}{T} \int_0^\infty C_{Qi} dt', \quad i = Q, B, S$$

where

$$C_{Qi}(t) \equiv \langle (j_Q^x(t) - \langle j_Q^x \rangle_{eq}) \cdot (j_i^x(t') - \langle j_i^x \rangle_{eq}) \rangle_{eq}$$

In the dilute case, exponential ansatz

$$C_{Qi}(t) = C_{Qi}(0) \ e^{-\frac{t}{\tau_{Qi}}}$$
$$\sigma_{Qi} = \frac{C_{Qi}(0) \ V \ \tau_{Qi}}{T}$$

where τ_{Qi} is the relaxation time

12/12/2019

Resonance lifetimes: Shear vs conductivity

π-K-N resonant gas: Degrees of freedom

Ν	Δ	Λ	Σ	Ŧ	Ω		Unflav	vored		Strange
N938	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉ Σ	王 ₁₃₂₁ ∓	Ω ⁻ 1672	<u>Π₁₃₈</u>	f _{0 980}	f _{2,1275}	Π _{2 1670}	K*
• • 1440					×z 2250					N 892
N ₁₅₃₅										
N ₁₆₅₀										
N ₁₆₇₅										
N ₁₆₈₀										
N ₁₇₀₀										
N ₁₇₁₀										
N ₁₇₂₀										
N ₁₈₇₅										
N1900						ρ ₇₇₆				
N2080						ρ1450				
N ₂₁₉₀										
N ₂₂₂₀										
N ₂₂₅₀			• + ar	nti-partic	les					
			• Isos	pin symm	netry					
									Jean	-Bernard Rose

12/12/2019

SMASH v1.6, smash-transport.github.io, DOI:10.5281/zenodo.3485108

π -K-N- Λ resonant gas: Degrees of freedom

Ν	Δ	Λ	Σ	Ŧ	Ω		Strange			
N ₉₃₈	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉	E ₁₃₂₁	Ω - ₁₆₇₂	<u>Π₁₃₈</u>	f _{0 980}	f _{2 1275}	Π _{2 1670}	K ₄₉₄
N ₁₄₄₀					Ω - ₂₂₅₀					K* ₈₉₂
N ₁₅₂₀										K _{1 1270}
N ₁₅₃₅										K _{1 1400}
N ₁₆₅₀						<u>η₅₄₈</u>				K* ₁₄₁₀
N ₁₆₇₅										K ₀ * ₁₄₃₀
N ₁₆₈₀										K ₂ * ₁₄₃₀
N ₁₇₀₀										K* ₁₆₈₀
N ₁₇₁₀										K _{2 1770}
N ₁₇₂₀										K ₃ * ₁₇₈₀
N ₁₈₇₅						σ_{800}				K _{2 1820}
N ₁₉₀₀										K ₄ * ₂₀₄₅
N ₁₉₉₀						ρ ₇₇₆				
N ₂₀₈₀										
N ₂₁₉₀										
N ₂₂₂₀										
N ₂₂₅₀			• + ar	nti-nartic						
2250			• Isos	pin symm	netry					
				,					Jean	-Bernard Rose

12/12/2019

SMASH v1.6, smash-transport.github.io, DOI:10.5281/zenodo.3485108

Ν	Δ	Λ	Σ	Ŧ	Ω		Strange			
N ₉₃₈	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉	E ₁₃₂₁	Ω - ₁₆₇₂	Π ₁₃₈	f _{0 980}	f _{2 1275}	Π _{2 1670}	K ₄₉₄
N ₁₄₄₀	Δ ₁₆₂₀	Λ ₁₄₀₅	Σ ₁₃₈₅	E ₁₅₃₀	Ω - ₂₂₅₀	π ₁₃₀₀	f _{0 1370}	f ₂ ' ₁₅₂₅		K* ₈₉₂
N ₁₅₂₀	Δ ₁₇₀₀	Λ ₁₅₂₀	Σ ₁₆₆₀	王 1690		Π₁₈₀₀	f _{0 1500}	f _{2 1950}	ρ _{3 1690}	K _{1 1270}
N ₁₅₃₅	Δ ₁₉₀₅	Λ ₁₆₀₀	Σ ₁₆₇₀	E ₁₈₂₀			f _{0 1710}	f _{2 2010}		K _{1 1400}
N ₁₆₅₀	Δ ₁₉₁₀	Λ ₁₆₇₀	Σ ₁₇₅₀	王 ₁₉₅₀		<u>η₅₄₈</u>		f _{2 2300}	Φ _{3 1850}	K* ₁₄₁₀
N ₁₆₇₅	Δ ₁₉₂₀	Λ ₁₆₉₀	Σ ₁₇₇₅	E ₂₀₃₀		η' ₉₅₈	a _{0 980}	f _{2 2340}		K ₀ * ₁₄₃₀
N ₁₆₈₀	Δ ₁₉₃₀	Λ ₁₈₀₀	Σ ₁₉₁₅			η ₁₂₉₅	a _{0 1450}		a _{4 2040}	K ₂ * ₁₄₃₀
N ₁₇₀₀	Δ ₁₉₅₀	Λ ₁₈₁₀	Σ ₁₉₄₀			η ₁₄₀₅		f _{1 1285}	C	K* ₁₆₈₀
N ₁₇₁₀		Λ ₁₈₂₀	Σ ₂₀₃₀			η ₁₄₇₅	Φ1019	f _{1 1420}	T _{4 2050}	K _{2 1770}
N ₁₇₂₀		Λ ₁₈₃₀	Σ ₂₂₅₀				$\mathbf{\phi}_{1680}$			K ₃ * ₁₇₈₀
N ₁₈₇₅		Λ ₁₈₉₀				σ_{800}		a _{2 1320}		K _{2 1820}
N ₁₉₀₀		Λ ₂₁₀₀					h _{1 1170}			K ₄ * ₂₀₄₅
N ₁₉₉₀		Λ ₂₁₁₀				ρ ₇₇₆	L	Π _{1 1400}		
N ₂₀₈₀		Λ ₂₃₅₀				ρ ₁₄₅₀	D _{1 1235}	Π _{1 1600}		
N ₂₁₉₀						ρ ₁₇₀₀				
N ₂₂₂₀							a _{1 1260}	η _{2 1645}		
N ₂₂₅₀			• + ar	nti-partic	les	ω ₇₈₃				
			• Isos	pin ['] symn	netry	ω_{1420}		ω _{3 1670}		
						ω_{1650}			lean	-Bernard Rose

12/12/2019

Full hadron gas: Degrees of freedom

SMASH v1.6, smash-transport.github.io, DOI:10.5281/zenodo.3485108

12/12/2019

Chemical composition

Electric conductivity

Baryonic-electric conductivity

12/12/2019

Strange-electric conductivity

12/12/2019

Electric conductivity comparison

Three talks for the price of one!

1. Shear Viscosity

2. Cross-Conductivity

3. Bulk Viscosity

 Isn't it zero according to AdS-CFT? Not a conformal fluid, especially at phase transition

Why study bulk viscosity?

- Isn't it zero according to AdS-CFT? Not a conformal fluid, especially at phase transition
- Was shown to be important to simultaneously fit multiplicities, mean p_T , and elliptic flow

Why study bulk viscosity?

Rev. Lett., vol. 115 and Gale, Phys. Denicol, Schenke, Jeon 2015 t, Shei 32301 Ryu, Paquet no. 13, p. 1

Why study bulk viscosity?

115, vol. and Gale, Phys. Rev. Lett., Jeon, t, Shen, Denicol, Schenke, 32301, 2015 Ryu, Paquet no. 13, p. 1

- Isn't it zero according to AdS-CFT? Not a conformal fluid, especially at phase transition
- Was shown to be important to simultaneously fit multiplicities, mean p_T , and elliptic flow
- More recently, was shown using Bayesian techniques in hybrid models that bulk viscosity has a large structure around T_c

Why study bulk viscosity?

Jean-Bernard Rose

The shear viscosity is calculated from

$$\zeta = \frac{V}{T} \int_0^\infty C^{\Pi}(t) dt$$

where

$$C^{\Pi}(t) \equiv \langle (p(0) - \langle p \rangle_{eq}) \cdot (p(t) - \langle p \rangle_{eq}) \rangle_{eq}$$

is NOT zero!!

In a pion constant cross-section system:

A little reminder on Green-Kubo: Bulk

A little reminder on Green-Kubo: Bulk

The bulk viscosity is calculated from

$$\zeta = \frac{V}{T} \int_0^\infty C^{\Pi}(t) dt$$

where

$$C^{\Pi}(t) \equiv \langle (p(0) - \langle p \rangle_{eq}) \cdot (p(t) - \langle p \rangle_{eq}) \rangle_{eq}$$

is NOT zero!!

In a pion constant cross-section system:

A little reminder on Green-Kubo: Bulk

12/12/2019

The bulk viscosity is calculated from

$$\zeta = \frac{V}{T} \int_0^\infty C^{\Pi}(t) dt$$

where

$$C^{\Pi}(t) \equiv \langle (p(0) - \langle p \rangle_{eq}) \cdot (p(t) - \langle p \rangle_{eq}) \rangle_{eq}$$

is NOT zero!!

In a pion constant cross-section system:

12/12/2019

A little reminder on Green-Kubo: Bulk

Jean-Bernard Rose

Test case #1: π with constant σ

Full hadron gas: Correlations

12/12/2019

Test case #2: m with resonances

12/12/2019

12/12/2019

12/12/2019

12/12/2019

Summary & Outlook

- - Very good agreement with Chapman-Enskog approximation in all cases
 - Shear viscosity strongly affected by resonance lifetimes
 - current lattice data inconclusive

• Outlook:

- Investigation of angular dependent interactions
- Inclusion of multi-particle interaction will play a role at phase transition
- Precise low temperature conductivity calculations on the lattice are needed
- Diffusion of multiple charges (stay tuned: P. Karan)

Investigated temperature and μ_B dependence of shear viscosity, cross-conductivity and bulk viscosity in various systems

- Cross-conductivity sensitive to increasing number of degrees of freedom; comparison with

- Bulk viscosity requires presence of mass-changing processes such as resonances to not be negligible; massive uncertainty remains due to breakdown of exponential ansatz

Backup slides

12/12/2019

Resonance lifetimes: Shear vs conductivity

Equilibrium in SMASH

- All particles and resonances initialized to thermal multiplicities (at the pole mass)
- Must wait for equilibration and compute T, μ once in equilibrium from most abundant particles
 - T fitted from weighted momentum spectra of π , K & N
 - μ_B obtained from ____ N / anti-N ratio

What about entropy?

The entropy density can be calculated from the Gibbs formula:

$$S = \frac{e + p - \mu n}{T} = \frac{w - \mu n}{T}$$

where the energy density and pressure can be taken from the average shear-stress tensor according to:

$$T^{\mu\nu} = diag(e, p, p, p)$$

Assuming a nearly ideal gas, one can fit the temperature and chemical potential with momentum distributions:

$$\frac{dN}{dp} = \frac{g}{2\pi^2} V p^2 \exp\left(-\frac{\sqrt{p^2 + m^2} - \mu}{T}\right)$$

Energy density and pressure

12/12/2019

Jean-Bernard Rose

